-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathaudio_utils.py
259 lines (206 loc) · 9.44 KB
/
audio_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
import os
import tensorflow_io as tfio
#import network_lib
import network_lib_attention as network_lib
import params
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
import tensorflow_hub as hub
# Soundstream
module = hub.KerasLayer('https://tfhub.dev/google/soundstream/mel/decoder/music/1')
# Audio Stuff
#SAMPLE_RATE = 16000
#N_FFT = 1024
#HOP_LENGTH = 320
#WIN_LENGTH = 640 # (20 ms)
#N_MEL_CHANNELS = 128
#MEL_FMIN = 0.0
#MEL_FMAX = int(SAMPLE_RATE // 2)
#CLIP_VALUE_MIN = 1e-5
#CLIP_VALUE_MAX = 1e8
#N_IMG_CHANNELS = 1 #3
MEL_BASIS = tf.signal.linear_to_mel_weight_matrix(
num_mel_bins=params.N_MEL_CHANNELS,
num_spectrogram_bins=params.N_FFT // 2 + 1,
sample_rate=params.SAMPLE_RATE,
lower_edge_hertz=params.MEL_FMIN,
upper_edge_hertz=params.MEL_FMAX)
def calculate_spectrogram(samples):
"""Calculate mel spectrogram using the parameters the model expects."""
fft = tf.signal.stft(
samples,
frame_length=params.WIN_LENGTH,
frame_step=params.HOP_LENGTH,
fft_length=params.N_FFT,
window_fn=tf.signal.hann_window,
pad_end=True)
fft_modulus = tf.abs(fft)
output = tf.matmul(fft_modulus, MEL_BASIS)
output = tf.clip_by_value(
output,
clip_value_min=params.CLIP_VALUE_MIN,
clip_value_max=params.CLIP_VALUE_MAX)
output = tf.math.log(output)
return output
# data
dataset_repetitions = 5
num_epochs = 1 # train for at least 50 epochs for good results
image_size = (128,128)
# KID = Kernel Inception Distance, see related section
kid_image_size = 75
kid_diffusion_steps = 10
plot_diffusion_steps = 20
# sampling
min_signal_rate = 0.02
max_signal_rate = 0.95
# architecture
embedding_dims = 32
embedding_max_frequency = 1000.0
widths = [32, 64, 96, 128]
block_depth = 2
# optimization
batch_size = 64
widths = [64, 128, 256, 512]
block_depth = 4
batch_size=16
ema = 0.999
learning_rate = 1e-3
weight_decay = 1e-4
# Handle Paths
dataset_train_path = 'dataset/dataset_timbre_transfer/train'
instruments_name = ['violin','saxophone']
checkpoint_path = "checkpoints/diffusion_model_timbre_transfer_saxophone_to_violin_20230305-150304"
checkpoint_path = "checkpoints/diffusion_model_timbre_transfer_saxophone_to_violin_20230309-170705"
# Each instrument is the same since track names are duplicated
track_names = os.listdir(os.path.join(dataset_train_path,instruments_name[0]))
track_names.sort()
# Let's do violin to saxophone
track_paths_trans = [[os.path.join(dataset_train_path,instruments_name[0],track_name),os.path.join(dataset_train_path,instruments_name[1],track_name)] for track_name in track_names]
val_perc = 0.2
n_tracks_train = len(track_paths_trans) - int(np.floor(val_perc*len(track_paths_trans)))
train_tracks_paths = track_paths_trans[:n_tracks_train]
val_tracks_paths = track_paths_trans[n_tracks_train:]
#train_tracks_paths, val_tracks_paths = train_tracks_paths[:64], val_tracks_paths[:64],
#audio_path = train_tracks_paths[200]
duration_sample = 40960
duration_track = 480000
def normalize_audio(audio):
audio = audio - audio.min()
audio = audio/audio.max()
audio = (audio*2)-1
return audio
def read_audio(audio_path,resample=True, SAMPLE_RATE=params.SAMPLE_RATE):
audio_bin = tf.io.read_file(audio_path)
audio, sample_rate = tf.audio.decode_wav(audio_bin)
if resample:
audio = tfio.audio.resample(audio, rate_in=tf.cast(sample_rate,tf.int64), rate_out=SAMPLE_RATE, name=None)
return audio
def norm_tensor(audio):
min_val = tf.math.reduce_min(audio)
audio = audio - min_val
max_val = tf.math.reduce_max(audio)
audio_norm = ((audio/max_val)*2)-1
return audio_norm, max_val, min_val
def denorm_tensor(audio,max_val,min_val):
return (((audio +1)/2)*max_val + min_val)
def get_audio_track_diff(cond_track_path, diff_steps=20):
cond_track = read_audio(cond_track_path)
# Remove audio Channel and add Batch Dimension
cond_track = tf.expand_dims(cond_track[:,0],axis=0)
do_norm = True
if do_norm:
cond_track,_,_ = norm_tensor(cond_track)
# Compute mel spectrogram
cond_track_spec = calculate_spectrogram(cond_track)
# Frames given as input to diff model
N_frames_diff = 128
# Number of full frames contained in the considered track
N_frames_full = cond_track_spec.shape[1]//N_frames_diff
N_frames_gt = cond_track_spec.shape[1]
# Split the cond track in frame sizes suitable to diff model
if N_frames_full*N_frames_diff < cond_track_spec.shape[1]:
cond_track_input_diff = np.zeros((N_frames_full+1,N_frames_diff,params.N_MEL_CHANNELS),dtype=np.float32)
