-
-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathcams_loss.py
630 lines (482 loc) · 18.3 KB
/
cams_loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
"""
CAMS loss implementation.
Reference:
M. Afifi, A. Abuolaim, M. Korashy, M. A. Brubaker, and M. S. Brown. Color-Aware Style Transfer. arXiv preprint 2021.
# Libraries
"""
from __future__ import print_function
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision.transforms as transforms
import torchvision.models as models
import numpy as np
import copy
import cv2
import math
"""Settings"""
SMOOTH = True
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
EPS = 1e-6
SIGMA = 0.25
PALETTE_SIZE = 5
ADD_BLACK_WHITE = False
COLOR_DISTANCE = 'chroma_L2' # Options: 'chroma_L2', 'L2'
STYLE_FEATURE_DISTANCE = 'L2' # Options: 'L2', 'COSINE'
IMAGE_SIZE = 384
# desired size of the output image
imsize = IMAGE_SIZE if torch.cuda.is_available() else 128
# desired depth layers to compute style/content losses :
color_aware_layers_default = ['conv_1', 'conv_2', 'conv_3', 'conv_4', 'conv_5']
"""Loading VGG model"""
cnn = models.vgg19(pretrained=True).features.to(DEVICE).eval()
cnn_normalization_mean = torch.tensor([0.485, 0.456, 0.406]).to(DEVICE)
cnn_normalization_std = torch.tensor([0.229, 0.224, 0.225]).to(DEVICE)
"""If SMOOTH is true, create a Gaussian blur kernel."""
if SMOOTH:
"""# Gaussian blur kernel"""
# Set these to whatever you want for your gaussian filter
kernel_size = 15
sigma = 5
# Create a x, y coordinate grid of shape (kernel_size, kernel_size, 2)
x_cord = torch.arange(kernel_size)
x_grid = x_cord.repeat(kernel_size).view(kernel_size, kernel_size)
y_grid = x_grid.t()
xy_grid = torch.stack([x_grid, y_grid], dim=-1)
mean = (kernel_size - 1) / 2.
variance = sigma ** 2.
# Calculate the 2-dimensional gaussian kernel which is
# the product of two gaussian distributions for two different
# variables (in this case called x and y)
gaussian_kernel = (1. / (2. * math.pi * variance)) * \
torch.exp(
-torch.sum((xy_grid - mean) ** 2., dim=-1) / \
(2 * variance))
# Make sure sum of values in gaussian kernel equals 1.
gaussian_kernel = gaussian_kernel / torch.sum(gaussian_kernel)
# Reshape to 2d depthwise convolutional weight
gaussian_kernel = gaussian_kernel.view(1, 1, kernel_size, kernel_size)
gaussian_kernel = gaussian_kernel.to(device=DEVICE)
"""Image Loader"""
loader = transforms.Compose([
transforms.Resize((imsize, imsize)), # scale imported image
transforms.ToTensor()]) # transform it into a torch tensor
"""Color palette
Ref: https://github.com/tody411/PaletteSelection
"""
"""Helper functions"""
## Convert image into float32 type.
def to32F(img):
if img.dtype == np.float32:
return img
return (1.0 / 255.0) * np.float32(img)
## RGB channels of the image.
def rgb(img):
if len(img.shape) == 2:
h, w = img.shape
img_rgb = np.zeros((h, w, 3), dtype=img.dtype)
for ci in range(3):
img_rgb[:, :, ci] = img
return img_rgb
h, w, cs = img.shape
if cs == 3:
return img
img_rgb = np.zeros((h, w, 3), dtype=img.dtype)
cs = min(3, cs)
for ci in range(cs):
img_rgb[:, :, ci] = img[:, :, ci]
return img_rgb
## RGB to Lab.
def rgb2Lab(img):
img_rgb = rgb(img)
Lab = cv2.cvtColor(img_rgb, cv2.COLOR_RGB2LAB)
return Lab
## Lab to RGB.
def Lab2rgb(img):
rgb = cv2.cvtColor(img, cv2.COLOR_LAB2RGB)
return rgb
def _isGray(image):
return len(image.shape) == 2
## True if x is a vector.
def isVector(x):
return x.size == x.shape[0]
## True if x is a matrix.
def isMatrix(x):
return not isVector(x)
## Norm of vectors (n x m matrix).
def normVectors(x):
return np.sqrt(l2NormVectors(x))
