-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathcnn_model_batch_normalization.py
48 lines (40 loc) · 1.45 KB
/
cnn_model_batch_normalization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
from keras.models import Sequential
from keras.layers import Conv2D, MaxPooling2D, GlobalAveragePooling2D, BatchNormalization
from keras.layers import Activation, Dropout, Flatten, Dense
# model istantiation
def istantiate_model(input_shape, print_bool = True):
model = Sequential()
#1st
model.add(Conv2D(64, kernel_size=(3, 3),padding='same',input_shape=input_shape))
model.add(Conv2D(64, kernel_size=(3, 3),padding='same'))
model.add(Activation('relu'))
model.add(BatchNormalization())
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
#2nd
model.add(Conv2D(64, kernel_size=(3, 3),padding='same',input_shape=input_shape))
model.add(Conv2D(64, kernel_size=(3, 3),padding='same'))
model.add(Activation('relu'))
model.add(BatchNormalization())
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
#3d
model.add(Conv2D(64, kernel_size=(3, 3),padding='same',input_shape=input_shape))
model.add(Conv2D(64, kernel_size=(3, 3),padding='same'))
model.add(Activation('relu'))
model.add(BatchNormalization())
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
#4th
model.add(Flatten())
model.add(Dense(128))
model.add(Dropout(0.5))
#5th
model.add(Dense(128))
model.add(Dropout(0.5))
#6th
model.add(Dense(22))
model.add(Activation('softmax'))
if (print_bool != False):
model.summary()
return model