for i in range(N_frames_full):
cond_track_input_diff[i] = cond_track_spec[0,(i*N_frames_diff):(i*N_frames_diff)+N_frames_diff]
N_remaining_frames = len(cond_track_spec[0, (i * N_frames_diff) + N_frames_diff:])
cond_track_input_diff[i+1,:N_remaining_frames] = cond_track_spec[0, (i * N_frames_diff) + N_frames_diff:]
else:
cond_track_input_diff = np.zeros(N_frames_full,N_frames_diff,N_MEL_CHANNELS,1)
for i in range(N_frames_full):
cond_track_input_diff[i] = cond_track_spec[0,(i*N_frames_diff):(i*N_frames_diff)+N_frames_diff]
# Now let's apply the diffusion model
model = network_lib.DiffusionModel(image_size, widths, block_depth,val_data=None,batch_size=batch_size)
model.load_weights(checkpoint_path)
N = cond_track_input_diff.shape[0]
est_spec = model.generate(
cond_images=tf.expand_dims(cond_track_input_diff, axis=-1),
num_images=N,
diffusion_steps=diff_steps,
)
est_spec_shift = tf.expand_dims(tf.zeros_like(cond_track_input_diff), axis=-1).numpy()
N_slices = est_spec_shift.shape[0]
for i in range(N_slices - 1):
# Curr + shifted slice
cond_shift = tf.expand_dims(
tf.expand_dims(tf.concat([cond_track_input_diff[i][64:], cond_track_input_diff[i + 1][:64]], axis=0),
axis=0), axis=-1)
est_spec_shift[i] = model.generate(cond_images=cond_shift, num_images=1, diffusion_steps=diff_steps)
est_spec_smooth = est_spec.numpy()
for i in range(est_spec.numpy().shape[0] - 1):
est_spec_smooth[i, 96:] = est_spec_shift[i, 32:64]
est_spec_smooth[i + 1, :32] = est_spec_shift[i, 64:96]
est_spec = tf.reshape(est_spec_smooth,(N*128,128)).numpy()[:N_frames_gt]
cond_track_input_diff = tf.reshape(cond_track_input_diff,(N*128,128)).numpy()[:N_frames_gt]
est_audio = module(tf.expand_dims(est_spec,axis=0)).numpy()
cond_audio = module(tf.expand_dims(cond_track_input_diff,axis=0)).numpy()
return est_audio, cond_audio
def get_audio_track_diff_norm(cond_track_path, checkpoint_path, model, diff_steps=20):
cond_track = read_audio(cond_track_path)
# Remove audio Channel and add Batch Dimension
cond_track = tf.expand_dims(cond_track[:, 0], axis=0)
do_norm = True
if do_norm:
cond_track, _, _ = norm_tensor(cond_track)
# Compute mel spectrogram
cond_track_spec = calculate_spectrogram(cond_track)
# Frames given as input to diff model
N_frames_diff = 128
# Number of full frames contained in the considered track
N_frames_full = cond_track_spec.shape[1] // N_frames_diff
N_frames_gt = cond_track_spec.shape[1]
# Split the cond track in frame sizes suitable to diff model
if N_frames_full * N_frames_diff < cond_track_spec.shape[1]:
cond_track_input_diff = np.zeros((N_frames_full + 1, N_frames_diff, params.N_MEL_CHANNELS), dtype=np.float32)
for i in range(N_frames_full):
cond_track_input_diff[i] = cond_track_spec[0, (i * N_frames_diff):(i * N_frames_diff) + N_frames_diff]
N_remaining_frames = len(cond_track_spec[0, (i * N_frames_diff) + N_frames_diff:])
cond_track_input_diff[i + 1, :N_remaining_frames] = cond_track_spec[0, (i * N_frames_diff) + N_frames_diff:]
else:
cond_track_input_diff = np.zeros(N_frames_full, N_frames_diff, params.N_MEL_CHANNELS, 1)
for i in range(N_frames_full):
cond_track_input_diff[i] = cond_track_spec[0, (i * N_frames_diff):(i * N_frames_diff) + N_frames_diff]
# Now let's apply the diffusion model
# model = network_lib.DiffusionModel(image_size, widths, block_depth,val_data=None,batch_size=batch_size)
model.load_weights(checkpoint_path)
N = cond_track_input_diff.shape[0]
# Compute norm of cond ttrack
cond_track_spec_reshaped_norm = np.zeros_like(cond_track_input_diff)
max_val, min_val = np.zeros(N), np.zeros(N)
for i in range(cond_track_input_diff.shape[0]):
cond_track_spec_reshaped_norm[i], max_val[i], min_val[i] = norm_tensor(cond_track_input_diff[i])
# print(str(max_val[i]) + ' ' + str(min_val[i]))
cond_track_spec_reshaped_norm, max_val, min_val = norm_tensor(cond_track_input_diff)
est_spec_norm = model.generate_fixed_noise(
cond_images=tf.expand_dims(cond_track_spec_reshaped_norm, axis=-1),
num_images=N,
diffusion_steps=diff_steps,
)
# est_spec = denorm_tensor(est_spec_norm,np.mean(max_val),np.mean(min_val))
est_spec = denorm_tensor(est_spec_norm, max_val, min_val)
est_spec = est_spec.numpy()
est_spec = tf.reshape(est_spec, (N * 128, 128)).numpy()[:N_frames_gt]
cond_track_input_diff = tf.reshape(cond_track_input_diff, (N * 128, 128)).numpy()[:N_frames_gt]
est_audio = module(tf.expand_dims(est_spec, axis=0)).numpy()
cond_audio = module(tf.expand_dims(cond_track_input_diff, axis=0)).numpy()
return est_audio, cond_audio, cond_track_input_diff, est_spec