-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrun.py
240 lines (201 loc) · 8.94 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
import torch.nn as nn
from model import Model
from utils import *
from sklearn.metrics import roc_auc_score
import random
import dgl
from sklearn.metrics import average_precision_score
import argparse
from tqdm import tqdm
import time
# os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE"
# os.environ["CUDA_VISIBLE_DEVICES"] = ','.join(map(str, [3]))
# os.environ["KMP_DUPLICATE_LnIB_OK"] = "TRUE"
# Set argument
parser = argparse.ArgumentParser(description='')
parser.add_argument('--dataset', type=str,
default='reddit')
parser.add_argument('--lr', type=float)
parser.add_argument('--weight_decay', type=float, default=0.0)
parser.add_argument('--seed', type=int, default=0)
parser.add_argument('--embedding_dim', type=int, default=300)
parser.add_argument('--num_epoch', type=int)
parser.add_argument('--drop_prob', type=float, default=0.0)
parser.add_argument('--readout', type=str, default='avg') # max min avg weighted_sum
parser.add_argument('--auc_test_rounds', type=int, default=256)
parser.add_argument('--negsamp_ratio', type=int, default=1)
parser.add_argument('--mean', type=float, default=0.0)
parser.add_argument('--var', type=float, default=0.0)
args = parser.parse_args()
if args.lr is None:
if args.dataset in ['Amazon']:
args.lr = 1e-3
elif args.dataset in ['tf_finace']:
args.lr = 1e-3
elif args.dataset in ['reddit']:
args.lr = 1e-3
elif args.dataset in ['photo']:
args.lr = 1e-3
elif args.dataset in ['elliptic']:
args.lr = 1e-3
if args.num_epoch is None:
if args.dataset in ['photo']:
args.num_epoch = 100
if args.dataset in ['elliptic']:
args.num_epoch = 150
if args.dataset in ['reddit']:
args.num_epoch = 300
elif args.dataset in ['tf_finace']:
args.num_epoch = 500
elif args.dataset in ['Amazon']:
args.num_epoch = 800
if args.dataset in ['reddit', 'Photo']:
args.mean = 0.02
args.var = 0.01
else:
args.mean = 0.0
args.var = 0.0
print('Dataset: ', args.dataset)
# Set random seed
dgl.random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
torch.cuda.manual_seed_all(args.seed)
random.seed(args.seed)
# os.environ['PYTHONHASHSEED'] = str(args.seed)
# os.environ['OMP_NUM_THREADS'] = '1'
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
# Load and preprocess data
adj, features, labels, all_idx, idx_train, idx_val, \
idx_test, ano_label, str_ano_label, attr_ano_label, normal_label_idx, abnormal_label_idx = load_mat(args.dataset)
if args.dataset in ['Amazon', 'tf_finace', 'reddit', 'elliptic']:
features, _ = preprocess_features(features)
else:
features = features.todense()
dgl_graph = adj_to_dgl_graph(adj)
nb_nodes = features.shape[0]
ft_size = features.shape[1]
raw_adj = adj
print(adj.sum())
adj = normalize_adj(adj)
raw_adj = (raw_adj + sp.eye(raw_adj.shape[0])).todense()
adj = (adj + sp.eye(adj.shape[0])).todense()
features = torch.FloatTensor(features[np.newaxis])
# adj = torch.FloatTensor(adj[np.newaxis])
features = torch.FloatTensor(features)
adj = torch.FloatTensor(adj)
# adj = adj.to_sparse_csr()
adj = torch.FloatTensor(adj[np.newaxis])
raw_adj = torch.FloatTensor(raw_adj[np.newaxis])
labels = torch.FloatTensor(labels[np.newaxis])
# idx_train = torch.LongTensor(idx_train)
# idx_val = torch.LongTensor(idx_val)
# idx_test = torch.LongTensor(idx_test)
# Initialize model and optimiser
model = Model(ft_size, args.embedding_dim, 'prelu', args.negsamp_ratio, args.readout)
optimiser = torch.optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.weight_decay)
#
# if torch.cuda.is_available():
# print('Using CUDA')
# model.cuda()
# features = features.cuda()
# adj = adj.cuda()
# labels = labels.cuda()
# raw_adj = raw_adj.cuda()
# idx_train = idx_train.cuda()
# idx_val = idx_val.cuda()
# idx_test = idx_test.cuda()
#
# if torch.cuda.is_available():
# b_xent = nn.BCEWithLogitsLoss(reduction='none', pos_weight=torch.tensor([args.negsamp_ratio]).cuda())
# else:
# b_xent = nn.BCEWithLogitsLoss(reduction='none', pos_weight=torch.tensor([args.negsamp_ratio]))
b_xent = nn.BCEWithLogitsLoss(reduction='none', pos_weight=torch.tensor([args.negsamp_ratio]))
