-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathprediction_app.py
218 lines (147 loc) · 10.6 KB
/
prediction_app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
import pickle
import datetime
import numpy as np
import pandas as pd
import catboost as ctb
import streamlit as st
# streamlit run prediction_app.py
class production_prediction():
def __init__(self):
self.home_path = ''
self.fe_operator = pickle.load(open(self.home_path + 'feature_transformation/fe_operator.pkl', 'rb'))
self.rs_azimuth = pickle.load(open(self.home_path + 'feature_transformation/rs_azimuth.pkl', 'rb'))
self.mm_md_ft = pickle.load(open(self.home_path + 'feature_transformation/mm_md_ft.pkl', 'rb'))
self.ss_tvd_ft = pickle.load(open(self.home_path + 'feature_transformation/ss_tvd_ft.pkl', 'rb'))
self.mm_footage_lateral_length = pickle.load(open(self.home_path + 'feature_transformation/mm_footage_lateral_length.pkl', 'rb'))
self.mm_p_velocity = pickle.load(open(self.home_path + 'feature_transformation/mm_p-velocity.pkl', 'rb'))
self.rs_s_velocity = pickle.load(open(self.home_path + 'feature_transformation/rs_s-velocity.pkl', 'rb'))
self.mm_youngs_modulus = pickle.load(open(self.home_path + 'feature_transformation/mm_youngs_modulus.pkl', 'rb'))
self.rs_isip = pickle.load(open(self.home_path + 'feature_transformation/rs_isip.pkl', 'rb'))
self.rs_pump_rate = pickle.load(open(self.home_path + 'feature_transformation/rs_pump_rate.pkl', 'rb'))
self.mm_total_number_of_stages = pickle.load(open(self.home_path + 'feature_transformation/mm_total_number_of_stages.pkl', 'rb'))
self.mm_proppant_volume = pickle.load(open(self.home_path + 'feature_transformation/mm_proppant_volume.pkl', 'rb'))
self.rs_proppant_fluid_ratio = pickle.load(open(self.home_path + 'feature_transformation/rs_proppant_fluid_ratio.pkl', 'rb'))
self.mm_year_on_production = pickle.load(open(self.home_path + 'feature_transformation/mm_year_on_production.pkl', 'rb'))
self.mm_production = pickle.load(open(self.home_path + 'feature_transformation/mm_production.pkl', 'rb'))
self.ctbm_tuned = pickle.load(open(self.home_path + 'model/ctbm_tuned.pkl', 'rb'))
def data_cleaning(self, df1):
old_column_names = ['treatment company', 'azimuth', 'md (ft)', 'tvd (ft)', 'date on production', 'operator', 'footage lateral length', 'well spacing',
'porpoise deviation', 'porpoise count', 'shale footage', 'acoustic impedance', 'log permeability', 'porosity', 'poisson ratio',
'water saturation', 'toc', 'vcl', 'p-velocity', 's-velocity', 'youngs modulus', 'isip', 'breakdown pressure', 'pump rate',
'total number of stages', 'proppant volume', 'proppant fluid ratio', 'production']
new_column_names = [old_name.replace(' ', '_') for old_name in old_column_names]
df1.columns = new_column_names
df1['date_on_production'] = pd.to_datetime(df1['date_on_production'])
return df1
def feature_engineering(self, df2):
df2['month_on_production'] = df2['date_on_production'].dt.month
df2['year_on_production'] = df2['date_on_production'].dt.year
return df2
def data_preparation(self, df3):
df3['operator'] = df3['operator'].map(self.fe_operator)
df3['azimuth'] = self.rs_azimuth.fit_transform(df3[['azimuth']].values)
df3['md_(ft)'] = self.mm_md_ft.fit_transform(df3[['md_(ft)']].values)
df3['tvd_(ft)'] = self.ss_tvd_ft.fit_transform(df3[['tvd_(ft)']].values)
df3['footage_lateral_length'] = self.mm_footage_lateral_length.fit_transform(df3[['footage_lateral_length']].values)
df3['p-velocity'] = self.mm_p_velocity.fit_transform(df3[['p-velocity']].values)
df3['s-velocity'] = self.rs_s_velocity.fit_transform(df3[['s-velocity']].values)
df3['youngs_modulus'] = self.mm_youngs_modulus.fit_transform(df3[['youngs_modulus']].values)
df3['isip'] = self.rs_isip.fit_transform(df3[['isip']].values)
df3['pump_rate'] = self.rs_pump_rate.fit_transform(df3[['pump_rate']].values)
df3['total_number_of_stages'] = self.mm_total_number_of_stages.fit_transform(df3[['total_number_of_stages']].values)
df3['proppant_volume'] = self.mm_proppant_volume.fit_transform(df3[['proppant_volume']].values)
df3['proppant_fluid_ratio'] = self.rs_proppant_fluid_ratio.fit_transform(df3[['proppant_fluid_ratio']].values)
df3['year_on_production'] = self.mm_year_on_production.fit_transform(df3[['year_on_production']].values)
columns_selected = ['md_(ft)', 'tvd_(ft)', 'operator', 'p-velocity', 's-velocity', 'youngs_modulus', 'isip',
'pump_rate', 'total_number_of_stages', 'proppant_volume', 'proppant_fluid_ratio']
return df3[columns_selected]
def get_prediction(self, df4):
df4['production'] = self.mm_production.inverse_transform([self.ctbm_tuned.predict(df4)])
return df4
def run_app():
predictor = production_prediction()
st.set_page_config(layout='wide')
st.title('Oil Production Prediction App')
st.header('Fill the boxes with data and click on the button below to make predictions')
c1, c2, c3, c4, c5 = st.columns((1, 1, 1, 1, 1))
df = pd.read_csv('data/dataset.csv')
