-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdata_exploration.R
159 lines (128 loc) · 6.75 KB
/
data_exploration.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
# plot flow normalized esimates
tp <- make('tp_eList', remake_file = '20_prep_data.yml')
tp_march <- make('tp_groups_mar', remake_file = '34_analyze_data_groups_monthly.yml')
tp_bands <- tidyr::gather(tp_wy_out_boot, key = 'variable', value = 'value', -Year)
tp_bands_flux <- filter(tp_bands, variable %in% c('FNFluxLow', 'FNFluxHigh'))
ggplot(tp_bands_flux, aes(x = Year, y = value)) +
geom_smooth(aes(group = variable))
tableResults(tp_wy_out_boot)
yearly_tp <- tableResults(tp)
year_points <- c(1991, 2000, 2009, 2018)
tp_change <- tableChangeSingle(tp, yearPoints = year_points)
plotConcHist(tp)
plotContours(tp, yearStart = 1991, yearEnd = 2018,
contourLevels = seq(0,0.8,0.1), qBottom = 0.28,
qTop = 1.7)
# how has the relationship between conc and Q changed?
plotConcQSmooth(tp, date1="1995-03-15",
date2="2005-03-15",date3="2015-03-15",
qLow=0.2,qHigh=10, logScale=TRUE,
legendLeft=2,legendTop=0.2,printTitle=FALSE)
plotConcQSmooth(tp_march, date1="1995-03-15",
date2="2005-03-15",date3="2015-03-15",
qLow=0.2,qHigh=10, logScale=TRUE,
legendLeft=2,legendTop=0.2,printTitle=FALSE)
# how does the relationship between conc and Q change over seasons?
plotConcQSmooth(tp, date1=,"2018-03-01",
date2="2018-06-01",date3="2018-09-01",
qLow=0.2,qHigh=10, logScale=TRUE,
legendLeft=2,legendTop=0.2,printTitle=FALSE)
# how has conc changed over time at different Qs?
plotConcTimeSmooth(tp, q1=0.32, q2=0.58, q3=1.18, centerDate="03-01",
yearStart=1991, yearEnd=2018,
logScale=FALSE, legendLeft=1994, legendTop=0.35,
printTitle=FALSE, printLegend = FALSE)
plotFlux
library(dplyr)
tp_n_events_50 <- tp$Daily %>%
mutate(doy = lubridate::yday(Date),
monthday = format(Date, format = '%m-%d'),
month = lubridate::month(Date, label = TRUE)) %>%
#filter(waterYear == 2018) %>%
arrange(waterYear, -FluxDay) %>%
group_by(waterYear) %>%
mutate(prop_total = FluxDay/sum(FluxDay)) %>%
mutate(cumulative_prop_total = cumsum(prop_total),
day = rank(-prop_total)) %>%
ungroup() %>%
select(waterYear, doy, day, monthday, month, cumulative_prop_total, prop_total)
daily_prop_total <- group_by(tp_n_events_50, doy) %>%
summarize(prop_total_median = median(prop_total),
prop_total_90 = quantile(prop_total, 0.9),
prop_total_10 = quantile(prop_total, 0.1),
prop_total_mean = mean(prop_total)) %>%
mutate(rolling_mean = zoo::rollmean(prop_total_median, 14, na.pad = TRUE))
monthly_prop_total <- group_by(tp_n_events_50, waterYear, month) %>%
summarize(month_prop_total = sum(prop_total))
pmonth <- ggplot(monthly_prop_total, aes(x = month, y = month_prop_total)) +
geom_boxplot() +
theme_bw() +
labs(x = '', y = 'Proportion of annual load')
ggsave('figures/monthly_prop_annual_load.png',pmonth, height = 4, width = 6)
p <- ggplot(daily_prop_total, aes(x = doy, y = prop_total_median)) +
geom_rect(aes(xmin = 46, xmax = 135, ymin = -Inf, ymax = Inf), fill = 'lightgray', alpha = 0.1) +
geom_rect(aes(xmin = 159, xmax = 189, ymin = -Inf, ymax = Inf), fill = 'lightgray', alpha = 0.1) +
geom_point(color = 'darkgray', alpha = 0.8) +
scale_x_continuous(breaks = c(1,60, 121, 182,244, 305),