xent = nn.CrossEntropyLoss()
# Train model
with tqdm(total=args.num_epoch) as pbar:
pbar.set_description('Training')
total_time = 0
for epoch in range(args.num_epoch):
start_time = time.time()
model.train()
optimiser.zero_grad()
# Train model
train_flag = True
emb, emb_combine, logits, emb_con, emb_abnormal = model(features, adj,
abnormal_label_idx, normal_label_idx,
train_flag, args)
if epoch % 10 == 0:
# save data for tsne
pass
# tsne_data_path = 'draw/tfinance/tsne_data_{}.mat'.format(str(epoch))
# io.savemat(tsne_data_path, {'emb': np.array(emb.cpu().detach()), 'ano_label': ano_label,
# 'abnormal_label_idx': np.array(abnormal_label_idx),
# 'normal_label_idx': np.array(normal_label_idx)})
# BCE loss
lbl = torch.unsqueeze(torch.cat(
(torch.zeros(len(normal_label_idx)), torch.ones(len(emb_con)))),
1).unsqueeze(0)
# if torch.cuda.is_available():
# lbl = lbl.cuda()
loss_bce = b_xent(logits, lbl)
loss_bce = torch.mean(loss_bce)
# Local affinity margin loss
emb = torch.squeeze(emb)
emb_inf = torch.norm(emb, dim=-1, keepdim=True)
emb_inf = torch.pow(emb_inf, -1)
emb_inf[torch.isinf(emb_inf)] = 0.
emb_norm = emb * emb_inf
sim_matrix = torch.mm(emb_norm, emb_norm.T)
raw_adj = torch.squeeze(raw_adj)
similar_matrix = sim_matrix * raw_adj
r_inv = torch.pow(torch.sum(raw_adj, 0), -1)
r_inv[torch.isinf(r_inv)] = 0.
affinity = torch.sum(similar_matrix, 0) * r_inv
affinity_normal_mean = torch.mean(affinity[normal_label_idx])
affinity_abnormal_mean = torch.mean(affinity[abnormal_label_idx])
# if epoch % 10 == 0:
# real_abnormal_label_idx = np.array(all_idx)[np.argwhere(ano_label == 1).squeeze()].tolist()
# real_normal_label_idx = np.array(all_idx)[np.argwhere(ano_label == 0).squeeze()].tolist()
# overlap = list(set(real_abnormal_label_idx) & set(real_normal_label_idx))
#
# real_affinity, index = torch.sort(affinity[real_abnormal_label_idx])
# real_affinity = real_affinity[:300]
# draw_pdf(np.array(affinity[real_normal_label_idx].detach().cpu()),
# np.array(affinity[abnormal_label_idx].detach().cpu()),
# np.array(real_affinity.detach().cpu()), args.dataset, epoch)
confidence_margin = 0.7
loss_margin = (confidence_margin - (affinity_normal_mean - affinity_abnormal_mean)).clamp_min(min=0)
diff_attribute = torch.pow(emb_con - emb_abnormal, 2)
loss_rec = torch.mean(torch.sqrt(torch.sum(diff_attribute, 1)))
loss = 1 * loss_margin + 1 * loss_bce + 1 * loss_rec
loss.backward()
optimiser.step()
end_time = time.time()
total_time += end_time - start_time
print('Total time is', total_time)
if epoch % 2 == 0:
logits = np.squeeze(logits.cpu().detach().numpy())
lbl = np.squeeze(lbl.cpu().detach().numpy())
auc = roc_auc_score(lbl, logits)
# print('Traininig {} AUC:{:.4f}'.format(args.dataset, auc))
# AP = average_precision_score(lbl, logits, average='macro', pos_label=1, sample_weight=None)
# print('Traininig AP:', AP)
print("Epoch:", '%04d' % (epoch), "train_loss_margin=", "{:.5f}".format(loss_margin.item()))
print("Epoch:", '%04d' % (epoch), "train_loss_bce=", "{:.5f}".format(loss_bce.item()))
print("Epoch:", '%04d' % (epoch), "rec_loss=", "{:.5f}".format(loss_rec.item()))
print("Epoch:", '%04d' % (epoch), "train_loss=", "{:.5f}".format(loss.item()))
print("=====================================================================")
if epoch % 10 == 0:
model.eval()
train_flag = False
emb, emb_combine, logits, emb_con, emb_abnormal = model(features, adj, abnormal_label_idx, normal_label_idx,
train_flag, args)
# evaluation on the valid and test node
logits = np.squeeze(logits[:, idx_test, :].cpu().detach().numpy())
auc = roc_auc_score(ano_label[idx_test], logits)
print('Testing {} AUC:{:.4f}'.format(args.dataset, auc))
AP = average_precision_score(ano_label[idx_test], logits, average='macro', pos_label=1, sample_weight=None)
print('Testing AP:', AP)