-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathloss.py
120 lines (97 loc) · 3.55 KB
/
loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
"""
The losses colleted from Deep Shutter Unrolling Network
"""
import torch
import torch.nn as nn
import torch.nn.functional as F
from torchvision import models
from simdeblur.model.build import LOSS_REGISTRY
class Grid_gradient_central_diff():
def __init__(self, nc, padding=True, diagonal=False):
self.conv_x = nn.Conv2d(nc, nc, kernel_size=2, stride=1, bias=False)
self.conv_y = nn.Conv2d(nc, nc, kernel_size=2, stride=1, bias=False)
self.conv_xy = None
if diagonal:
self.conv_xy = nn.Conv2d(
nc, nc, kernel_size=2, stride=1, bias=False)
self.padding = None
if padding:
self.padding = nn.ReplicationPad2d([0, 1, 0, 1])
fx = torch.zeros(nc, nc, 2, 2).float().cuda()
fy = torch.zeros(nc, nc, 2, 2).float().cuda()
if diagonal:
fxy = torch.zeros(nc, nc, 2, 2).float().cuda()
fx_ = torch.tensor([[1, -1], [0, 0]]).cuda()
fy_ = torch.tensor([[1, 0], [-1, 0]]).cuda()
if diagonal:
fxy_ = torch.tensor([[1, 0], [0, -1]]).cuda()
for i in range(nc):
fx[i, i, :, :] = fx_
fy[i, i, :, :] = fy_
if diagonal:
fxy[i, i, :, :] = fxy_
self.conv_x.weight = nn.Parameter(fx)
self.conv_y.weight = nn.Parameter(fy)
if diagonal:
self.conv_xy.weight = nn.Parameter(fxy)
def __call__(self, grid_2d):
_image = grid_2d
if self.padding is not None:
_image = self.padding(_image)
dx = self.conv_x(_image)
dy = self.conv_y(_image)
if self.conv_xy is not None:
dxy = self.conv_xy(_image)
return dx, dy, dxy
return dx, dy
@LOSS_REGISTRY.register()
class DsunPerceptualLoss(nn.Module):
def __init__(self):
super().__init__()
self.criterion = nn.L1Loss()
self.model = self.contentFunc()
def contentFunc(self):
conv_3_3_layer = 14
cnn = models.vgg19(pretrained=True).features
model = nn.Sequential()
model = model.cuda()
for i, layer in enumerate(list(cnn)):
model.add_module(str(i), layer)
if i == conv_3_3_layer:
break
return model
def forward(self, fakeIm, realIm):
f_fake = self.model(fakeIm)
f_real = self.model(realIm)
f_real_no_grad = f_real.detach()
loss = self.criterion(f_fake, f_real_no_grad)
return loss
@LOSS_REGISTRY.register()
class DSUNL1Loss(nn.Module):
def __init__(self):
super(DSUNL1Loss, self).__init__()
def forward(self, output, target, weight=None, mean=False):
error = torch.abs(output - target)
if weight is not None:
error = error * weight.float()
if mean is not False:
return error.sum() / weight.float().sum()
if mean is not False:
return error.mean()
return error.sum()
@LOSS_REGISTRY.register()
class VariationLoss(nn.Module):
def __init__(self, nc, grad_fn=Grid_gradient_central_diff, mean=True):
super(VariationLoss, self).__init__()
self.grad_fn = grad_fn(nc)
self.mean = mean
def forward(self, image, weight=None):
dx, dy = self.grad_fn(image)
variation = dx**2 + dy**2
if weight is not None:
variation = variation * weight.float()
if self.mean is not False:
return variation.sum() / weight.sum()
if self.mean is not False:
return variation.mean()
return variation.sum()