-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathanalyse_result.py
484 lines (433 loc) · 19 KB
/
analyse_result.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
import pickle
import os
from pycocotools.coco import COCO
import cv2
import shutil
import numpy as np
from DOTA_devkit.dota_evaluation import voc_eval, coco_eval
from DOTA_devkit.ResultMerge import mergebypolywithnms
from DOTA_devkit.ResultMerge_multi_process import mergebypoly as mergebypoly_multi_process
import json
import mmcv
import math
from multiprocessing import Pool
from mmcv import Config
dota_10 = ['plane', 'baseball-diamond', 'bridge', 'ground-track-field', 'small-vehicle', 'large-vehicle', 'ship',
'tennis-court', 'basketball-court', 'storage-tank', 'soccer-ball-field', 'roundabout', 'harbor',
'swimming-pool', 'helicopter']
dota_15 = dota_10 + ['container-crane']
dota_20 = dota_15 + ['airport', 'helipad']
color_map = [
(54, 67, 244),
(99, 30, 233),
(176, 39, 156),
(183, 58, 103),
(181, 81, 63),
(243, 150, 33),
(212, 188, 0),
(136, 150, 0),
(80, 175, 76),
(74, 195, 139),
(57, 220, 205),
(59, 235, 255),
(0, 152, 255),
(34, 87, 255),
(72, 85, 121),
(139, 125, 96),
(246, 229, 39)]
def parse_args():
parser = argparse.ArgumentParser(description='prepare dota')
parser.add_argument('config', type=str, help='Path to configure file.')
parser.add_argument('checkpoint', type=str, help='Check point file path.')
parser.add_argument('-d', '--draw', action='store_true', default=False, help='Draw flag.', dest='draw_flag')
parser.add_argument('-n', '--draw-num', default='all', help='Draw number.', dest='draw_n')
parser.add_argument('-s', '--source-dir', type=str, help='Source image dir.', dest='source_dir')
parser.add_argument('-D', '--draw-dir', type=str, help='Draw result dir.', dest='draw_dir')
parser.add_argument('-g', '--gpus', default='0', help='GPUs, use common to separate devices.')
parser.add_argument('-p', '--processor-num', type=int, default=16, help='processor number', dest='processor')
args = parser.parse_args()
return args
def load_result(file):
with open(file, 'rb') as f:
data = pickle.load(f)
return data
def drawResult(anno_file, result_file, save_dir):
data = load_result(result_file)
coco = COCO(anno_file)
src_img = os.path.join(os.path.dirname(anno_file), 'images')
class_name = coco.dataset['categories']
if not os.path.exists(save_dir):
print('create folder {}'.format(save_dir))
os.makedirs(save_dir)
det_folder = os.path.join(save_dir, 'det')
no_det_folder = os.path.join(save_dir, 'no_det')
if not os.path.exists(det_folder):
print('create folder det in {}'.format(save_dir))
os.makedirs(det_folder)
if not os.path.exists(no_det_folder):
print('create folder no_det in {}'.format(save_dir))
os.makedirs(no_det_folder)
for img in coco.dataset['images']:
id = img['id'] - 1
img_name = img['file_name']
dst_name = os.path.splitext(img_name)[0] + ".jpg"
img_full_path = os.path.join(src_img, img_name)
image = cv2.imread(img_full_path)
if data[id][0].shape[1] == 9:
draw_flag = False
for idx, result in enumerate(data[id]):
if result.shape[0] == 0:
continue
else:
for i in range(result.shape[0]):
bbox = result[i, :-1].reshape(-1, 2).round().astype(np.int32)
confidence = float(result[i, -1])
color = color_map[idx]
image = cv2.polylines(image, [bbox], True, color, 2)
label = class_name[idx]['name']
text = "{}:{:.2f}".format(label, confidence)
center = tuple(bbox.mean(0).round().astype(np.int32).tolist())
draw_flag = True
# cv2.putText(image, text, center, cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255))
if draw_flag:
cv2.imwrite(os.path.join(det_folder, dst_name), image)
else:
shutil.copy(img_full_path, os.path.join(no_det_folder, img_name))
else:
shutil.copy(img_full_path, os.path.join(no_det_folder, img_name))
def draw_unite(imagefile, result_list_dict, save_dir):
filename = os.path.splitext(os.path.basename(imagefile))[0]
if result_list_dict.get(filename):
img = cv2.imread(imagefile)
for result in result_list_dict[filename]:
label = result[0]
points = np.array(list(map(lambda x: float(x), result[2:]))).reshape(-1, 2).round().astype(np.int32)
img = cv2.polylines(img, [points], True, color_map[dota_20.index(label)], 4)
cv2.imwrite(os.path.join(save_dir, f"{filename}_result.jpg"), img)