## L2 norm of vectors (n x m matrix).
# n x 1 vector: call np.square.
# n x m vectors: call np.einsum.
def l2NormVectors(x):
if isVector(x):
return np.square(x)
else:
return np.einsum('...i,...i', x, x)
def colorCoordinates(color_ids, num_bins, color_range):
color_ids = np.array(color_ids).T
c_min, c_max = color_range
color_coordinates = c_min + (
color_ids * (c_max - c_min)) / float(num_bins - 1.0)
return color_coordinates
def colorDensities(hist_bins):
hist_positive = hist_bins > 0.0
color_densities = np.float32(hist_bins[hist_positive])
density_max = np.max(color_densities)
color_densities = color_densities / density_max
return color_densities
def rgbColors(hist_bins, color_bins):
hist_positive = hist_bins > 0.0
colors = color_bins[hist_positive, :]
colors = np.clip(colors, 0.0, 1.0)
return colors
def clipLowDensity(hist_bins, color_bins, alpha):
density_mean = np.mean(hist_bins)
low_density = hist_bins < density_mean * alpha
hist_bins[low_density] = 0.0
for ci in range(3):
color_bins[low_density, ci] = 0.0
def densitySizes(color_densities, density_size_range):
density_size_min, density_size_max = density_size_range
density_size_factor = density_size_max / density_size_min
density_sizes = density_size_min * np.power(
density_size_factor, color_densities)
return density_sizes
def range2ticks(tick_range, decimals=1):
ticks = np.around(tick_range, decimals=decimals)
ticks[ticks > 10] = np.rint(ticks[ticks > 10])
return ticks
def range2lims(tick_range):
unit = 0.1 * (tick_range[:, 1] - tick_range[:, 0])
lim = np.array(tick_range)
lim[:, 0] += -unit
lim[:, 1] += unit
return lim
"""Color pixels class"""
class ColorPixels:
def __init__(self, image, num_pixels=1000):
self._image = to32F(image)
self._num_pixels = num_pixels
self._rgb_pixels = None
self._Lab = None
self._hsv = None
## RGB pixels.
def rgb(self):
if self._rgb_pixels is None:
self._rgb_pixels = self.pixels("rgb")
return self._rgb_pixels
## Lab pixels.
def Lab(self):
if self._Lab is None:
self._Lab = self.pixels("Lab")
