-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathstochasticgrowth.py
executable file
·200 lines (152 loc) · 7.57 KB
/
stochasticgrowth.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
#!/usr/bin/env python3
import numpy as np
import pandas as pd
import argparse
import math,sys
import networkx as nx
import matplotlib.pyplot as plt
import pygraphviz
from networkx.drawing.nx_agraph import graphviz_layout
import inheritanceclass as ic
import eventclass as ec
class Population(object):
def __init__(self,**kwargs):
self.__verbose = kwargs.get("verbose",False)
self.__initialpopulationsize = kwargs.get("initialpopulationsize",5)
self.__populationsize = self.__initialpopulationsize
self.events = ec.EventLineLL(verbose = self.__verbose) # default behavior is linked list, data extraction not implemented in old eventline
self.divtimes = ic.DivisionTimes_matrix(**kwargs)
self.graphoutput = kwargs.get("graphoutput",False)
self.graph = nx.Graph()
self.PopulationData = None
growthtimes,states = self.divtimes.DrawDivisionTimes(size = self.__initialpopulationsize)
for i in range(self.__initialpopulationsize):
if not kwargs.get("SyncInitialDivision",False):
remaining_growthtime = np.random.uniform(high = growthtimes[i])
else:
remaining_growthtime = growthtimes[i]
self.events.AddEvent(time = remaining_growthtime, parentID = -1, parentstate = states[i])
if self.graphoutput:
self.graph.add_nodes_from([i])
self.PopulationData = self.events.FounderPopulationData().copy()
def division(self):
# go to the next event in the eventline, initialize random variables
curID, curtime, curdata = self.events.NextEvent()
self.PopulationData = self.PopulationData.append(self.events.CurrentEventDict(force_list_output = False), ignore_index = True)
growthtimes,states = self.divtimes.DrawDivisionTimes(parentstate = curdata['parentstate'])
# add two new daugther cells to the eventline when they will divide in the future
newID,newtime,newdata = self.events.AddEvent(time = curtime + growthtimes[0], parentID = curID, parentstate = states[0])
if self.graphoutput:
self.graph.add_nodes_from([newID])
self.graph.add_edge(newID,curID,length = growthtimes[0])
newID,newtime,newdata = self.events.AddEvent(time = curtime + growthtimes[1], parentID = curID, parentstate = states[1])
if self.graphoutput:
self.graph.add_nodes_from([newID])
self.graph.add_edge(newID,curID,length = growthtimes[1])
# store to keep track
self.__populationsize += 1
if self.__verbose:
print("# population growth (N = {:4d}) at time {:.4f}, ({})-->({})-->({})&({}), with new division times ({:f}, {:f})".format(self.__populationsize,curtime,curdata['parentID'],curID,newID-1,newID,growthtime[0],growthtime[1]))
def growth(self,divisionevents = None, maxpopsize = None, maxtime = None, time = None):
if divisionevents is None and maxpopsize is None and maxtime is None and time is None:
self.division()
elif not divisionevents is None:
for i in range(divisionevents):
self.division()
elif not maxpopsize is None:
while self.size <= maxpopsize:
self.division()
elif not maxtime is None:
while self.events.curtime <= maxtime:
self.division()
elif not time is None:
maxtime = self.events.curtime + time
while self.events.curtime <= maxtime:
self.division()
else:
raise NotImplementedError
def plotGraph(self,filename):
if self.graphoutput:
layout = graphviz_layout(self.graph,prog='twopi')
nx.draw(self.graph,pos=layout,node_size = 0)
plt.savefig(filename)
else:
raise IOError('graph output not recorded during simulation')
# return internal variables
def __getattr__(self,key):
if key == "timeline":
return self.events.curtime, self.events.times
# output current state
def __str__(self):
return "{:.6f} {:4d}".format(self.events.curtime,self.__populationsize)
def __int__(self):
return self.__populationsize
def __getattr__(self,key):
if key == 'size':
return self.__populationsize
elif key == 'time':
return self.events.curtime
elif key == 'divisiontimes':
return self.divtimes.divisiontimes
elif key == 'founderdivisiontimes':
return self.divtimes.divisiontimes[:self.__initialpopulationsize]
elif key == 'data':
divtimes = self.divisiontimes
popsize = np.arange(len(divtimes)) + self.__initialpopulationsize + 1
divtimedf = pd.DataFrame({'#populationsize' : popsize, 'divisiontime' : divtimes})
return pd.concat([divtimedf, self.PopulationData.reindex(divtimedf.index)], axis=1)
def MakeDictFromParameterList(params):
def AddEntry(d,key,val):
tmp = dict()
if not key is None:
if len(val) == 1:
tmp[key] = val[0]
elif len(val) > 1:
tmp[key] = np.array(val)
tmp.update(d)
return tmp
p = dict()
curkey = None
curvalue = list()
for entry in params:
try:
v = float(entry)
curvalue.append(v)
except:
p = AddEntry(p,curkey,curvalue)
curvalue = list()
curkey = entry
p = AddEntry(p,curkey,curvalue)
return p
def main():
parser = argparse.ArgumentParser()
parser_IO = parser.add_argument_group(description = "==== I/O parameters ====")
parser_IO.add_argument("-o","--outputfile", default = 'popdata.txt', type = str)
parser_IO.add_argument("-G","--graphoutput", default = False, action = "store_true")
parser_IO.add_argument("-I","--ignoreParents", default = False, action = "store_true")
parser_IO.add_argument("-v","--verbose", default = False, action = "store_true")
parser_alg = parser.add_argument_group(description = "==== algorithm parameters ====")
parser_alg.add_argument("-n", "--initialpopulationsize", type = int, default = 5)
parser_alg.add_argument("-N", "--maxSize", type = int, default = 100)
parser_alg.add_argument("-P", "--parameters", nargs = "*", default = None)
parser_alg.add_argument("-S", "--SyncInitialDivision", default = False, action = "store_true")
args = parser.parse_args()
argument_dict = vars(args)
if not args.parameters is None:
# add all entries in 'args.parameters' to the argument list itself, then delete its entry from the original dict
# all parameters for division times can now be processed
argument_dict.update(MakeDictFromParameterList(args.parameters))
argument_dict.pop('parameters')
# generate population object
pop = Population(**argument_dict)
# write standard parameters of divition time distribution
if args.verbose:
print('# stationary values division time distribution: {} {}\n'.format(pop.divtimes.mean, pop.divtimes.variance))
# growth
while pop.size < args.maxSize:
pop.growth()
print("{:.3f} {:5d}".format(pop.time, pop.size))
# save output
pop.data.to_csv(args.outputfile, sep = ' ', index = False)
if __name__ == "__main__":
main()