def parse_all_result(result_dir):
file_list = [file for file in os.listdir(result_dir) if file.lower().endswith('.txt')]
result_dict = {}
for file in file_list:
with open(os.path.join(result_dir, file), 'r') as f:
all_results = [line.strip().split(" ") for line in f.readlines() if len(line.strip()) > 0]
labelname = os.path.splitext(file)[0].split('Task1_')[1]
for result in all_results:
if not result[0] in result_dict.keys():
result_dict[result[0]] = [[labelname] + result[1:]]
else:
result_dict[result[0]].append([labelname] + result[1:])
return result_dict
def drawWhole(result_dir, src_image_dir, save_dir, process_num=16, numbers='all'):
if not os.path.exists(save_dir):
os.makedirs(save_dir)
results = parse_all_result(result_dir)
pool = Pool(process_num)
if numbers == 'all':
image_list = [os.path.join(src_image_dir, file) for file in os.listdir(src_image_dir) if file.lower().endswith(('.jpg', 'png', 'bmp'))]
elif isinstance(numbers, int):
image_list = [os.path.join(src_image_dir, file) for file in os.listdir(src_image_dir) if file.lower().endswith(('.jpg', 'png', 'bmp'))]
image_list = image_list[:numbers]
else:
raise ValueError("numbers format error")
for image_file in image_list:
pool.apply_async(draw_unite, args=(image_file, results, save_dir))
pool.close()
pool.join()
def prepare_data_str(anno_file, result_file, cache_folder=None, type='dota_15', keep_ext=False, save_image_set=False):
if cache_folder is None:
_folder = os.path.dirname(result_file)
basename = os.path.basename(result_file)
cache_folder = os.path.join(_folder, os.path.splitext(basename)[0])
if not os.path.exists(cache_folder):
os.makedirs(cache_folder)
coco = COCO(anno_file)
data = load_result(result_file)
if type == 'dota_15':
class_list = dota_15
result = dict(zip(dota_15, ['' for _ in range(16)]))
elif type == 'dota_10':
class_list = dota_10
result = dict(zip(dota_10, ['' for _ in range(15)]))
elif type == 'dota_20':
class_list = dota_20
raise NotImplementedError('dota 2.0.')
else:
raise ValueError
for i, d in enumerate(data):
image_id = i + 1
if keep_ext:
image_name = coco.dataset['images'][i]['file_name']
else:
image_name = os.path.splitext(coco.dataset['images'][i]['file_name'])[0]
if d[0].shape[1] == 9:
for j, _d in enumerate(d):
cat_id = j + 1
cat_name = class_list[j]
if _d.shape[0] == 0:
continue
else:
for line_ in _d.tolist():
line = f'{image_name} {line_[8]} {line_[0]} {line_[1]} {line_[2]} {line_[3]} {line_[4]} {line_[5]} {line_[6]} {line_[7]}\n'
result[cat_name] += line
for key in result.keys():
R = result[key]
with open(os.path.join(cache_folder, f'Task1_{key}.txt'), 'w') as f:
f.write(R)
if save_image_set:
image_set = ''
for key in coco.imgs.keys():
if keep_ext:
image_name = coco.imgs[key]['file_name']
else:
image_name = os.path.splitext(coco.imgs[key]['file_name'])[0]
image_set += image_name + '\n'
with open(os.path.join(os.path.dirname(cache_folder), 'image_set.txt'), 'w') as f:
f.write(image_set)
return cache_folder, os.path.join(cache_folder, 'image_set.txt')
def prepare_data_str_unit(split_data, coco, class_list, result, offset, keep_ext=False):
for i, d in enumerate(split_data):
image_id = i + 1
if keep_ext:
image_name = coco.dataset['images'][i + offset]['file_name']
else:
image_name = os.path.splitext(coco.dataset['images'][i + offset]['file_name'])[0]
if d[0].shape[1] == 9:
for j, _d in enumerate(d):
cat_id = j + 1
cat_name = class_list[j]
if _d.shape[0] == 0:
continue
else:
for line_ in _d.tolist():
line = f'{image_name} {line_[8]} {line_[0]} {line_[1]} {line_[2]} {line_[3]} {line_[4]} {line_[5]} {line_[6]} {line_[7]}\n'
result[cat_name] += line
return result
def prepare_data_str_multi_process(anno_file, result_file, cache_folder=None, type='dota_15', keep_ext=False, save_image_set=False, process_num=16):
if cache_folder is None:
_folder = os.path.dirname(result_file)
basename = os.path.basename(result_file)
cache_folder = os.path.join(_folder, os.path.splitext(basename)[0])
if not os.path.exists(cache_folder):
os.makedirs(cache_folder)
coco = COCO(anno_file)
data = load_result(result_file)
if type == 'dota_15':
class_list = dota_15
elif type == 'dota_10':
class_list = dota_10
elif type == 'dota_20':
class_list = dota_20
raise NotImplementedError('dota 2.0.')