return self._Lab
## Pixels of the given color space.
def pixels(self, color_space="rgb"):
image = np.array(self._image)
if color_space == "Lab":
image = rgb2Lab(self._image)
return self._image2pixels(image)
def _image2pixels(self, image):
if _isGray(image):
h, w = image.shape
step = int(h * w / self._num_pixels)
return image.reshape((h * w))[::step]
h, w, cs = image.shape
step = int(h * w / self._num_pixels)
return image.reshape((-1, cs))[::step]
"""3D color histograms"""
class Hist3D:
def __init__(self, image,
num_bins=16, alpha=0.1, color_space='rgb'):
self._computeTargetPixels(image, color_space)
self._num_bins = num_bins
self._alpha = alpha
self._color_space = color_space
self._computeColorRange()
self._computeHistogram()
def colorSpace(self):
return self._color_space
def colorIDs(self):
color_ids = np.where(self._histPositive())
return color_ids
def colorCoordinates(self):
color_ids = self.colorIDs()
num_bins = self._num_bins
color_range = self._color_range
return colorCoordinates(color_ids, num_bins, color_range)
def colorDensities(self):
return colorDensities(self._hist_bins)
def rgbColors(self):
return rgbColors(self._hist_bins, self._color_bins)
def colorRange(self):
return self._color_range
def _computeTargetPixels(self, image, color_space):
color_pixels = ColorPixels(image)
self._pixels = color_pixels.pixels(color_space)
self._rgb_pixels = color_pixels.rgb()
def _computeColorRange(self):
pixels = self._pixels
cs = pixels.shape[1]
c_min = np.zeros(cs)
c_max = np.zeros(cs)
for ci in range(cs):
c_min[ci] = np.min(pixels[:, ci])
c_max[ci] = np.max(pixels[:, ci])
self._color_range = [c_min, c_max]
def _computeHistogram(self):
pixels = self._pixels
num_bins = self._num_bins
c_min, c_max = self._color_range
hist_bins = np.zeros((num_bins, num_bins, num_bins), dtype=np.float32)
color_bins = np.zeros((num_bins, num_bins, num_bins, 3),
dtype=np.float32)
color_ids = (num_bins - 1) * (pixels - c_min) / (c_max - c_min)
color_ids = np.int32(color_ids)
for pi, color_id in enumerate(color_ids):
hist_bins[color_id[0], color_id[1], color_id[2]] += 1
color_bins[color_id[0], color_id[1],
color_id[2]] += self._rgb_pixels[pi]
self._hist_bins = hist_bins
hist_positive = self._hist_bins > 0.0
for ci in range(3):
color_bins[hist_positive, ci] /= self._hist_bins[hist_positive]
self._color_bins = color_bins
self._clipLowDensity()
def _clipLowDensity(self):
clipLowDensity(self._hist_bins, self._color_bins, self._alpha)
def _histPositive(self):
return self._hist_bins > 0.0
"""Auto palette selection"""
class PaletteSelection:
def __init__(self, color_coordinates, color_densities, rgb_colors,
num_colors=7, sigma=70.0):
self._color_coordinates = color_coordinates
self._color_densities = color_densities
self._rgb_colors = rgb_colors
self._num_colors = num_colors
self._sigma = sigma
self._palette_coordinates = []
self._palette_colors = []
self._computeDarkBrightColors()
self._computeInitialWeight()
self._compute()
def paletteCoordinates(self):
return self._palette_coordinates
def paletteColors(self):
return self._palette_colors
def _compute(self):
for i in range(self._num_colors):
palette_coordinate = self._updatePalette()
self._updateWeight(palette_coordinate)
def _computeDarkBrightColors(self):
rgb_colors = self._rgb_colors
intensities = normVectors(rgb_colors)
c_dark = self._color_coordinates[np.argmin(intensities)]
c_bright = self._color_coordinates[np.argmax(intensities)]
self._dark_bright = [c_dark, c_bright]
def _computeInitialWeight(self):
self._color_weights = np.array(self._color_densities)
self._updateWeight(self._dark_bright[0])
self._updateWeight(self._dark_bright[1])
def _updatePalette(self):
color_id = np.argmax(self._color_weights)
palette_coordinate = self._color_coordinates[color_id]
self._palette_coordinates.append(palette_coordinate)
palette_color = self._rgb_colors[color_id]
self._palette_colors.append(palette_color)
return palette_coordinate
def _updateWeight(self, palette_coordinate):
dists = normVectors(self._color_coordinates - palette_coordinate)
factors = 1.0 - np.exp(- dists ** 2 / (self._sigma ** 2))
self._color_weights = factors * self._color_weights
"""Mask generation"""
class CreateMask(nn.Module):
def __init__(self, insz=imsize, color_palette=None, sigma=SIGMA,
smooth=SMOOTH, distance=COLOR_DISTANCE):
""" Computes masks of the image based on a given color palette
Args:
insz: maximum size of the input image; if it is larger than this size, the
image will be resized (scalar). Default value is imsize (i.e.,
imsize x imsize pixels).
color_palette: kx3 tensor of color palette
sigma: this is the sigma parameter of the kernel function.
