-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathfisher.py
156 lines (138 loc) · 6 KB
/
fisher.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
import inspect
import numpy as np
from scipy import interpolate
import spectral_distortions as sd
import foregrounds as fg
ndp = np.float64
class FisherEstimation:
def __init__(self, fmin=7.5e9, fmax=3.e12, fstep=15.e9, \
duration=86.4, bandpass=True, fsky=0.7, mult=1., \
priors={'alps':0.1, 'As':0.1}, drop=0, doCO=False):
self.fmin = fmin
self.fmax = fmax
self.bandpass_step = 1.e8
self.fstep = fstep
self.duration = duration
self.bandpass = bandpass
self.fsky = fsky
self.mult = mult
self.priors = priors
self.drop = drop
self.setup()
self.set_signals()
if doCO:
self.mask = ~np.isclose(115.27e9, self.center_frequencies, atol=self.fstep/2.)
else:
self.mask = np.ones(len(self.center_frequencies), bool)
return
def setup(self):
self.set_frequencies()
self.noise = self.pixie_sensitivity()
return
def run_fisher_calculation(self):
N = len(self.args)
F = self.calculate_fisher_matrix()
for k in self.priors.keys():
if k in self.args and self.priors[k] > 0:
kindex = np.where(self.args == k)[0][0]
F[kindex, kindex] += 1. / (self.priors[k] * self.argvals[k])**2
normF = np.zeros([N, N], dtype=ndp)
for k in range(N):
normF[k, k] = 1. / F[k, k]
self.cov = ((np.mat(normF, dtype=ndp) * np.mat(F, dtype=ndp)).I * np.mat(normF, dtype=ndp)).astype(ndp)
#self.cov = np.mat(F, dtype=ndp).I
self.F = F
self.get_errors()
return
def get_errors(self):
self.errors = {}
for k, arg in enumerate(self.args):
self.errors[arg] = np.sqrt(self.cov[k,k])
return
def print_errors(self, args=None):
if not args:
args = self.args
for arg in args:
#print arg, self.errors[arg], self.argvals[arg]/self.errors[arg]
print(arg, self.argvals[arg]/self.errors[arg])
def set_signals(self, fncs=None):
if fncs is None:
fncs = [sd.DeltaI_mu, sd.DeltaI_reltSZ_2param_yweight, sd.DeltaI_DeltaT,
fg.thermal_dust_rad, fg.cib_rad, fg.jens_freefree_rad,
fg.jens_synch_rad, fg.spinning_dust, fg.co_rad]
self.signals = fncs
self.args, self.p0, self.argvals = self.get_function_args()
return
def set_frequencies(self):
if self.bandpass:
self.band_frequencies, self.center_frequencies, self.binstep = self.band_averaging_frequencies()
else:
self.center_frequencies = np.arange(self.fmin + self.fstep/2., \
self.fmax + self.fstep, self.fstep, dtype=ndp)[self.drop:]
return
def band_averaging_frequencies(self):
#freqs = np.arange(self.fmin + self.bandpass_step/2., self.fmax + self.fstep, self.bandpass_step, dtype=ndp)
freqs = np.arange(self.fmin + self.bandpass_step/2., self.fmax + self.bandpass_step + self.fmin, self.bandpass_step, dtype=ndp)
binstep = int(self.fstep / self.bandpass_step)
freqs = freqs[self.drop * binstep : (len(freqs) / binstep) * binstep]
centerfreqs = freqs.reshape((len(freqs) / binstep, binstep)).mean(axis=1)
#self.windowfnc = np.sinc((np.arange(binstep)-(binstep/2-1))/float(binstep))
return freqs, centerfreqs, binstep
def pixie_sensitivity(self):
sdata = np.loadtxt('templates/Sensitivities.dat', dtype=ndp)
fs = sdata[:, 0] * 1e9
sens = sdata[:, 1]
template = interpolate.interp1d(np.log10(fs), np.log10(sens), bounds_error=False, fill_value="extrapolate")
skysr = 4. * np.pi * (180. / np.pi) ** 2 * self.fsky
if self.bandpass:
N = len(self.band_frequencies)
noise = 10. ** template(np.log10(self.band_frequencies)) / np.sqrt(skysr) * np.sqrt(15. / self.duration) * self.mult * 1.e26
return (noise.reshape(( N / self.binstep, self.binstep)).mean(axis=1)).astype(ndp)
else:
return (10. ** template(np.log10(self.center_frequencies)) / np.sqrt(skysr) * np.sqrt(15. / self.duration) * self.mult * 1.e26).astype(ndp)
def get_function_args(self):
targs = []
tp0 = []
for fnc in self.signals:
argsp = inspect.getargspec(fnc)
args = argsp[0][1:]
p0 = argsp[-1]
targs = np.concatenate([targs, args])
tp0 = np.concatenate([tp0, p0])
return targs, tp0, dict(zip(targs, tp0))
def calculate_fisher_matrix(self):
N = len(self.p0)
F = np.zeros([N, N], dtype=ndp)
for i in range(N):
dfdpi = self.signal_derivative(self.args[i], self.p0[i])
dfdpi /= self.noise
for j in range(N):
dfdpj = self.signal_derivative(self.args[j], self.p0[j])
dfdpj /= self.noise
#F[i, j] = np.dot(dfdpi, dfdpj)
F[i, j] = np.dot(dfdpi[self.mask], dfdpj[self.mask])
return F
def signal_derivative(self, x, x0):
h = 1.e-4
zp = 1. + h
deriv = (self.measure_signal(**{x: x0 * zp}) - self.measure_signal(**{x: x0})) / (h * x0)
return deriv
def measure_signal(self, **kwarg):
if self.bandpass:
frequencies = self.band_frequencies
else:
frequencies = self.center_frequencies
N = len(frequencies)
model = np.zeros(N, dtype=ndp)
for fnc in self.signals:
argsp = inspect.getargspec(fnc)
args = argsp[0][1:]
if len(kwarg) and kwarg.keys()[0] in args:
model += fnc(frequencies, **kwarg)
if self.bandpass:
#rmodel = model.reshape((N / self.binstep, self.binstep))
#total = rmodel * self.windowfnc
return model.reshape((N / self.binstep, self.binstep)).mean(axis=1)
#return total.mean(axis=1)
else:
return model