-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathattacks.py
209 lines (171 loc) · 6.49 KB
/
attacks.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
import torch
import torch.nn as nn
import torch.nn.functional as F
from perturbation_learning import cvae as CVAE
import math
from robustness.smoothing_core import Smooth
def CVAE_attack(X, y, cvae, model, max_dist=1, alpha=0.2, niters=10):
bs = X.size(0)
with torch.no_grad():
prior_params = cvae.prior(X)
delta = torch.zeros_like(prior_params[0])
delta.normal_()
norm = delta.norm(p=2,dim=1)
magnitude = max_dist*torch.rand(*norm.size()).to(norm.device)
delta = (delta * (magnitude / norm).unsqueeze(1))
# randomly init only if still correct at 0 perturbation
# z = cvae.reparameterize(prior_params, eps=delta)
# X_cvae = cvae.decode(X, z)
# I = model(X_cvae).max(1)[1] == y
# delta[I] = delta[I].normal_()
# norm = delta.norm(p=2,dim=1)
# magnitude = max_dist*torch.rand(*norm.size()).to(norm.device)
# delta[I] = (delta * (magnitude / norm).unsqueeze(1))[I]
# print("attacking")
for i in range(niters):
# print(f"iteration {i}")
with torch.enable_grad():
delta.requires_grad = True
# generate perturbed image
z = cvae.reparameterize(prior_params, eps=delta)
X_cvae = cvae.decode(X, z)
output = model(X_cvae)
# done if all outputs are wrong
I = output.max(1)[1] == y
if I.ndim == 3:
I = I.view(I.size(0),-1).any(-1)
if not I.any():
# print(I.size())
# print("breaking early")
break
# compute loss and backward
loss = F.cross_entropy(output, y)
loss.backward()
with torch.no_grad():
# take L2 gradient step
g = delta.grad
g = g / g.norm(p=2,dim=1).unsqueeze(1)
delta[I] = (delta + alpha * g)[I]
# project onto ball of radius max_dist
delta[I] = delta.renorm(2,1,max_dist)[I]
delta = delta.clone().detach()
z = cvae.reparameterize(prior_params, eps=delta)
X_cvae = cvae.decode(X, z).detach()
return X_cvae, delta
def _CVAE_attack(config):
assert config.attack.type == 'cvae_attack'
cvae = CVAE.models[config.attack.model.type](config.attack)
cvae.to(config.device)
d = torch.load(config.attack.checkpoint)
cvae.load_state_dict(d['model_state_dict'])
cvae.eval()
kwargs = {
"max_dist": config.attack.max_dist,
"alpha": config.attack.alpha,
"niters": config.attack.niters
}
def forward(X,y,model):
return CVAE_attack(X, y, cvae, model, **kwargs)[0]
return forward
def _CVAE_aug(config):
assert config.attack.type == 'cvae_aug'
cvae = CVAE.models[config.attack.model.type](config.attack)
cvae.to(config.device)
d = torch.load(config.attack.checkpoint)
cvae.load_state_dict(d['model_state_dict'])
cvae.eval()
def forward(X,y,model):
with torch.no_grad():
return cvae.sample(X)
return forward
def _max_attack(config):
assert config.dataset.mode == "group"
def forward(X,y,model):
with torch.no_grad():
max_loss = None
X_max = None
for i in range(X.size(1)):
loss = F.cross_entropy(model(X[:,i,:,:,:]), y, reduction='none')
loss = loss.view(loss.size(0),-1).mean(-1)
if i == 0:
X_max = X[:,i,:,:,:]
max_loss = loss
else:
I = loss > max_loss
X_max[I] = X[I,i,:,:,:]
max_loss = loss
return X_max
return forward
def _CVAE_gaussian(config):
assert config.attack.type == 'cvae_gaussian'
# To draw samples at a radius R, note that
# the expected L2 norm of a random zero center gaussian
# with variance sigma^2*I is sqrt(N*sigma^2) where
# N is the number of dimensions. So to draw samples at
# an expected radius of R, we use sigma^2 = R^2/N
cvae = CVAE.models[config.attack.model.type](config.attack)
cvae.to(config.device)
d = torch.load(config.attack.checkpoint)
cvae.load_state_dict(d['model_state_dict'])
cvae.eval()
N = config.attack.model.latent_dim
if isinstance(N, list):
N = sum(N)
sigma = config.attack.sigma
# sigma = config.attack.radius/math.sqrt(N)
def forward(X,y,model):
with torch.no_grad():
eps = sigma*(X.new_empty(X.size(0), N).normal_())
return cvae.sample(X, eps=eps)
return forward
def _CVAE_certify(config):
assert config.attack.type == 'cvae_certify'
cvae = CVAE.models[config.attack.model.type](config.attack)
cvae.to(config.device)
d = torch.load(config.attack.checkpoint)
cvae.load_state_dict(d['model_state_dict'])
cvae.eval()
N = config.attack.model.latent_dim
if isinstance(N, list):
N = sum(N)
sigma = config.attack.sigma
n_classes = config.attack.n_classes
selection_n0 = config.attack.selection_n0
estimation_n = config.attack.estimation_n
alpha = config.attack.alpha
batch_size = config.eval.batch_size
def forward(X,y,model):
smoothed_model = Smooth(model, cvae, n_classes, sigma)
prediction, radius = smoothed_model.certify(X, selection_n0, estimation_n, alpha, batch_size)
return prediction, radius
return forward
def _CVAE_predict(config):
assert config.attack.type == 'cvae_predict'
cvae = CVAE.models[config.attack.model.type](config.attack)
cvae.to(config.device)
d = torch.load(config.attack.checkpoint)
cvae.load_state_dict(d['model_state_dict'])
cvae.eval()
N = config.attack.model.latent_dim
if isinstance(N, list):
N = sum(N)
sigma = config.attack.sigma
n_classes = config.attack.n_classes
selection_n0 = config.attack.selection_n0
estimation_n = config.attack.estimation_n
alpha = config.attack.alpha
batch_size = config.eval.batch_size
def forward(X,y,model):
smoothed_model = Smooth(model, cvae, n_classes, sigma)
prediction = smoothed_model.predict(X, selection_n0, alpha, batch_size)
return prediction, torch.Tensor([0]).to(prediction.device)
return forward
attacks = {
"cvae_attack": _CVAE_attack,
"cvae_aug": _CVAE_aug,
"none": lambda config: (lambda X,y,model: X),
"max": _max_attack,
"cvae_gaussian": _CVAE_gaussian,
"cvae_certify": _CVAE_certify,
"cvae_predict": _CVAE_predict
}