The default value is 0.02.
smooth: boolean flag to apply a Gaussian blur after creating the mask.
distance: it can be one of the following options: 'chroma_L2' or 'L2'
Methods:
forward: accepts input image and returns its masks based on the input
color palette
"""
super(CreateMask, self).__init__()
self.color_palette = color_palette
self.insz = insz
self.device = DEVICE
self.sigma = sigma
self.distance = distance
self.smooth = smooth
def forward(self, x):
if self.color_palette is None:
raise NameError('No color palette is given')
x = torch.clamp(x, 0, 1)
I = F.interpolate(x, size=(self.insz, self.insz),
mode='bilinear', align_corners=False)
masks = torch.zeros(1, self.color_palette.shape[0], self.insz, self.insz,
device=DEVICE)
if I.shape[1] > 3:
I = I[:, :3, :, :]
if self.distance == 'chroma_L2':
I = I / (torch.unsqueeze(torch.sum(I, dim=1), dim=1) + EPS)
for c in range(self.color_palette.shape[0]):
color = self.color_palette[c, :].view(1, 3, 1, 1)
if self.distance == 'chroma_L2':
color = color / (torch.unsqueeze(torch.sum(color, dim=1), dim=1) +
EPS)
dist = torch.sqrt(torch.sum((I - color) ** 2, dim=1))
weight = torch.exp(-1 * (dist / self.sigma) ** 2)
if self.smooth:
weight = nn.functional.conv2d(torch.unsqueeze(weight, dim=0),
gaussian_kernel,
bias=None, stride=1, padding=7)
masks[0, c, :, :] = weight
return masks
"""Loss Functions"""
"""Masked Gram matrix"""
def masked_gram_matrix(input, masks):
k = masks.shape[1]
a, b, c, d = input.size()
masks = F.interpolate(masks, size=(c, d), mode='bilinear',
align_corners=False)
G = torch.zeros(k, a * b * a * b, device=DEVICE)
features = input.view(a * b, c * d)
for i in range(k):
mask_values = masks[:, i, :, :].view(a, c * d)
mask_values = (mask_values - torch.min(mask_values)) / (
torch.max(mask_values) - torch.min(mask_values))
num_elements = torch.sum(mask_values)
# compute the gram product
weighted_features = features * mask_values
g = torch.mm(weighted_features, weighted_features.t())
G[i, :] = g.div(num_elements).view(1, a * b * a * b)
return G / k
"""Cosine similarity"""
def cosine_similarity(x, y):
x = x.view(1, -1)
y = y.view(1, -1)
return 1 - (torch.sum(x * y) / (x.norm(2) * y.norm(2) + EPS))
"""Color-aware loss"""
class ColorAwareLoss(nn.Module):
def __init__(self, target_feature, target_masks):
super(ColorAwareLoss, self).__init__()
self.target = masked_gram_matrix(target_feature, target_masks).detach()
self.input_masks = target_masks
def set_input_masks(self, input_masks):
self.input_masks = input_masks
def forward(self, input):
G = masked_gram_matrix(input, self.input_masks)
if STYLE_FEATURE_DISTANCE == 'L2':
self.loss = F.mse_loss(G, self.target)
elif STYLE_FEATURE_DISTANCE == 'COSINE':
self.loss = cosine_similarity(G, self.target)
else:
raise NotImplementedError
return input
"""Image loader"""
def preprocessing(image, K=16):
# compute color palette
img_array = np.array(image)
img_array = img_array[:, :, :3]
# 16 bins, Lab color space
hist3D = Hist3D(img_array, num_bins=16, color_space='Lab')
color_coordinates = hist3D.colorCoordinates()
color_densities = hist3D.colorDensities()
rgb_colors = hist3D.rgbColors()
palette_selection = PaletteSelection(color_coordinates, color_densities,
rgb_colors, num_colors=K, sigma=70.0)
colors = palette_selection._palette_colors
# fake batch dimension required to fit network's input dimensions
image = loader(image).unsqueeze(0)
image = image[:, :3, :, :]
return image.to(DEVICE, torch.float), torch.tensor(colors).to(DEVICE,
torch.float)
"""Normalization"""
class Normalization(nn.Module):
def __init__(self, mean, std):
super(Normalization, self).__init__()
