We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
https://lyb92nlf.github.io/2021/11/13/Chapter04%E5%86%B3%E7%AD%96%E6%A0%91/
基本流程决策树是基于树结构来进行决策的,例如在西瓜问题中,对新样本的分类可看作对“当前样本属于正类吗”这个问题的“决策”过程。 决策树学习的目的是为了产生一颗泛化能力强,即处理未见示例能力强的决策树。 其基本算法如下图所示 注:在决策树基本算法中,有三种情形导致递归返回 当前结点包含的样本全属于同一类别,无需划分 当前属性集为空,或是所有样本在所有属性上取值相同,无法划分 当前结点包含的
The text was updated successfully, but these errors were encountered:
No branches or pull requests
https://lyb92nlf.github.io/2021/11/13/Chapter04%E5%86%B3%E7%AD%96%E6%A0%91/
基本流程决策树是基于树结构来进行决策的,例如在西瓜问题中,对新样本的分类可看作对“当前样本属于正类吗”这个问题的“决策”过程。 决策树学习的目的是为了产生一颗泛化能力强,即处理未见示例能力强的决策树。 其基本算法如下图所示 注:在决策树基本算法中,有三种情形导致递归返回 当前结点包含的样本全属于同一类别,无需划分 当前属性集为空,或是所有样本在所有属性上取值相同,无法划分 当前结点包含的
The text was updated successfully, but these errors were encountered: