-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathinverse_cdf_exp.py
38 lines (29 loc) · 1.04 KB
/
inverse_cdf_exp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
#-*- coding:utf-8 -*-
# 使用Inverse CDF Sampling,概率累积函数逆变换采样
# 以指数分布为例y = lambda * exp(-lambda * x)
import numpy as np
import matplotlib.pyplot as plt
lamd = 1.0 # lambda系数
shape = (5000, ) # 数据点大小
bins = 200 # 绘制直方图的bins
# 指数分布的概率累积函数的逆变换,x = -ln(1 - y)/lambda
def inverse_cdf(lamd, shape):
uni_nums = np.random.uniform(0.0, 1.0, shape)
uni_nums[uni_nums == 1.0] = 0.99999
exp_nums = -np.log(1 - uni_nums)/lamd
return exp_nums
# 采样并绘制直方图
def sampling_exp():
np_exp_nums = np.random.exponential(scale = 1.0/lamd, size = shape) # numpy的
exp_nums = inverse_cdf(lamd = lamd, shape = shape) # 自己实现的
plt.figure()
plt.subplot(1, 2, 1)
plt.hist(np_exp_nums, bins = bins, normed = True)
plt.title("numpy exponential")
plt.subplot(1, 2, 2)
plt.hist(exp_nums, bins = bins, normed = True)
plt.title("my exponential")
plt.show()
def main():
sampling_exp()
main()