-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsentences_trans.py
181 lines (160 loc) · 5.34 KB
/
sentences_trans.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
# coding: utf-8
import numpy
import numpy as np
import pickle
import random
# from nltk.corpus import stopwords
from gensim.models import word2vec
# print "Loading Word2Vec"
# d2 = pickle.load(open(data_path + "synsem.p",'rb'))
# dtr = pickle.load(open(data_path + "dwords.p", 'rb'))
# data_path = "./data/"
# maxlen = 200
# model = word2vec.Word2Vec.load_word2vec_format(data_path + "GoogleNews-vectors-negative300.bin.gz",binary = True)
# model = word2vec.Word2Vec.load_word2vec_format(data_path + "GoogleNews-vectors-negative300.bin.gz",binary = True)
model_name_en = "./data/model-en/W2Vmodle.bin"
model_name_jp = "./data/model-jp/W2Vmodle.bin"
model_en = word2vec.Word2Vec.load(model_name_en)
model_jp = word2vec.Word2Vec.load(model_name_jp)
# This is called by prepare_data() called by lstm.py
"""
Mask for LSTM is prepared by sentence module
emb1 = np.array([["我","很","好",",",",",","][...]...])
len(x1) => 文档的总数
mas1 = np.array([[1,1,1,0,0,0,0,0,0,0][...]...])
"""
def getmtr(xa, maxlen):
n_samples = len(xa)
ls=[]
x_mask = numpy.zeros((maxlen, n_samples)).astype(np.float32)
for i in range(0, len(xa)):
q = xa[i].split()
for j in range(0, len(q)):
x_mask[j][i] = 1.0
while(len(q) < maxlen):
q.append(',')
ls.append(q)
xa = np.array(ls)
return xa, x_mask
# This is called lstm.py
# New version, 1. Cut the data with max. lentgh = maxlen
# 2. Embedding
# Here xa1 and xa2 are the sentence pair to be compared
# See onenote, search for xa1, xb2
# x1.shape,mas1.shape -> ((11219, 72), (72, 11219))
# In x1 and x2, all padding are replaced by commas: ','
def prepare_data(data, maxlen=0):
xa1 = []
xb1 = []
y2 = []
# Cut the sentences according to maxlen
if maxlen == 0:
# No limitaiton of the maximum length of timesteps
return prepare_data2(data)
else:
# Set the maxlen for the maximum length of timesteps
for i in range(0,len(data)):
# Split and cut the given data
a = data[i][0] if len(data[i][0]) <= maxlen else data[i][0][0:maxlen]
b = data[i][1] if len(data[i][1]) <= maxlen else data[i][1][0:maxlen]
xa1.append(a)
xb1.append(b)
y2.append(data[i][2])
"""
Mask for LSTM is prepared by sentence module
emb1 = np.array([["我","很","好",",",",",","][...]...])
len(x1) => 文档的总数
mas1 = np.array([[1,1,1,0,0,0,0,0,0,0][...]...])
"""
emb1, mas1 = getmtr(xa1, maxlen)
emb2, mas2 = getmtr(xb1, maxlen)
y2 = np.array(y2,dtype = np.float32)
return emb1, mas1, emb2, mas2, y2
# Called by prepare_data(data, maxlen=0)
# This is called lstm.py
# Here xa1 and xa2 are the sentence pair to be compared
# See onenote, search for xa1, xb2
# x1.shape,mas1.shape -> ((11219, 72), (72, 11219))
# In x1 and x2, all padding are replaced by commas: ','
def prepare_data2(data):
xa1 = []
xb1 = []
y2 = []
for i in range(0,len(data)):
# Split the given data
xa1.append(data[i][0])
xb1.append(data[i][1])
y2.append(data[i][2])
# Calculating the maximum length of all given data
lengths = []
for i in xa1:
#print i
lengths.append(len(i.split()))
for i in xb1:
try:
lengths.append(len(i.split()))
except:
print "the error is here", type(i), i
maxlen = numpy.max(lengths)
#Embedding the given data
# 注意: 这里的emb不是word embed,而是在结尾添加逗号
emb1, mas1 = getmtr(xa1, maxlen)
emb2, mas2 = getmtr(xb1, maxlen)
y2 = np.array(y2,dtype = np.float32)
return emb1, mas1, emb2, mas2, y2
# # Not in use anymore
# def embed_old(stmx):
# #stmx=stmx.split()
# dmtr = numpy.zeros((stmx.shape[0], 300), dtype = np.float32)
# count = 0
# while(count < len(stmx)):
# if stmx[count] == ',':
# count += 1
# continue
# if stmx[count] in dtr:
# dmtr[count] = model[dtr[stmx[count]]]
# count += 1
# else:
# dmtr[count] = model[stmx[count]]
# count += 1
# return dmtr
"""
This is called lstm.py
[Word2vec] word embedding
new embed
stmx -> matrix of a sentence(document) -> shape=(len. of a sentence,)
Convert each word to vector, like if input = 8 --> [0,0,0,0,0,0,0,1,0,0]
"""
# def embed(stmx, k=10):
# dmtr = numpy.zeros((stmx.shape[0], k), dtype = np.float32)
# count = 0
# while(count < len(stmx)):
# if stmx[count] == ',':
# count += 1
# # print ","
# continue
# else:
# dmtr[count][int(stmx[count])-1] = 1
# # print int(stmx[count])-1
# count += 1
# # if int(stmx[count])-1 < 0 or int(stmx[count])-1 > 9:
# # print "Error!!!!!!!"
# return dmtr
def embed_w2v(stmx, lang, k=200, W=0):
model = model_jp
dmtr=numpy.zeros((stmx.shape[0], k),dtype=np.float32)
count=0
while(count<len(stmx)):
if stmx[count]==',':
count+=1
continue
else:
try:
dmtr[count]=model[stmx[count]]
except Exception as e:
# print "No word found in the model:", stmx[count]
pass
count+=1
return dmtr
# def embed_non(stmx):
# return None