-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy paths2_config.py
69 lines (54 loc) · 1.91 KB
/
s2_config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
# Standard library imports
from dataclasses import dataclass
# Third party imports
import numpy as np
@dataclass
class Params:
# Use noisy DPM data y in this scenario
data_type = "DPM"
# Concentration parameter
alpha_DPM = 1
# Data dimension
K = 2
# Base distribution
mu_G = np.zeros(K)
sigma_G = 5*np.eye(K)
# Parameter noise
mu_U = np.zeros(K)
# NOTE: sigma_G must be a scaled version of sigma in our conjugate model
# where sigma is either sigma_U or sigma_U+sigma_V is noise is included
sigma_U = np.eye(K)
# Measurement noise
mu_V = np.zeros(K)
sigma_V = np.eye(K)
include_noise = True
# Plot data if true
plot_data = False
# Covariance matrix and inverse of observations used for CAVI
sigma = sigma_U+sigma_V if include_noise else sigma_U
sigma_inv = np.linalg.inv(sigma)
# Number of data points N set by simulation script
# Hyperparameters for CAVI for DPM
# Assumed to be known
lamda = np.empty(K+1)
lamda1_temp = np.matmul(np.linalg.inv(sigma), sigma_G)
lamda[-1] = 1/lamda1_temp[0,0]
lamda[:-1] = lamda[-1]*mu_G
alpha = alpha_DPM
# Truncation parameter
T = 20
# Relative change of ELBO for convergence
eps = 1e-2
# Max iterations performed if convergence criterion is not met
max_iterations = 100
# Initiallization type:
# Uniform - assign all datapoints equally likely to clusters
# True - use true hard assignments
# Permute - use random hard assignments
# Unique - assign each datapoint to its own cluster from 1 to T
# AllInOne - Put all datapoints in one cluster
# Kmeans - Use hard assignments of kmeans
# DBSCAN - Use hard assignments of dbscan
init_type = 'Unique'
# Number of initial permuations used when init_type = 'permute'
num_permutations = 30