forked from KlugerLab/GeneTrajectory
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsimulate_linear.Rd
49 lines (39 loc) · 1.06 KB
/
simulate_linear.Rd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/simulate_linear.R
\name{simulate_linear}
\alias{simulate_linear}
\title{Simulate linear gene process}
\usage{
simulate_linear(
N_cells = 1000,
N_genes = 200,
model = "poisson",
meanlog = 0,
sdlog = 0.25,
scale = 25,
seed = 1,
maxT = 15,
sort = TRUE,
sparsity = NULL,
theta = 10
)
}
\arguments{
\item{N_cells}{integer; Number of cells}
\item{N_genes}{integer; Number of genes}
\item{model}{character; Count model ("poisson" or "negbin")}
\item{meanlog}{numeric; Mean of log normal distribution}
\item{sdlog}{numeric; Standard deviation of log normal distribution}
\item{scale}{numeric; Scale of UMI counts}
\item{seed}{integer; Random seed}
\item{maxT}{numeric; Maximum cell pseudotime}
\item{sort}{boolean; Whether to sort genes based on their peak times}
\item{sparsity}{numeric; Sparsity of count matrix}
\item{theta}{numeric; Dipersion parameter for negative binomial model}
}
\value{
Returns a gene-by-cell count matrix
}
\description{
Simulate linear gene process
}