-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathbench.py
146 lines (123 loc) · 6.11 KB
/
bench.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import polars as pl
import pandas as pd
import numpy as np
import time
df = pd.read_parquet('data/df.pq')
df_join_1 = pd.read_parquet('data/df_join_1.pq')
df_join_2 = pd.read_parquet('data/df_join_2.pq')
class TimedComparison:
def __init__(
self,
df=None,
df2=None,
n_reps=25,
time_format='ms',
save_output=False
):
self.n_reps = n_reps
self.time_format = time_format
self.times = {'pandas': [], 'polars': []}
self.df = df
self.df_join_2 = df2
self.df_pl = pl.from_pandas(df)
self.df_join_2_pl = pl.from_pandas(df_join_2)
self.save_output = save_output
self.operations = {
'pandas': {
'gb': lambda **kwargs: self.gb_operation(pkg = 'pandas', **kwargs),
'read': lambda **kwargs: self.read_operation(pkg='pandas', **kwargs),
'join': lambda **kwargs: self.join_operation(pkg='pandas', **kwargs)
},
'polars': {
'gb': lambda **kwargs: self.gb_operation(pkg = 'polars', **kwargs),
'read': lambda **kwargs: self.read_operation(pkg='polars', **kwargs),
'join': lambda **kwargs: self.join_operation(pkg='polars', **kwargs)
}
}
# Operations -------------------------------------------------------------
def read_operation(self, pkg, path, **kwargs):
if pkg == 'pandas':
return pd.read_parquet(path)
elif pkg == 'polars':
return pl.read_parquet(path)
def gb_operation(self, pkg, with_lambda=False):
if pkg == 'pandas':
if with_lambda:
return (
self.df.groupby(['grp', 'grp_3'], as_index=False, sort=False)
.agg(
x_mean_sq = pd.NamedAgg('x', lambda x: x.mean()**2),
y_sum_10 = pd.NamedAgg('y', lambda x: x.sum()/10)
)
)
else:
return (
self.df
.groupby(['grp', 'grp_3'], as_index=False, sort=False)
.agg({'x': 'mean', 'y': 'sum'}) # really ought to do namedAgg here for consistent output
)
elif pkg == 'polars':
if with_lambda:
return (
self.df_pl
.group_by(['grp', 'grp_3'], maintain_order=True)
.agg(
x_mean_sq = pl.map_groups('x', lambda x: x[0].mean()**2),
y_sum_10 = pl.map_groups('y', lambda x: x[0].sum()/10)
)
)
else:
return (
self.df_pl
.group_by(['grp', 'grp_3'], maintain_order=True)
.agg(
x_mean = pl.mean('x'),
y_sum = pl.sum('y')
)
)
def join_operation(self, pkg, **kwargs):
if pkg == 'pandas':
# return self.df.set_index(['grp', 'grp_2']).join(self.df_join_2.set_index(['grp', 'grp_2']), **kwargs)
return self.df.merge(self.df_join_2, **kwargs) # merge was faster for this setting
elif pkg == 'polars':
return self.df_pl.join(self.df_join_2_pl, **kwargs)
# Run --------------------------------------------------------------------
def run_operation(self, pkg, type, **kwargs):
if pkg not in self.operations or type not in self.operations[pkg]:
raise ValueError("Invalid pkg or type argument.")
return self.operations[pkg][type](**kwargs)
def run_comparison(self, type, **kwargs):
for i in range(self.n_reps):
for pkg in ['pandas', 'polars']:
start_time = time.time()
self.run_operation(pkg, type, **kwargs)
end_time = time.time()
self.times[pkg].append((end_time - start_time))
for pkg in ['pandas', 'polars']:
times_median = np.median(np.array(self.times[pkg]))
times_median = times_median * 1000 if self.time_format == 'ms' else times_median
print(f"{pkg.capitalize()} execution time (median {self.time_format} across {self.n_reps} iterations):", times_median.round(2))
speedup = [pandas_time / polars_time for pandas_time, polars_time in zip(self.times['pandas'], self.times['polars'])]
print("Speedup:", np.median(np.array(speedup)).round(5))
if self.save_output:
result_df = pl.DataFrame(
{
'operation': [type],
'n_reps': [self.n_reps],
'time_format': [self.time_format],
'median_pandas_time': np.median(np.array(self.times['pandas'])),
'median_polars_time': np.median(np.array(self.times['polars'])),
'median_polars_speedup': np.median(np.array(speedup))
}
)
return result_df
nr = 50
res = [
TimedComparison(df, n_reps=nr, save_output=True).run_comparison(type = 'gb', with_lambda=False).with_columns(setting = pl.lit('lambda-false')),
TimedComparison(df, n_reps=nr, time_format='s', save_output=True).run_comparison(type = 'gb', with_lambda=True).with_columns(setting = pl.lit('lambda-true')),
TimedComparison(df, n_reps=nr, save_output=True).run_comparison(type = 'read', path='data/df.pq').with_columns(setting = pl.lit('NA')),
TimedComparison(df_join_1, df_join_2, n_reps=nr, save_output=True).run_comparison(type = 'join', on = ['grp', 'grp_2'], how = 'inner').with_columns(setting = pl.lit('inner')),
TimedComparison(df_join_1, df_join_2, n_reps=nr, save_output=True).run_comparison(type = 'join', on = ['grp', 'grp_2'], how = 'left').with_columns(setting = pl.lit('left')),
TimedComparison(df_join_2, df_join_1, n_reps=nr, save_output=True).run_comparison(type = 'join', on = ['grp', 'grp_2'], how = 'left').with_columns(setting = pl.lit('right'))
]
pl.concat(res).write_parquet('data/bench_results_py.pq')