# .view the mean and std to make them [C x 1 x 1] so that they can
# directly work with image Tensor of shape [B x C x H x W].
# B is batch size. C is number of channels. H is height and W is width.
self.mean = torch.tensor(mean).view(-1, 1, 1)
self.std = torch.tensor(std).view(-1, 1, 1)
def forward(self, img):
# normalize img
return (img - self.mean) / self.std
"""Get style model and CAMS loss"""
def get_style_model_and_cams_loss(cnn, normalization_mean, normalization_std,
target_img, target_img_masks,
color_aware_layers=color_aware_layers_default):
cnn = copy.deepcopy(cnn)
# normalization module
normalization = Normalization(normalization_mean,
normalization_std).to(DEVICE)
color_aware_style_losses = []
# assuming that cnn is a nn.Sequential, so we make a new nn.Sequential
# to put in modules that are supposed to be activated sequentially
model = nn.Sequential(normalization)
i = 0 # increment every time we see a conv
for layer in cnn.children():
if isinstance(layer, nn.Conv2d):
i += 1
name = 'conv_{}'.format(i)
elif isinstance(layer, nn.ReLU):
name = 'relu_{}'.format(i)
# The in-place version doesn't play very nicely with the ContentLoss
# and StyleLoss we insert below. So we replace with out-of-place
# ones here.
layer = nn.ReLU(inplace=False)
elif isinstance(layer, nn.MaxPool2d):
name = 'pool_{}'.format(i)
elif isinstance(layer, nn.BatchNorm2d):
name = 'bn_{}'.format(i)
else:
raise RuntimeError('Unrecognized layer: {}'.format(
layer.__class__.__name__))
model.add_module(name, layer)
if name in color_aware_layers:
# add style loss:
target_feature = model(target_img).detach()
color_aware_loss = ColorAwareLoss(target_feature, target_img_masks)
model.add_module("color_aware_loss_{}".format(i), color_aware_loss)
color_aware_style_losses.append(color_aware_loss)
for i in range(len(model) - 1, -1, -1):
if isinstance(model[i], ColorAwareLoss):
break
model = model[:(i + 1)]
return model, color_aware_style_losses
def cams_loss(input, target):
input, input_palette = preprocessing(input)
target, target_palette = preprocessing(target)
assert input.size() == target.size(), \
"input and target images should have the same size"
""" Mask generation"""
final_palette = torch.cat([input_palette, target_palette], dim=0)
if ADD_BLACK_WHITE:
black_white = torch.tensor([[0.0, 0.0, 0.0], [1.0, 1.0, 1.0]],
dtype=torch.float32, device=DEVICE)
final_palette = torch.cat([final_palette, black_white], dim=0)
final_palette = torch.unique(final_palette, dim=0)
mask_generator = CreateMask(color_palette=final_palette)
input_masks = mask_generator(input)
target_masks = mask_generator(target)
model, cams_loss_layers = get_style_model_and_cams_loss(
cnn, cnn_normalization_mean, cnn_normalization_std, target, target_masks)
for i in range(len(model) - 1, -1, -1):
if isinstance(model[i], ColorAwareLoss):
model[i].set_input_masks(input_masks)
model(input)
color_aware_score = 0
for cal in cams_loss_layers:
color_aware_score += cal.loss
cams_loss_value = color_aware_score.item()
print(f'Color-aware loss: {cams_loss_value}')
return cams_loss_value