-
Notifications
You must be signed in to change notification settings - Fork 481
/
Copy pathtrain_transformer.py
executable file
·203 lines (176 loc) · 7.28 KB
/
train_transformer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
"""
DETR Training Script.
This script is a simplified version of the training script in detectron2/tools.
"""
import os
import sys
import itertools
import time
from typing import Any, Dict, List, Set
import torch
from fvcore.nn.precise_bn import get_bn_modules
import detectron2.utils.comm as comm
from detectron2.checkpoint import DetectionCheckpointer
from detectron2.config import get_cfg
from detectron2.data import MetadataCatalog, build_detection_train_loader
from detectron2.engine import DefaultTrainer, default_argument_parser, default_setup, launch
from detectron2.evaluation import COCOEvaluator, verify_results
from detectron2.engine import hooks
from detectron2.modeling import build_model
from detectron2.solver.build import maybe_add_gradient_clipping
from yolov7.data.dataset_mapper import DetrDatasetMapper
from yolov7.config import add_yolo_config
from yolov7.optimizer import build_optimizer_mapper
class Trainer(DefaultTrainer):
"""
Extension of the Trainer class adapted to DETR.
"""
@classmethod
def build_evaluator(cls, cfg, dataset_name, output_folder=None):
"""
Create evaluator(s) for a given dataset.
This uses the special metadata "evaluator_type" associated with each builtin dataset.
For your own dataset, you can simply create an evaluator manually in your
script and do not have to worry about the hacky if-else logic here.
"""
if output_folder is None:
output_folder = os.path.join(cfg.OUTPUT_DIR, "inference")
return COCOEvaluator(dataset_name, cfg, True, output_folder)
@classmethod
def build_train_loader(cls, cfg):
if "detr" in cfg.MODEL.META_ARCHITECTURE.lower():
mapper = DetrDatasetMapper(cfg, True)
else:
mapper = None
return build_detection_train_loader(cfg, mapper=mapper)
@classmethod
def build_optimizer(cls, cfg, model):
# params: List[Dict[str, Any]] = []
# memo: Set[torch.nn.parameter.Parameter] = set()
# for key, value in model.named_parameters(recurse=True):
# if not value.requires_grad:
# continue
# # Avoid duplicating parameters
# if value in memo:
# continue
# memo.add(value)
# lr = cfg.SOLVER.BASE_LR
# weight_decay = cfg.SOLVER.WEIGHT_DECAY
# if "backbone" in key:
# lr = lr * cfg.SOLVER.BACKBONE_MULTIPLIER
# params += [{"params": [value], "lr": lr,
# "weight_decay": weight_decay}]
# # optim: the optimizer class
# def maybe_add_full_model_gradient_clipping(optim):
# # detectron2 doesn't have full model gradient clipping now
# clip_norm_val = cfg.SOLVER.CLIP_GRADIENTS.CLIP_VALUE
# enable = (
# cfg.SOLVER.CLIP_GRADIENTS.ENABLED
# and cfg.SOLVER.CLIP_GRADIENTS.CLIP_TYPE == "full_model"
# and clip_norm_val > 0.0
# )
# class FullModelGradientClippingOptimizer(optim):
# def step(self, closure=None):
# all_params = itertools.chain(
# *[x["params"] for x in self.param_groups])
# torch.nn.utils.clip_grad_norm_(all_params, clip_norm_val)
# super().step(closure=closure)
# return FullModelGradientClippingOptimizer if enable else optim
# optimizer_type = cfg.SOLVER.OPTIMIZER
# if optimizer_type == "SGD":
# optimizer = maybe_add_full_model_gradient_clipping(torch.optim.SGD)(
# params, cfg.SOLVER.BASE_LR, momentum=cfg.SOLVER.MOMENTUM
# )
# elif optimizer_type == "ADAMW":
# optimizer = maybe_add_full_model_gradient_clipping(torch.optim.AdamW)(
# params, cfg.SOLVER.BASE_LR
# )
# else:
# raise NotImplementedError(f"no optimizer type {optimizer_type}")
# if not cfg.SOLVER.CLIP_GRADIENTS.CLIP_TYPE == "full_model":
# optimizer = maybe_add_gradient_clipping(cfg, optimizer)
# return optimizer
return build_optimizer_mapper(cfg, model)
def build_hooks(self):
"""
Build a list of default hooks, including timing, evaluation,
checkpointing, lr scheduling, precise BN, writing events.
Returns:
list[HookBase]:
"""
cfg = self.cfg.clone()
cfg.defrost()
cfg.DATALOADER.NUM_WORKERS = 0 # save some memory and time for PreciseBN
ret = [
hooks.IterationTimer(),
hooks.LRScheduler(),
hooks.PreciseBN(
# Run at the same freq as (but before) evaluation.
cfg.TEST.EVAL_PERIOD,
self.model,
# Build a new data loader to not affect training
self.build_train_loader(cfg),
cfg.TEST.PRECISE_BN.NUM_ITER,
)
if cfg.TEST.PRECISE_BN.ENABLED and get_bn_modules(self.model)
else None,
]
# Do PreciseBN before checkpointer, because it updates the model and need to
# be saved by checkpointer.
# This is not always the best: if checkpointing has a different frequency,
# some checkpoints may have more precise statistics than others.
if comm.is_main_process():
ret.append(hooks.PeriodicCheckpointer(
self.checkpointer, cfg.SOLVER.CHECKPOINT_PERIOD))
def test_and_save_results():
self._last_eval_results = self.test(self.cfg, self.model)
return self._last_eval_results
# Do evaluation after checkpointer, because then if it fails,
# we can use the saved checkpoint to debug.
ret.append(hooks.EvalHook(cfg.TEST.EVAL_PERIOD, test_and_save_results))
if comm.is_main_process():
# Here the default print/log frequency of each writer is used.
# run writers in the end, so that evaluation metrics are written
ret.append(hooks.PeriodicWriter(self.build_writers(), period=200))
return ret
@classmethod
def build_model(cls, cfg):
# remove print model
model = build_model(cfg)
return model
def setup(args):
"""
Create configs and perform basic setups.
"""
cfg = get_cfg()
add_yolo_config(cfg)
cfg.merge_from_file(args.config_file)
cfg.merge_from_list(args.opts)
cfg.freeze()
default_setup(cfg, args)
return cfg
def main(args):
cfg = setup(args)
if args.eval_only:
model = Trainer.build_model(cfg)
DetectionCheckpointer(model, save_dir=cfg.OUTPUT_DIR).resume_or_load(
cfg.MODEL.WEIGHTS, resume=args.resume)
res = Trainer.test(cfg, model)
if comm.is_main_process():
verify_results(cfg, res)
return res
trainer = Trainer(cfg)
trainer.resume_or_load(resume=args.resume)
return trainer.train()
if __name__ == "__main__":
args = default_argument_parser().parse_args()
print("Command Line Args:", args)
launch(
main,
args.num_gpus,
num_machines=args.num_machines,
machine_rank=args.machine_rank,
dist_url=args.dist_url,
args=(args,),
)