else:
raise ValueError
result_split = [dict(zip(class_list, ['' for _ in range(len(class_list))])) for _1 in range(process_num)]
n = math.ceil(len(data) / process_num)
data_split_index = [pn * n for pn in list(range(process_num))] + [len(data)]
data_split = [data[data_split_index[i]: data_split_index[i+1]] for i in range(process_num)]
pool = Pool(process_num)
all_result = []
for i in range(process_num):
result_ = pool.apply_async(prepare_data_str_unit, args=(data_split[i], coco, class_list, result_split[i], data_split_index[i], False, ))
all_result.append(result_)
pool.close()
pool.join()
result = dict(zip(class_list, ['' for _ in range(len(class_list))]))
for result__ in all_result:
result_decode = result__.get()
for key in result_decode.keys():
result[key] += result_decode[key]
for key in result.keys():
R = result[key]
with open(os.path.join(cache_folder, f'Task1_{key}.txt'), 'w') as f:
f.write(R)
if save_image_set:
image_set = ''
for key in coco.imgs.keys():
if keep_ext:
image_name = coco.imgs[key]['file_name']
else:
image_name = os.path.splitext(coco.imgs[key]['file_name'])[0]
image_set += image_name + '\n'
with open(os.path.join(os.path.dirname(cache_folder), 'image_set.txt'), 'w') as f:
f.write(image_set)
return cache_folder, os.path.join(cache_folder, 'image_set.txt')
def merge_result(coco_anno_file, result_file, type, nms_thresh=0.3, remove_cache=True):
assert os.path.isabs(result_file)
result_folder = os.path.splitext(result_file)[0]
if not os.path.exists(result_folder):
os.makedirs(result_folder)
cache_folder = os.path.join(result_folder, 'cache')
if not os.path.exists(cache_folder):
os.makedirs(cache_folder)
prepare_data_str(coco_anno_file, result_file, cache_folder, type, False, False)
mergebypolywithnms(cache_folder, result_folder, nms_thresh)
if remove_cache:
shutil.rmtree(cache_folder)
return result_folder
def merge_result_multi_process(coco_anno_file, result_file, type, nms_thresh=0.3, remove_cache=True, process_num=36):
assert os.path.isabs(result_file)
result_folder = os.path.splitext(result_file)[0]
if not os.path.exists(result_folder):
os.makedirs(result_folder)
cache_folder = os.path.join(result_folder, 'cache')
if not os.path.exists(cache_folder):
os.makedirs(cache_folder)
prepare_data_str_multi_process(coco_anno_file, result_file, cache_folder, type, False, False, process_num)
mergebypoly_multi_process(cache_folder, result_folder)
if remove_cache:
shutil.rmtree(cache_folder)
return result_folder
def evaluateResult(coco_anno_file, result_file, anno_folder, type='dota_15'):
file_folder, imagesetfile = prepare_data_str(coco_anno_file, result_file, type=type, keep_ext=False, save_image_set=True)
file_src = os.path.join(file_folder, 'task1_{}.txt')
anno_src = os.path.join(anno_folder, '{}.txt')
coco = COCO(coco_anno_file)
class_name = coco.dataset['categories']
map = 0.0
classaps = []
names = []
for class__ in class_name:
classname = class__['name']
names.append(classname)
print('classname:', classname)
rec, prec, ap = voc_eval(file_src,
anno_src,
imagesetfile,
classname,
ovthresh=0.5,
use_07_metric=True)
map = map + ap
#print('rec: ', rec, 'prec: ', prec, 'ap: ', ap)
print('ap: ', ap)
classaps.append(ap)
# umcomment to show p-r curve of each category
# plt.figure(figsize=(8,4))
# plt.xlabel('recall')
# plt.ylabel('precision')
# plt.plot(rec, prec)
# plt.show()
map = map/len(class_name)
print('map:', map)
classaps = 100*np.array(classaps)
print('classaps: ', classaps)
result_dir = os.path.dirname(result_file)
basename = os.path.splitext(os.path.basename(result_file))[0]
with open(os.path.join(result_dir, f'{basename}_evaluate.txt'), 'w') as f:
result_json = dict(file=f'{basename}.pkl', mAp=map, detail=dict(zip(names, classaps)))
json.dump(result_json, f)
shutil.rmtree(file_folder)
def prepare_data(detection, imagenames, catnames, keep_ext=False):
result = dict(zip(catnames, [{'name': [], 'confidence': [], 'detection': []} for _ in range(len(catnames))]))
