forked from BryanPlummer/cite
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
114 lines (99 loc) · 5.64 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
import tensorflow as tf
def add_fc(x, outdim, train_phase_plh, scope_in):
"""Returns the output of a FC-BNORM-ReLU sequence.
Arguments:
x -- input tensor
outdim -- desired output dimensions
train_phase_plh -- indicator whether model is in training mode
scope_in -- scope prefix for the desired layers
"""
l2_reg = tf.contrib.layers.l2_regularizer(0.0005)
fc = tf.contrib.layers.fully_connected(x, outdim, activation_fn = None,
weights_regularizer = l2_reg,
scope = scope_in + '/fc')
fc_bnorm = batch_norm_layer(fc, train_phase_plh, scope_in + '/bnorm')
return tf.nn.relu(fc_bnorm, scope_in + '/relu')
def concept_layer(x, outdim, train_phase_plh, concept_id, weights):
"""Returns the weighted value of a fully connected layer.
Arguments:
x -- input tensor
outdim -- desired output dimensions
train_phase_plh -- indicator whether model is in training mode
concept_id -- identfier for the desired concept layer
weights -- vector of weights to be applied the concept outputs
"""
concept = add_fc(x, outdim, train_phase_plh, 'concept_%i' % concept_id)
concept = tf.reshape(concept, [tf.shape(concept)[0], -1])
weighted_concept = concept * tf.expand_dims(weights[:, concept_id-1], 1)
return weighted_concept
def batch_norm_layer(x, train_phase, scope_bn):
"""Returns the output of a batch norm layer."""
bn = tf.contrib.layers.batch_norm(x, decay=0.99, center=True, scale=True,
is_training=train_phase,
reuse=None,
trainable=True,
updates_collections=None,
scope=scope_bn)
return bn
def embedding_branch(x, embed_dim, train_phase_plh, scope_in, do_l2norm = True, outdim = None):
"""Applies a pair of fully connected layers to the input tensor.
Arguments:
x -- input_tensor
embed_dim -- dimension of the input to the second fully connected layer
train_phase_plh -- indicator whether model is in training mode
scope_in -- scope prefix for the desired layers
do_l2norm -- indicates if the output should be l2 normalized
outdim -- dimension of the output embedding, if None outdim=embed_dim
"""
embed_fc1 = add_fc(x, embed_dim, train_phase_plh, scope_in + '_embed_1')
if outdim is None:
outdim = embed_dim
l2_reg = tf.contrib.layers.l2_regularizer(0.001)
embed_fc2 = tf.contrib.layers.fully_connected(embed_fc1, outdim,
activation_fn = None,
weights_regularizer = l2_reg,
scope = scope_in + '_embed_2')
if do_l2norm:
embed_fc2 = tf.nn.l2_normalize(embed_fc2, 1)
return embed_fc2
def setup_model(args, phrase_plh, region_plh, train_phase_plh, labels_plh, num_boxes_plh, region_feature_dim):
"""Describes the computational graph and returns the losses and outputs.
Arguments:
args -- command line arguments passed into the main function
phrase_plh -- tensor containing the phrase features
region_plh -- tensor containing the region features
train_phase_plh -- indicator whether model is in training mode
labels_plh -- indicates positive (1), negative (-1), or ignore (0)
num_boxes_plh -- number of boxes per example in the batch
region_feature_dim -- dimensions of the region features
Returns:
total_loss -- weighted combination of the region and concept loss
region_loss -- logistic loss for phrase-region prediction
concept_loss -- L1 loss for the output of the concept weight branch
region_prob -- each row contains the probability a region is associated with a phrase
"""
final_embed = args.dim_embed
embed_dim = final_embed * 4
phrase_embed = embedding_branch(phrase_plh, embed_dim, train_phase_plh, 'phrase')
region_embed = embedding_branch(region_plh, embed_dim, train_phase_plh, 'region')
concept_weights = embedding_branch(phrase_plh, embed_dim, train_phase_plh, 'concept_weight',
do_l2norm = False, outdim = args.num_embeddings)
concept_loss = tf.reduce_mean(tf.norm(concept_weights, axis=1, ord=1))
concept_weights = tf.nn.softmax(concept_weights)
elementwise_prod = tf.expand_dims(phrase_embed, 1)*region_embed
joint_embed_1 = add_fc(elementwise_prod, embed_dim, train_phase_plh, 'joint_embed_1')
joint_embed_2 = concept_layer(joint_embed_1, final_embed, train_phase_plh, 1, concept_weights)
for concept_id in range(2, args.num_embeddings+1):
joint_embed_2 += concept_layer(joint_embed_1, final_embed, train_phase_plh,
concept_id, concept_weights)
joint_embed_2 = tf.reshape(joint_embed_2, [tf.shape(joint_embed_2)[0], num_boxes_plh, final_embed])
joint_embed_3 = tf.contrib.layers.fully_connected(joint_embed_2, 1, activation_fn=None ,
weights_regularizer = tf.contrib.layers.l2_regularizer(0.005),
scope = 'joint_embed_3')
joint_embed_3 = tf.squeeze(joint_embed_3, [2])
region_prob = 1. / (1. + tf.exp(-joint_embed_3))
ind_labels = tf.abs(labels_plh)
num_samples = tf.reduce_sum(ind_labels)
region_loss = tf.reduce_sum(tf.log(1+tf.exp(-joint_embed_3*labels_plh))*ind_labels)/num_samples
total_loss = region_loss + concept_loss * args.embed_l1
return total_loss, region_loss, concept_loss, region_prob