-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpro_trainer.py
191 lines (150 loc) · 5.11 KB
/
pro_trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
import time
import numpy as np
from sklearn import cross_validation
from sklearn.preprocessing import CategoricalEncoder
from sklearn.svm import SVC
from sklearn.metrics import recall_score, precision_score, f1_score, accuracy_score
# from elliphant.elliphant import ElliphantCorpus
from ancora.ancora_corpus import AncoraCorpus
from utils.evaluator import evaluate_clause
from collections import defaultdict
start_time = time.clock()
class bcolors:
"""
Colores para destacar el output.
"""
HEADER = '\033[95m'
OKBLUE = '\033[94m'
OKGREEN = '\033[92m'
WARNING = '\033[93m'
FAIL = '\033[91m'
ENDC = '\033[0m'
BOLD = '\033[1m'
# clauses = ElliphantCorpus()
clauses = AncoraCorpus()
dt = np.dtype('object,object')
clauses_list = np.array(list(clauses), dtype=dt)
# http://stackoverflow.com/questions/24147278/how-do-i-create-test-and-train-samples-from-one-dataframe-with-pandas
np.random.seed(42)
msk = np.random.rand(clauses.total_clauses) < 0.8
training_clauses = clauses_list[msk]
testing_clauses = clauses_list[~msk]
def eval_features(clause):
if not clause:
return {}
features_values = evaluate_clause(clause)
if features_values is None:
return None
return features_values
# Evaluacion del feature
new_result = {}
new_result['accuracy'] = []
new_result['precision'] = []
new_result['recall'] = []
new_result['f_measure'] = []
cv = cross_validation.KFold(
len(training_clauses), n_folds=5, shuffle=True, random_state=None)
print("SVC Classifier")
# print("Maxent Classifier")
# print("NaiveBayes Classifier")
for traincv, evalcv in cv:
cv_training = training_clauses.take(traincv)
cv_testing = training_clauses.take(evalcv)
training_set = [
(eval_features(clause), subject) for (clause, subject) in cv_training]
testing_set = [
(eval_features(clause), subject) for (clause, subject) in cv_testing]
training_set_features, training_set_values = zip(*[
train_value
for train_value
in training_set
if train_value[0] is not None
])
testing_set_features, testing_set_values = zip(*[
test_value
for test_value
in testing_set
if test_value[0] is not None
])
training_data = np.array(training_set_features)
enc = CategoricalEncoder(handle_unknown='ignore')
enc.fit(training_data[:, :19])
training_CE = enc.transform(training_data[:, :19]).toarray()
classifier = SVC()
training_full_data = np.concatenate(
(np.array(training_CE), training_data[:, 20:]), axis=1)
classifier.fit(training_full_data, np.array(training_set_values))
testing_data = np.array(testing_set_features)
testing_CE = enc.transform(testing_data[:, :19]).toarray()
testing_full_data = np.concatenate(
(testing_CE, testing_data[:, 20:]), axis=1)
testing_set_predicted = classifier.predict(testing_full_data)
labels = ['SUBJECT', 'ZERO', 'IMPERSONAL', 'ERROR']
accuracy = accuracy_score(
testing_set_values,
testing_set_predicted)
new_result['accuracy'].append(accuracy)
precision = precision_score(
testing_set_values,
testing_set_predicted,
labels=labels,
average=None)
new_result['precision'].append(list(zip(labels, precision)))
recall = recall_score(
testing_set_values,
testing_set_predicted,
labels=labels,
average=None)
new_result['recall'].append(list(zip(labels, recall)))
f_measure = f1_score(
testing_set_values,
testing_set_predicted,
labels=labels,
average=None)
new_result['f_measure'].append(list(zip(labels, f_measure)))
print(new_result)
# print(classifier.show_most_informative_features(5))
new_result['AVG'] = {
"accuracy": 0.0,
"f_measure": {
"ERROR": 0.0,
"IMPERSONAL": 0.0,
"SUBJECT": 0.0,
"ZERO": 0.0
},
"precision": {
"ERROR": 0.0,
"IMPERSONAL": 0.0,
"SUBJECT": 0.0,
"ZERO": 0.0
},
"recall": {
"ERROR": 0.0,
"IMPERSONAL": 0.0,
"SUBJECT": 0.0,
"ZERO": 0.0
}
}
for result in new_result['accuracy']:
new_result["AVG"]["accuracy"] += result
for result in new_result['precision']:
for (subj, val) in result:
new_result["AVG"]["precision"][subj] += val
for result in new_result['recall']:
for (subj, val) in result:
new_result["AVG"]["recall"][subj] += val
for result in new_result['f_measure']:
for (subj, val) in result:
new_result["AVG"]["f_measure"][subj] += val
new_result["AVG"]["accuracy"] = new_result["AVG"]["accuracy"] / 5
for subj in ['SUBJECT', 'ZERO', 'IMPERSONAL', 'ERROR']:
new_result["AVG"]["recall"][subj] = (
new_result["AVG"]["recall"][subj] / 5)
new_result["AVG"]["precision"][subj] = (
new_result["AVG"]["precision"][subj] / 5)
new_result["AVG"]["f_measure"][subj] = (
new_result["AVG"]["f_measure"][subj] / 5)
print(new_result)
elapsed_time = time.clock() - start_time
print("Tiempo de ejecucion: {1}{0:.5f}{2} segundos".format(
elapsed_time, bcolors.OKGREEN, bcolors.ENDC))