old_column_names = ['treatment company', 'azimuth', 'md (ft)', 'tvd (ft)', 'date on production', 'operator', 'footage lateral length', 'well spacing',
'porpoise deviation', 'porpoise count', 'shale footage', 'acoustic impedance', 'log permeability', 'porosity', 'poisson ratio',
'water saturation', 'toc', 'vcl', 'p-velocity', 's-velocity', 'youngs modulus', 'isip', 'breakdown pressure', 'pump rate',
'total number of stages', 'proppant volume', 'proppant fluid ratio', 'production']
new_column_names = [old_name.replace(' ', '_') for old_name in old_column_names]
df.columns = new_column_names
date_on_production = c1.date_input( "First Production Date:", datetime.date(2022, 1, 1))
c1.text('Selected: {}'.format(date_on_production))
treatment_company = c2.selectbox('Treatement Company:', (df['treatment_company'].unique()))
c2.text('Selected: {}'.format(treatment_company))
operator = c3.selectbox('Operator:', (df['operator'].unique()))
c3.text('Selected: {}'.format(operator))
azimuth = c4.number_input('Well Drilling Direction:')
c4.text('Current Number: {}'.format(azimuth))
md_ft = c5.number_input('Measure Depth (ft):')
c5.text('Current Number: {}'.format(md_ft))
tvd_ft = c1.number_input('True Vertical Depth (ft):')
c1.text('Current Number: {}'.format(tvd_ft))
footage_lateral_length = c2.number_input('Horizontal Well Section:')
c2.text('Current Number: {}'.format(footage_lateral_length))
well_spacing = c3.number_input('Distance to the Closest Nearby Well:')
c3.text('Current Number: {}'.format(well_spacing))
porpoise_deviation = c4.number_input('Porpoise Deviation (ft):')
c4.text('Current Number: {}'.format(porpoise_deviation))
porpoise_count = c5.number_input('Porpoise Count:')
c5.text('Current Number: {}'.format(porpoise_count))
shale_footage = c1.number_input('Shale Footage:')
c1.text('Current Number: {}'.format(shale_footage))
acoustic_impedance = c2.number_input('Acoustic Impedance (ft/s * g/cc):')
c2.text('Current Number: {}'.format(acoustic_impedance))
log_permeability = c3.number_input('Log Permeability:')
c3.text('Current Number: {}'.format(log_permeability))
porosity = c4.number_input('Porosity:')
c4.text('Current Number: {}'.format(porosity))
poisson_ratio = c5.number_input('Poisson Ratio:')
c5.text('Current Number: {}'.format(poisson_ratio))
water_saturation = c1.number_input('Water Saturation:')
c1.text('Current Number: {}'.format(water_saturation))
toc = c2.number_input('Total Organic Carbon:')
c2.text('Current Number: {}'.format(toc))
vcl = c3.number_input('Amount of Clay Minerals:')
c3.text('Current Number: {}'.format(vcl))
p_velocity = c4.number_input('Velocity of P-waves (ft/s):')
c4.text('Current Number: {}'.format(p_velocity))
s_velocity = c5.number_input('Velocity of S-waves (ft/s):')
c5.text('Current Number: {}'.format(s_velocity))
youngs_modulus = c1.number_input('Youngs Modulus (giga pascals):')
c1.text('Current Number: {}'.format(youngs_modulus))
isip = c2.number_input('Instantaneous Shut-in Pressure:')
c2.text('Current Number: {}'.format(isip))
breakdown_pressure = c3.number_input('Breakdown Pressure:')
c3.text('Current Number: {}'.format(breakdown_pressure))
pump_rate = c4.number_input('Pump Rate:')
c4.text('Current Number: {}'.format(pump_rate))
total_number_of_stages = c5.number_input('Total Number of Stages:')
c5.text('Current Number: {}'.format(total_number_of_stages))
proppant_volume = c1.number_input('Proppant Volume (lbs):')
c1.text('Current Number: {}'.format(proppant_volume))
proppant_fluid_ratio = c2.number_input('Proppant Fluid Ratio (lbs/gallon):')
c2.text('Current Number: {}'.format(proppant_fluid_ratio))
if st.button('Predict'):
production = 0
df1 = pd.DataFrame({'treatment_company': [treatment_company], 'azimuth': [azimuth], 'md_(ft)': [md_ft], 'tvd_(ft)': [tvd_ft],
'date_on_production': [date_on_production], 'operator': [operator], 'footage_lateral_length': [footage_lateral_length],
'well_spacing': [well_spacing], 'porpoise_deviation': [porpoise_deviation], 'porpoise_count': [porpoise_count],
'shale_footage': [shale_footage], 'acoustic_impedance': [acoustic_impedance], 'log_permeability': [log_permeability],
'porosity': [porosity], 'poisson_ratio': [poisson_ratio], 'water_saturation': [water_saturation], 'toc': [toc], 'vcl': [vcl],
'p-velocity': [p_velocity], 's-velocity': [s_velocity], 'youngs_modulus': [youngs_modulus], 'isip': [isip],
'breakdown_pressure': [breakdown_pressure], 'pump_rate': [pump_rate], 'total_number_of_stages': [total_number_of_stages],
'proppant_volume': [proppant_volume], 'proppant_fluid_ratio': [proppant_fluid_ratio], 'production': [production]})
df2 = predictor.data_cleaning(df1)
df3 = predictor.feature_engineering(df2)
df4 = predictor.data_preparation(df3)
prediction = predictor.get_prediction(df4)
production = prediction['production'][0]
st.header('12 months cumulative production for the well is: {} mmcf'.format(round(production, 2)))
else:
st.header('Click the button to make a prediction')
if __name__ == "__main__":
run_app()