forked from alumae/kiirkirjutaja
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlid.py
128 lines (113 loc) · 5.83 KB
/
lid.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import sys
import torch
import logging
import numpy as np
import json
class LanguageFilter():
def __init__(self, target_language="et", prior=0.50, alternative_targets=[]):
self.target_language = target_language
self.model = torch.jit.load("models/lang_classifier_95/lang_classifier_95.jit")
lang_dict = json.load(open("models/lang_classifier_95/lang_dict_95.json"))
self.languages = [v[1] for v in sorted(lang_dict.items(), key=lambda i: int(i[0]))]
self.target_language_id = [idx for idx, element in enumerate(self.languages) if element.startswith(self.target_language)][0]
self.alternative_language_ids = [idx for idx, element in enumerate(self.languages) if element[:2] in alternative_targets]
self.target_prior = prior
self.lid_min_seconds = 3.0
self.lid_min_seconds_2 = 5.0
def get_language_probs(self, buffer):
lang_logits, lang_group_logits = self.model(buffer.unsqueeze(0))
softm = torch.softmax(lang_logits, dim=1).squeeze()
return softm
def get_language(self, buffer):
logging.debug("Doing LID")
probs = self.get_language_probs(buffer)
logging.debug(f"Original prob for languge {self.target_language}: {probs[self.target_language_id]:.2f}")
priors0 = torch.ones(len(probs), requires_grad=False) / len(probs)
true_priors = (torch.ones(len(probs), requires_grad=False) - self.target_prior) / (len(probs) - 1)
true_priors[self.target_language_id] = self.target_prior
numerator = true_priors/priors0 * probs
corrected_probs = numerator / numerator.sum()
logging.debug(f"Corrected prob for languge {self.target_language}: {corrected_probs[self.target_language_id]:.2f}")
language_id = corrected_probs.argmax()
logging.debug(f"Detected language: {self.languages[language_id]}: {corrected_probs[language_id]:.2f}")
return language_id
def filter(self, chunk_generator):
with torch.no_grad():
buffer = torch.tensor([], requires_grad=False)
buffering = True
did_1st_check = False
non_target_turn = False
for chunk in chunk_generator:
if buffering:
buffer = torch.cat([buffer, chunk])
del chunk
if (len(buffer) > self.lid_min_seconds * 16000) and not did_1st_check:
language_id = self.get_language(buffer)
did_1st_check = True
if language_id == self.target_language_id or language_id in self.alternative_language_ids:
yield buffer
buffering = False
del buffer
else:
logging.info("Non-target language chunk? Waiting for more data to confirm...")
elif (len(buffer) > self.lid_min_seconds_2 * 16000):
buffering = False
language_id = self.get_language(buffer)
if language_id == self.target_language_id or language_id in self.alternative_language_ids:
yield buffer
del buffer
else:
logging.info("Consuming non-target language speech turn...")
del buffer
non_target_turn = True
else:
if non_target_turn:
pass
else:
yield chunk
del chunk
if buffering:
if len(buffer) > 0:
language_id = self.get_language(buffer)
if language_id == self.target_language_id:
yield buffer
del buffer
# def filter(self, chunk_generator):
# buffer = torch.tensor([])
# buffering = True
# did_1st_check = False
# while True:
# try:
# chunk = next(chunk_generator)
# if buffering:
# buffer = torch.cat([buffer, chunk])
# if (len(buffer) > self.lid_min_seconds * 16000) and not did_1st_check:
# language_id = self.get_language(buffer)
# did_1st_check = True
# if language_id == self.target_language_id or language_id in self.alternative_language_ids:
# yield buffer
# del buffer
# buffering = False
# else:
# logging.info("Non-target language chunk? Waiting for more data to confirm...")
# elif (len(buffer) > self.lid_min_seconds_2 * 16000):
# buffering = False
# language_id = self.get_language(buffer)
# if language_id == self.target_language_id or language_id in self.alternative_language_ids:
# yield buffer
# del buffer
# else:
# logging.info("Consuming non-target language speech turn...")
# while True:
# next(chunk_generator)
# else:
# yield chunk
# del chunk
# except StopIteration:
# break
# if buffering:
# if len(buffer) > 0:
# language_id = self.get_language(buffer)
# if language_id == self.target_language_id:
# yield buffer
# del buffer