labels = c('Jan 1', 'March 1', 'May 1', 'Jul 1', 'Sep 1', 'Nov 1')) +
geom_line(aes(y = zoo::rollmean(prop_total_median, 14, na.pad = TRUE)), color = 'red') +
theme_bw() +
labs(x = '', y = "Proportion of annual load (1990-2018)")
p2 <- ggplot(daily_prop_total, aes(x = doy, y = prop_total_mean)) +
geom_rect(aes(xmin = 40, xmax = 110, ymin = -Inf, ymax = Inf), fill = 'lightgray', alpha = 0.1) +
geom_rect(aes(xmin = 145, xmax = 180, ymin = -Inf, ymax = Inf), fill = 'lightgray', alpha = 0.1) +
geom_point(color = 'darkgray', alpha = 0.8) +
scale_x_continuous(breaks = c(1,60, 121, 182,244, 305),
labels = c('Jan 1', 'March 1', 'May 1', 'Jul 1', 'Sep 1', 'Nov 1')) +
geom_line(aes(y = zoo::rollmean(prop_total_mean, 14, na.pad = TRUE)), color = 'red') +
theme_bw() +
labs(x = '', y = "Proportion of annual load (1990-2018)")
ggsave('figures/daily_prop_annual_load_median.png', p, height = 4, width = 6)
ggsave('figures/daily_prop_annual_load_mean.png', p2, height = 4, width = 6)
days10 <- filter(tp_n_events_50, day == 10)
tp_days_to_50 <- tp_n_events_50 %>%
group_by(waterYear) %>%
summarize(day_to_50 = which.min(abs(cumulative_prop_total - 0.50)))
tp_days_to_30 <- tp_n_events_50 %>%
group_by(waterYear) %>%
summarize(day_to_30 = which.min(abs(cumulative_prop_total - 0.30)))
library(ggplot2)
top_10_days <- filter(tp_n_events_50, day %in% 1:10)
length(which())
ggplot(top_10_days, aes(x = waterYear, y = doy)) +
geom_point(aes(color = cumulative_prop_total))
ggplot(tp_n_events_50, aes(x = day, y = cumulative_prop_total)) +
geom_line(aes(group = waterYear, color = waterYear)) +
scale_color_gradient2(low = 'blue', mid = 'gray', high = 'red', midpoint = 2005) +
coord_cartesian(xlim = c(0, 50))
plot(tp_n_events_50$cumulative_prop_total ~ c(1:365))
## same thing for Q
Q <- make('tp_wy_out', remake_file = '30_analyze_data_series.yml')
q_n_events_50 <- Q$Daily %>%
mutate(doy = lubridate::yday(Date),
monthday = format(Date, format = '%m-%d'),
month = lubridate::month(Date, label = TRUE)) %>%
#filter(waterYear == 2018) %>%
arrange(waterYear, -Q) %>%
group_by(waterYear) %>%
mutate(prop_total = Q/sum(Q)) %>%
mutate(cumulative_prop_total = cumsum(prop_total),
day = rank(-prop_total)) %>%
ungroup() %>%
select(waterYear, doy, day, monthday, month, cumulative_prop_total, prop_total)
daily_prop_total <- group_by(tp_n_events_50, doy) %>%
summarize(prop_total_median = median(prop_total),
prop_total_90 = quantile(prop_total, 0.9),
prop_total_10 = quantile(prop_total, 0.1),
prop_total_mean = mean(prop_total)) %>%
mutate(rolling_mean = zoo::rollmean(prop_total_median, 14, na.pad = TRUE))
p3 <- ggplot(daily_prop_total, aes(x = doy, y = prop_total_mean)) +
geom_rect(aes(xmin = 43, xmax = 115, ymin = -Inf, ymax = Inf), fill = 'lightgray', alpha = 0.1) +
geom_rect(aes(xmin = 153, xmax = 180, ymin = -Inf, ymax = Inf), fill = 'lightgray', alpha = 0.1) +
geom_point(color = 'darkgray', alpha = 0.8) +
scale_x_continuous(breaks = c(1,60, 121, 182,244, 305),
labels = c('Jan 1', 'March 1', 'May 1', 'Jul 1', 'Sep 1', 'Nov 1')) +
geom_line(aes(y = zoo::rollmean(prop_total_mean, 14, na.pad = TRUE)), color = 'red') +
theme_bw() +
labs(x = '', y = "Proportion of annual discharge (1990-2018)")
ggsave('figures/daily_prop_annual_discharge_mean.png', p3, height = 4, width = 6)