-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathDiffTransfer.py
166 lines (137 loc) · 6.99 KB
/
DiffTransfer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import os
import tqdm
os.environ['CUDA_VISIBLE_DEVICES']="2"
import network_lib_attention as network_lib
import tensorflow as tf
import tensorflow_hub as hub
import tensorflow_io as tfio
import datetime
import os
import numpy as np
import argparse
import params
import audio_utils
from tensorflow import keras
tf.config.list_physical_devices('GPU')
# SoundStream Spectrogram Inverter (Stuff stolen from https://storage.googleapis.com/music-synthesis-with-spectrogram-diffusion/index.html) and https://tfhub.dev/google/soundstream/mel/decoder/music/1
module = hub.KerasLayer('https://tfhub.dev/google/soundstream/mel/decoder/music/1')
# STARNET DATASET --> https://zenodo.org/record/6917099#.ZBiIEuzMI-Q
os.listdir('/nas/public/dataset/maestro/maestro-v3.0.0')
pre_load = False
do_norm = True
def preprocess_dataset(audio_paths):
#for audio_path in val_tracks_paths:
# print(audio_path)
audio_res1 = audio_utils.read_audio(audio_paths[0])
audio_res2 = audio_utils.read_audio(audio_paths[1])
if do_norm:
audio_res1,_,_ = audio_utils.norm_tensor(audio_res1)
audio_res2,_,_ = audio_utils.norm_tensor(audio_res2)
#idx = tf.random.uniform(shape=(), minval=0, maxval=duration_track - duration_sample, dtype=tf.int32)
idx = tf.random.uniform(shape=(), minval=0, maxval=tf.size(audio_res1) - params.duration_sample, dtype=tf.int32)
audio_res1 = audio_res1[idx:idx+params.duration_sample]
audio_res2 = audio_res2[idx:idx+params.duration_sample]
audio_res1 = tf.expand_dims(tf.squeeze(audio_res1), axis=0)
audio_res2 = tf.expand_dims(tf.squeeze(audio_res2), axis=0)
spec1 = audio_utils.calculate_spectrogram(audio_res1)
spec2 = audio_utils.calculate_spectrogram(audio_res2)
spec1 = tf.expand_dims(tf.squeeze(spec1),axis=-1)
spec1 = tf.reshape(spec1,shape=(params.mel_spec_size[0],params.mel_spec_size[1],1))
spec2 = tf.expand_dims(tf.squeeze(spec2),axis=-1)
spec2 = tf.reshape(spec2,shape=(params.mel_spec_size[0],params.mel_spec_size[1],1))
if network_lib.do_norm_specs:
spec1,_,_ = audio_utils.norm_tensor(spec1)
spec2,_,_ = audio_utils.norm_tensor(spec2)
return tf.concat([spec1,spec2],axis=-1)
def prepare_dataset(paths, training=True):
files_ds = tf.data.Dataset.from_tensor_slices(paths)
if training:
features_ds = files_ds.map(preprocess_dataset).repeat(2).batch(params.batch_size,drop_remainder=True).prefetch(buffer_size=tf.data.AUTOTUNE)
else:
features_ds = files_ds.map(preprocess_dataset).cache().repeat(4).batch(params.batch_size,drop_remainder=True).prefetch(buffer_size=tf.data.AUTOTUNE)
return features_ds
def main():
parser = argparse.ArgumentParser(description='Train log-mel-to-mask network')
parser.add_argument('--dataset_train_path', type=str, help='Folder containing Train/val Dataset audio',
default='dataset/starnet/starnet_reduced')
parser.add_argument('--desired_instrument', type=str, help='Desired Output Timbre',
default='strings')
parser.add_argument('--conditioning_instrument', type=str, help='Desired Conditioning Timbre',
default='clarinet')
parser.add_argument('--GPU', type=str, help='Select GPU number',
default='0')
parser.add_argument('--train', type=str, help='Select GPU number',
default='True')
dict_instruments = {"clarinet":"1","vibraphone":"2","strings":"4","piano":"5",'clarinet_vibraphone':"0",'strings_piano':"3"}
args = parser.parse_args()
desired_instrument = args.desired_instrument
conditioning_instrument = args.conditioning_instrument
dataset_train_path = args.dataset_train_path
train = args.train
print('Timbre transfering from '+conditioning_instrument+' to'+desired_instrument)
# Handle Paths
instruments_name = [dict_instruments[desired_instrument],dict_instruments[conditioning_instrument]]
checkpoint_path = "checkpoints/ATT_STARNET_NORM_diffusion_model_timbre_transfer_"+conditioning_instrument+'_to_'+desired_instrument+'_'+ datetime.datetime.now().strftime(
"%Y%m%d-%H%M%S")
tensorboard_callback = tf.keras.callbacks.TensorBoard(log_dir="./logs/ATT_STARNET_"+conditioning_instrument+'_to_'+desired_instrument+datetime.datetime.now().strftime(
"%Y%m%d-%H%M%S"))
log_dir = 'logs/'
logdir = log_dir + 'ATT_STARNET_NORM_diffusion_timbre_transfer_' + datetime.datetime.now().strftime(
"%Y%m%d-%H%M%S") + '5000__'+conditioning_instrument+'_to_'+desired_instrument
# Each instrument is the same since track names are duplicatedk
tracks_full = os.listdir(dataset_train_path)
cond_tracks = [track for track in tracks_full if track.split('.')[-2]==instruments_name[1]]
trgt_tracks = [track for track in tracks_full if track.split('.')[-2]==instruments_name[0]]
cond_tracks.sort()
trgt_tracks.sort()
track_paths_trans = [[os.path.join(dataset_train_path,trgt_tracks[i]),os.path.join(dataset_train_path,cond_tracks[i])] for i in range(len(cond_tracks))]
val_perc = 0.2
n_tracks_train = len(track_paths_trans) - int(np.floor(val_perc * len(track_paths_trans)))
rng = np.random.default_rng(12345)
idxs = rng.choice(len(track_paths_trans), len(track_paths_trans), False)
idxs_train = idxs[:n_tracks_train]
idxs_val = idxs[n_tracks_train:]
train_tracks_paths = np.array(track_paths_trans)[idxs_train].tolist()
val_tracks_paths = np.array(track_paths_trans)[idxs_val].tolist()
train_dataset = prepare_dataset(train_tracks_paths)
val_dataset = prepare_dataset(val_tracks_paths, training=False)
# create and compile the model
first = True
for a in val_dataset.take(2):
if first:
val_data = a
first = False
else:
val_data = tf.concat([val_data, a],axis=0)
val_data = a[:18]
print(val_data.shape)
model = network_lib.DiffusionModel(params.mel_spec_size, params.widths, params.block_depth, val_data, params.has_attention, logdir=logdir,batch_size=params.batch_size,)
model.network.summary()
if train:
model.compile(
optimizer=keras.optimizers.experimental.AdamW(
learning_rate=params.learning_rate, weight_decay=params.weight_decay
),
loss=keras.losses.mean_absolute_error,
)
# save the best model based on the validation KID metric
checkpoint_callback = tf.keras.callbacks.ModelCheckpoint(
filepath=checkpoint_path,
save_weights_only=True,
monitor="val_n_loss",
mode="min",
save_best_only=True,
)
# calculate mean and variance of training dataset for normalization
model.fit(
train_dataset,
epochs=5000,
validation_data=val_dataset,
callbacks=[
keras.callbacks.LambdaCallback(on_epoch_end=model.plot_images),
checkpoint_callback,
tensorboard_callback,
],
)
if __name__=='__main__':
main()