for i, d in enumerate(detection):
if keep_ext:
image_name = imagenames[i]
else:
image_name = os.path.splitext(imagenames[i])[0]
if d[0].shape[1] == 9:
for j, _d in enumerate(d):
if j >= len(catnames):
continue
cat_name = catnames[j]
if _d.shape[0] == 0:
continue
else:
for line_ in _d.tolist():
result[cat_name]['name'].append(image_name)
result[cat_name]['confidence'].append(line_[8])
result[cat_name]['detection'].append(line_[:-1])
return result
def evaluateCOCO(coco_anno_file, result_file, iou_thrs=[0.5]):
detection = load_result(result_file)
coco = COCO(coco_anno_file)
if iou_thrs is None:
iou_thrs = [0.5]
map = [0.0 for _ in iou_thrs]
classaps = [[] for _ in iou_thrs]
imagenames = [line['file_name'] for line in coco.dataset['images']]
catnames = [line['name'] for line in coco.dataset['categories']]
d = prepare_data(detection, imagenames, catnames)
# class_name = coco.dataset['categories']
# map = 0.0
# classaps = []
names = []
for classname in catnames:
names.append(classname)
print('classname:', classname)
for i, ovthresh in enumerate(iou_thrs):
rec, prec, ap = coco_eval(d,
coco,
classname,
ovthresh=ovthresh,
use_07_metric=True)
map[i] = map[i] + ap
# print('rec: ', rec, 'prec: ', prec, 'ap: ', ap)
# print('ap: ', ap)
classaps[i].append(ap)
# umcomment to show p-r curve of each category
# plt.figure(figsize=(8,4))
# plt.xlabel('recall')
# plt.ylabel('precision')
# plt.plot(rec, prec)
# plt.show()
map = [100.0 * m / len(catnames) for m in map]
# print('map:', map)
classaps = 100 * np.array(classaps)
print('classaps: ', classaps)
result_json = {}
for i, ovthresh in enumerate(iou_thrs):
result_json[f'iou_{ovthresh * 100:.0f}'] = dict(mAp=map[i], detail=dict(zip(names, classaps[i])))
return result_json
def print_args(args):
print_n = 30
print(f"{''.join(['-'] * print_n)}")
print(f"Config file: {args.config}")
print(f"Checkpoint file: {args.checkpoint}")
if args.draw_flag and args.source_dir:
print("Draw result: True")
print(f"Draw source folder: {args.source_dir}")
print(f"Draw number: {args.draw_n}")
if args.draw_dir is None:
print(f"Draw folder: {os.path.join(os.path.splitext(args.checkpoint)[0], 'visual_result')}")
else:
print(f"Draw folder: {args.draw_dir}")
print(f"GPUs: {args.gpus}")
print(f"Processor number: {args.processor}")
print(f"{''.join(['-'] * print_n)}")
def main(args):
draw_result_full = args.draw_flag
draw_num = args.draw_n
src_image_dir = args.source_dir
process_num = args.processor
use_gpus = [int(gpu.strip()) for gpu in args.gpus.split(',') if len(gpu.strip()) > 0]
draw_dir = args.draw_dir
checkpoint = args.checkpoint
if draw_dir is None:
draw_dir = os.path.join(os.path.splitext(checkpoint)[0], 'visual_result')
config_file = args.config
config = Config.fromfile(config_file)
if config.dataset_type == 'DOTADataset_10':
data_type = 'dota_10'
elif config.dataset_type == 'DOTADataset_15':
data_type = 'dota_15'
else:
raise ValueError(f"Unsupport data type: {config.dataset_type}")
anno_file = config.data.test.ann_file
gpu_n = len(use_gpus)
gpus = ','.join([str(n) for n in use_gpus])
print('*' * 10 + 'Start inference' + '*' * 10)
result_file = os.path.splitext(checkpoint)[0] + '.pkl'
os.system(f'export CUDA_VISIBLE_DEVICES="{gpus}" && ./tools/dist_test.sh {config_file} {checkpoint} {gpu_n} --out {result_file} --fuse-conv-bn')
print('*' * 10 + 'Done!' + '*' * 10)
print('*' * 10 + 'Evaluating!' + '*' * 10)
result_dir = merge_result_multi_process(anno_file, result_file, data_type, 0.1, True, process_num)
if draw_result_full and src_image_dir:
if not os.path.exists(draw_dir):
os.makedirs(draw_dir)
assert draw_num == 'all' or isinstance(draw_num, int)
print(f'Drawing result on the whole image. Number: {draw_num}')
drawWhole(result_dir, src_image_dir, draw_dir, 16, draw_num)
print('All done!')
if __name__ == '__main__':
args = parse_args()
print_args(args)
main(args)