-
Notifications
You must be signed in to change notification settings - Fork 3
/
exec.c
4257 lines (3670 loc) · 124 KB
/
exec.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* Virtual page mapping
*
* Copyright (c) 2003 Fabrice Bellard
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "qemu-common.h"
#include "qapi/error.h"
#include "qemu/cutils.h"
#include "cpu.h"
#include "exec/exec-all.h"
#include "exec/target_page.h"
#include "tcg.h"
#include "hw/qdev-core.h"
#include "hw/qdev-properties.h"
#if !defined(CONFIG_USER_ONLY)
#include "hw/boards.h"
#include "hw/xen/xen.h"
#endif
#include "sysemu/kvm.h"
#include "sysemu/sysemu.h"
#include "sysemu/tcg.h"
#include "qemu/timer.h"
#include "qemu/config-file.h"
#include "qemu/error-report.h"
#include "qemu/qemu-print.h"
#if defined(CONFIG_USER_ONLY)
#include "qemu.h"
#else /* !CONFIG_USER_ONLY */
#include "hw/hw.h"
#include "exec/memory.h"
#include "exec/ioport.h"
#include "sysemu/dma.h"
#include "sysemu/numa.h"
#include "sysemu/hw_accel.h"
#include "exec/address-spaces.h"
#include "sysemu/xen-mapcache.h"
#include "trace-root.h"
#ifdef CONFIG_FALLOCATE_PUNCH_HOLE
#include <linux/falloc.h>
#endif
#endif
#include "qemu/rcu_queue.h"
#include "qemu/main-loop.h"
#include "translate-all.h"
#include "sysemu/replay.h"
#include "exec/memory-internal.h"
#include "exec/ram_addr.h"
#include "exec/log.h"
#include "migration/vmstate.h"
#include "qemu/range.h"
#ifndef _WIN32
#include "qemu/mmap-alloc.h"
#endif
#include "monitor/monitor.h"
//#define DEBUG_SUBPAGE
#if !defined(CONFIG_USER_ONLY)
/* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
* are protected by the ramlist lock.
*/
RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
static MemoryRegion *system_memory;
static MemoryRegion *system_io;
AddressSpace address_space_io;
AddressSpace address_space_memory;
MemoryRegion io_mem_rom, io_mem_notdirty;
static MemoryRegion io_mem_unassigned;
#endif
#ifdef TARGET_PAGE_BITS_VARY
int target_page_bits;
bool target_page_bits_decided;
#endif
CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);
/* current CPU in the current thread. It is only valid inside
cpu_exec() */
__thread CPUState *current_cpu;
/* 0 = Do not count executed instructions.
1 = Precise instruction counting.
2 = Adaptive rate instruction counting. */
int use_icount;
uintptr_t qemu_host_page_size;
intptr_t qemu_host_page_mask;
bool set_preferred_target_page_bits(int bits)
{
/* The target page size is the lowest common denominator for all
* the CPUs in the system, so we can only make it smaller, never
* larger. And we can't make it smaller once we've committed to
* a particular size.
*/
#ifdef TARGET_PAGE_BITS_VARY
assert(bits >= TARGET_PAGE_BITS_MIN);
if (target_page_bits == 0 || target_page_bits > bits) {
if (target_page_bits_decided) {
return false;
}
target_page_bits = bits;
}
#endif
return true;
}
#if !defined(CONFIG_USER_ONLY)
static void finalize_target_page_bits(void)
{
#ifdef TARGET_PAGE_BITS_VARY
if (target_page_bits == 0) {
target_page_bits = TARGET_PAGE_BITS_MIN;
}
target_page_bits_decided = true;
#endif
}
typedef struct PhysPageEntry PhysPageEntry;
struct PhysPageEntry {
/* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
uint32_t skip : 6;
/* index into phys_sections (!skip) or phys_map_nodes (skip) */
uint32_t ptr : 26;
};
#define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
/* Size of the L2 (and L3, etc) page tables. */
#define ADDR_SPACE_BITS 64
#define P_L2_BITS 9
#define P_L2_SIZE (1 << P_L2_BITS)
#define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
typedef PhysPageEntry Node[P_L2_SIZE];
typedef struct PhysPageMap {
struct rcu_head rcu;
unsigned sections_nb;
unsigned sections_nb_alloc;
unsigned nodes_nb;
unsigned nodes_nb_alloc;
Node *nodes;
MemoryRegionSection *sections;
} PhysPageMap;
struct AddressSpaceDispatch {
MemoryRegionSection *mru_section;
/* This is a multi-level map on the physical address space.
