forked from zsxkib/InstantID
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinfer_full.py
119 lines (94 loc) · 4.85 KB
/
infer_full.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
import cv2
import torch
import numpy as np
from PIL import Image
from diffusers.utils import load_image
from diffusers.models import ControlNetModel
from diffusers.pipelines.controlnet.multicontrolnet import MultiControlNetModel
from insightface.app import FaceAnalysis
from pipeline_stable_diffusion_xl_instantid_full import StableDiffusionXLInstantIDPipeline, draw_kps
from controlnet_aux import MidasDetector
def convert_from_image_to_cv2(img: Image) -> np.ndarray:
return cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
def resize_img(input_image, max_side=1280, min_side=1024, size=None,
pad_to_max_side=False, mode=Image.BILINEAR, base_pixel_number=64):
w, h = input_image.size
if size is not None:
w_resize_new, h_resize_new = size
else:
ratio = min_side / min(h, w)
w, h = round(ratio*w), round(ratio*h)
ratio = max_side / max(h, w)
input_image = input_image.resize([round(ratio*w), round(ratio*h)], mode)
w_resize_new = (round(ratio * w) // base_pixel_number) * base_pixel_number
h_resize_new = (round(ratio * h) // base_pixel_number) * base_pixel_number
input_image = input_image.resize([w_resize_new, h_resize_new], mode)
if pad_to_max_side:
res = np.ones([max_side, max_side, 3], dtype=np.uint8) * 255
offset_x = (max_side - w_resize_new) // 2
offset_y = (max_side - h_resize_new) // 2
res[offset_y:offset_y+h_resize_new, offset_x:offset_x+w_resize_new] = np.array(input_image)
input_image = Image.fromarray(res)
return input_image
if __name__ == "__main__":
# Load face encoder
app = FaceAnalysis(name='antelopev2', root='./', providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
app.prepare(ctx_id=0, det_size=(640, 640))
# Path to InstantID models
face_adapter = f'./checkpoints/ip-adapter.bin'
controlnet_path = f'./checkpoints/ControlNetModel'
controlnet_depth_path = f'diffusers/controlnet-depth-sdxl-1.0-small'
# Load depth detector
midas = MidasDetector.from_pretrained("lllyasviel/Annotators")
# Load pipeline
controlnet_list = [controlnet_path, controlnet_depth_path]
controlnet_model_list = []
for controlnet_path in controlnet_list:
controlnet = ControlNetModel.from_pretrained(controlnet_path, torch_dtype=torch.float16)
controlnet_model_list.append(controlnet)
controlnet = MultiControlNetModel(controlnet_model_list)
base_model_path = 'stabilityai/stable-diffusion-xl-base-1.0'
pipe = StableDiffusionXLInstantIDPipeline.from_pretrained(
base_model_path,
controlnet=controlnet,
torch_dtype=torch.float16,
)
pipe.cuda()
pipe.load_ip_adapter_instantid(face_adapter)
# Infer setting
prompt = "analog film photo of a man. faded film, desaturated, 35mm photo, grainy, vignette, vintage, Kodachrome, Lomography, stained, highly detailed, found footage, masterpiece, best quality"
n_prompt = "(lowres, low quality, worst quality:1.2), (text:1.2), watermark, painting, drawing, illustration, glitch, deformed, mutated, cross-eyed, ugly, disfigured (lowres, low quality, worst quality:1.2), (text:1.2), watermark, painting, drawing, illustration, glitch,deformed, mutated, cross-eyed, ugly, disfigured"
face_image = load_image("./examples/yann-lecun_resize.jpg")
face_image = resize_img(face_image)
face_info = app.get(cv2.cvtColor(np.array(face_image), cv2.COLOR_RGB2BGR))
face_info = sorted(face_info, key=lambda x:(x['bbox'][2]-x['bbox'][0])*(x['bbox'][3]-x['bbox'][1]))[-1] # only use the maximum face
face_emb = face_info['embedding']
# use another reference image
pose_image = load_image("./examples/poses/pose.jpg")
pose_image = resize_img(pose_image)
face_info = app.get(cv2.cvtColor(np.array(pose_image), cv2.COLOR_RGB2BGR))
pose_image_cv2 = convert_from_image_to_cv2(pose_image)
face_info = sorted(face_info, key=lambda x:(x['bbox'][2]-x['bbox'][0])*(x['bbox'][3]-x['bbox'][1]))[-1] # only use the maximum face
face_kps = draw_kps(pose_image, face_info['kps'])
width, height = face_kps.size
# use depth control
processed_image_midas = midas(pose_image)
processed_image_midas = processed_image_midas.resize(pose_image.size)
# enhance face region
control_mask = np.zeros([height, width, 3])
x1, y1, x2, y2 = face_info["bbox"]
x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2)
control_mask[y1:y2, x1:x2] = 255
control_mask = Image.fromarray(control_mask.astype(np.uint8))
image = pipe(
prompt=prompt,
negative_prompt=n_prompt,
image_embeds=face_emb,
control_mask=control_mask,
image=[face_kps, processed_image_midas],
controlnet_conditioning_scale=[0.8,0.8],
ip_adapter_scale=0.8,
num_inference_steps=30,
guidance_scale=5,
).images[0]
image.save('result.jpg')