forked from niconielsen32/ComputerVision
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathholisticDetection.py
72 lines (42 loc) · 1.85 KB
/
holisticDetection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
import cv2
import mediapipe as mp
import time
mp_drawing = mp.solutions.drawing_utils
mp_holistic = mp.solutions.holistic
cap = cv2.VideoCapture(0)
with mp_holistic.Holistic(
min_detection_confidence=0.5,
min_tracking_confidence=0.5) as holistic:
while cap.isOpened():
success, image = cap.read()
start = time.time()
# Flip the image horizontally for a later selfie-view display
# Convert the BGR image to RGB.
image = cv2.cvtColor(cv2.flip(image, 1), cv2.COLOR_BGR2RGB)
# To improve performance, optionally mark the image as not writeable to
# pass by reference.
image.flags.writeable = False
# Process the image and detect the holistic
results = holistic.process(image)
# Draw landmark annotation on the image.
image.flags.writeable = True
# Convert the image color back so it can be displayed
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
print(results.pose_landmarks)
mp_drawing.draw_landmarks(
image, results.face_landmarks, mp_holistic.FACE_CONNECTIONS)
mp_drawing.draw_landmarks(
image, results.left_hand_landmarks, mp_holistic.HAND_CONNECTIONS)
mp_drawing.draw_landmarks(
image, results.right_hand_landmarks, mp_holistic.HAND_CONNECTIONS)
mp_drawing.draw_landmarks(
image, results.pose_landmarks, mp_holistic.POSE_CONNECTIONS)
end = time.time()
totalTime = end - start
fps = 1 / totalTime
print("FPS: ", fps)
cv2.putText(image, f'FPS: {int(fps)}', (20,70), cv2.FONT_HERSHEY_SIMPLEX, 1.5, (0,255,0), 2)
cv2.imshow('MediaPipe Holistic', image)
if cv2.waitKey(5) & 0xFF == 27:
break
cap.release()