-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdog_filter.py
executable file
·61 lines (50 loc) · 2.18 KB
/
dog_filter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
#!/usr/bin/env python3
def main():
from zetastitcher import InputFile
import logging
import coloredlogs
import tifffile as tiff
from scipy.signal import fftconvolve
import argparse
import numpy as np
import os
logger = logging.getLogger(__name__)
logging.basicConfig(format='[%(funcName)s] - %(asctime)s - %(message)s', level=logging.INFO)
coloredlogs.install(level='DEBUG', logger=logger)
parser = argparse.ArgumentParser()
parser.add_argument('-i', '--input', help='input image path', metavar='PATH')
parser.add_argument('-o', '--output', help='output base path', metavar='PATH')
parser.add_argument('-s1xy', type=float, default=13.0, help="smaller xy sigma")
parser.add_argument('-s1z', type=float, default=7.0, help="smaller z sigma")
parser.add_argument('-s2xy', type=float, default=26.0, help="larger xy sigma")
parser.add_argument('-s2z', type=float, default=14.0, help="larger z sigma")
args = parser.parse_args()
s1xy = args.s1xy
s1z = args.s1z
s2xy = args.s2xy
s2z = args.s2z
logger.info('preparing DoG kernel...')
sizexy = int(s2xy) * 2 -1
sizez = int(s2z) * 2 - 1
dog_kernel = np.zeros((sizez, sizexy, sizexy))
metaxy = (sizexy - 1) / 2
metaz = (sizez - 1) / 2
for x in np.arange(sizexy):
for y in np.arange(sizexy):
for z in np.arange(sizez):
dog_kernel[z ,y, x] = np.exp(- ((x-metaxy)**2 + (y-metaxy)**2)/s1xy**2 - ((z - metaz) /s1z)**2) / \
(s1xy * s1xy * s1z) - np.exp(- ((x-metaxy)**2 + (y-metaxy)**2)/s2xy**2 - \
((z - metaz) / s2z)**2 ) / (s2xy * s2xy * s2z)
logger.info('filtering image...')
handle = InputFile(args.input)
inimage = handle.whole()
conv = fftconvolve(inimage, dog_kernel, mode='same')
base, file = os.path.split(args.input)
name, ext = os.path.splitext(file)
if not os.path.exists(args.output):
os.makedirs(args.output, 0o775)
path = os.path.join(args.output, name + "_dog.tiff")
logger.info('saving output to %s...', path)
tiff.imwrite(path, conv.astype('uint16'))
if __name__ == "__main__":
main()