-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodel_AEGIS.py
240 lines (190 loc) · 7.59 KB
/
model_AEGIS.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
import torch
import torch.nn as nn
import torch.nn.functional as F
import math
from torch_geometric.nn import MLP
import numpy as np
def neighList_to_edgeList(adj):
edge_list = []
for i in range(adj.shape[0]):
for j in torch.argwhere(adj[i, :] >0):
edge_list.append([int(i), int(j)])
return edge_list
def neighList_to_edgeList_train(adj, idx_train):
edge_list = []
for i in idx_train:
for j in torch.argwhere(adj[i, :] >0):
edge_list.append([int(i), int(j)])
return edge_list
class GCN(nn.Module):
def __init__(self, in_ft, out_ft, act, bias=True):
super(GCN, self).__init__()
self.fc = nn.Linear(in_ft, out_ft, bias=False)
self.act = nn.PReLU() if act == 'prelu' else act
if bias:
self.bias = nn.Parameter(torch.FloatTensor(out_ft))
self.bias.data.fill_(0.0)
else:
self.register_parameter('bias', None)
for m in self.modules():
self.weights_init(m)
def weights_init(self, m):
if isinstance(m, nn.Linear):
torch.nn.init.xavier_uniform_(m.weight.data)
if m.bias is not None:
m.bias.data.fill_(0.0)
def forward(self, seq, adj, sparse=False):
seq_fts = self.fc(seq)
if sparse:
out = torch.unsqueeze(torch.spmm(adj, torch.squeeze(seq_fts, 0)), 0)
else:
out = torch.mm(adj, seq_fts)
if self.bias is not None:
out += self.bias
return self.act(out)
class AvgReadout(nn.Module):
def __init__(self):
super(AvgReadout, self).__init__()
def forward(self, seq):
return torch.mean(seq, 1)
class MaxReadout(nn.Module):
def __init__(self):
super(MaxReadout, self).__init__()
def forward(self, seq):
return torch.max(seq, 1).values
class MinReadout(nn.Module):
def __init__(self):
super(MinReadout, self).__init__()
def forward(self, seq):
return torch.min(seq, 1).values
class WSReadout(nn.Module):
def __init__(self):
super(WSReadout, self).__init__()
def forward(self, seq, query):
query = query.permute(0, 2, 1)
sim = torch.matmul(seq, query)
sim = F.softmax(sim, dim=1)
sim = sim.repeat(1, 1, 64)
out = torch.mul(seq, sim)
out = torch.sum(out, 1)
return out
class Discriminator(nn.Module):
def __init__(self, n_h, negsamp_round):
super(Discriminator, self).__init__()
self.f_k = nn.Bilinear(n_h, n_h, 1)
for m in self.modules():
self.weights_init(m)
self.negsamp_round = negsamp_round
def weights_init(self, m):
if isinstance(m, nn.Bilinear):
torch.nn.init.xavier_uniform_(m.weight.data)
if m.bias is not None:
m.bias.data.fill_(0.0)
def forward(self, c, h_pl):
scs = []
# positive
scs.append(self.f_k(h_pl, c))
# negative
c_mi = c
for _ in range(self.negsamp_round):
c_mi = torch.cat((c_mi[-2:-1, :], c_mi[:-1, :]), 0)
scs.append(self.f_k(h_pl, c_mi))
logits = torch.cat(tuple(scs))
return logits
class Model(nn.Module):
def __init__(self, n_in, n_h, activation, negsamp_round, readout):
super(Model, self).__init__()
self.noise_dim = 16
self.hid_dim = 64
self.read_mode = readout
self.act = nn.ReLU()
if readout == 'max':
self.read = MaxReadout()
elif readout == 'min':
self.read = MinReadout()
elif readout == 'avg':
self.read = AvgReadout()
elif readout == 'weighted_sum':
self.read = WSReadout()
self.disc = Discriminator(n_h, negsamp_round)
noise_dim = 16
hid_dim = 64
num_layers = 4
dropout = 0.
in_dim = n_in
generator_layers = math.floor(num_layers / 2)
encoder_layers = math.ceil(num_layers / 2)
act = torch.nn.functional.relu
self.gcn_enc1 = GCN(n_in, n_h, activation)
self.gcn_enc2 = GCN(n_h, n_h, activation)
self.gcn_dec1 = GCN(n_h, n_h, activation)
self.gcn_dec2 = GCN(n_h, n_in, activation)
self.generator = MLP(in_channels=noise_dim,
hidden_channels=hid_dim,
out_channels=in_dim,
num_layers=generator_layers,
dropout=dropout,
act=act)
self.discriminator = MLP(in_channels=in_dim,
hidden_channels=hid_dim,
out_channels=hid_dim,
num_layers=encoder_layers,
dropout=dropout,
act=act
)
self.discriminator2 = MLP(in_channels=n_h,
hidden_channels=hid_dim,
out_channels=1,
num_layers=encoder_layers,
dropout=dropout,
act=torch.sigmoid
)
def model_enc(self, x, adj, noise, idx_train):
"""
Forward computation.
Parameters
----------
x : torch.Tensor
Input attribute embeddings.
noise : torch.Tensor
Input noise.
Returns
-------
x_ : torch.Tensor
Reconstructed node features.
a : torch.Tensor
Reconstructed adjacency matrix from real samples.
a_ : torch.Tensor
Reconstructed adjacency matrix from fake samples.
"""
x_gen = self.generator(noise.cuda())
# x_gen = self.generator(noise)
z_gen = self.gcn_enc1(x_gen, adj)
z_gen = self.gcn_enc2(z_gen, adj)
z = self.gcn_enc1(x, adj)
z = self.gcn_enc2(z, adj)
z_gen_dec = self.gcn_dec1(z, adj)
z_gen_dec = self.gcn_dec2(z_gen_dec, adj)
z_dec = self.gcn_dec1(z, adj)
z_dec = self.gcn_dec2(z_dec, adj)
emb_all = torch.cat([z, z_gen], 0)
label = torch.cat([torch.zeros(len(z)), torch.ones(len(z_gen))])
logits = self.discriminator2(emb_all)
logits_gen = self.discriminator2(z_gen)
logits = torch.sigmoid(logits)
logits_gen = torch.sigmoid(logits_gen)
idx_train = idx_train + [len(z)+i for i in range(len(z))]
loss_dis = F.binary_cross_entropy(logits[idx_train, 0], label[idx_train].cuda())
# loss_dis = F.binary_cross_entropy(logits[idx_train, 0], label[idx_train])
loss_g = F.binary_cross_entropy(logits_gen[:, 0], torch.zeros_like(logits_gen[:, 0]))
return z_dec, loss_dis, loss_g, logits, emb_all
def forward(self, seq1, adj, idx_train, idx_test, sparse=False):
seq1 = torch.squeeze(seq1)
adj = torch.squeeze(adj)
noise = torch.randn(seq1.shape[0], self.noise_dim)
z_dec, loss_dis, loss_g, logits, emb_all = self.model_enc(seq1, adj, noise, idx_train)
diff_attr = torch.pow(seq1[idx_train, :] - z_dec[idx_train, :], 2)
# diff_attr = torch.pow(seq1[:, :] - z_gen_dec[:, :], 2)
loss_ae = torch.mean(torch.sqrt(torch.sum(diff_attr, 1)), 0)
score = logits[idx_test, :]
return loss_ae, loss_g, loss_ae, score, emb_all