* The bottom level has pointers to MemoryRegionSections.
*/
PhysPageEntry phys_map;
PhysPageMap map;
};
#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
typedef struct subpage_t {
MemoryRegion iomem;
FlatView *fv;
hwaddr base;
uint16_t sub_section[];
} subpage_t;
#define PHYS_SECTION_UNASSIGNED 0
#define PHYS_SECTION_NOTDIRTY 1
#define PHYS_SECTION_ROM 2
#define PHYS_SECTION_WATCH 3
static void io_mem_init(void);
static void memory_map_init(void);
static void tcg_commit(MemoryListener *listener);
static MemoryRegion io_mem_watch;
/**
* CPUAddressSpace: all the information a CPU needs about an AddressSpace
* @cpu: the CPU whose AddressSpace this is
* @as: the AddressSpace itself
* @memory_dispatch: its dispatch pointer (cached, RCU protected)
* @tcg_as_listener: listener for tracking changes to the AddressSpace
*/
struct CPUAddressSpace {
CPUState *cpu;
AddressSpace *as;
struct AddressSpaceDispatch *memory_dispatch;
MemoryListener tcg_as_listener;
};
struct DirtyBitmapSnapshot {
ram_addr_t start;
ram_addr_t end;
unsigned long dirty[];
};
#endif
#if !defined(CONFIG_USER_ONLY)
static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
{
static unsigned alloc_hint = 16;
if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, alloc_hint);
map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, map->nodes_nb + nodes);
map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
alloc_hint = map->nodes_nb_alloc;
}
}
static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
{
unsigned i;
uint32_t ret;
PhysPageEntry e;
PhysPageEntry *p;
ret = map->nodes_nb++;
p = map->nodes[ret];
assert(ret != PHYS_MAP_NODE_NIL);
assert(ret != map->nodes_nb_alloc);
e.skip = leaf ? 0 : 1;
e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
for (i = 0; i < P_L2_SIZE; ++i) {
memcpy(&p[i], &e, sizeof(e));
}
return ret;
}
static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
hwaddr *index, hwaddr *nb, uint16_t leaf,
int level)
{
PhysPageEntry *p;
hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
lp->ptr = phys_map_node_alloc(map, level == 0);
}
p = map->nodes[lp->ptr];
lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
while (*nb && lp < &p[P_L2_SIZE]) {
if ((*index & (step - 1)) == 0 && *nb >= step) {
lp->skip = 0;
lp->ptr = leaf;
*index += step;
*nb -= step;
} else {
phys_page_set_level(map, lp, index, nb, leaf, level - 1);
}
++lp;
}
}
static void phys_page_set(AddressSpaceDispatch *d,
hwaddr index, hwaddr nb,
uint16_t leaf)
{
/* Wildly overreserve - it doesn't matter much. */
phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
}
/* Compact a non leaf page entry. Simply detect that the entry has a single child,
* and update our entry so we can skip it and go directly to the destination.
*/
static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
{
unsigned valid_ptr = P_L2_SIZE;
int valid = 0;
PhysPageEntry *p;
int i;
if (lp->ptr == PHYS_MAP_NODE_NIL) {
return;
}
p = nodes[lp->ptr];
for (i = 0; i < P_L2_SIZE; i++) {
if (p[i].ptr == PHYS_MAP_NODE_NIL) {
continue;
}
valid_ptr = i;
valid++;
if (p[i].skip) {
phys_page_compact(&p[i], nodes);
}
}
/* We can only compress if there's only one child. */
if (valid != 1) {
return;
}
assert(valid_ptr < P_L2_SIZE);
/* Don't compress if it won't fit in the # of bits we have. */
if (lp->skip + p[valid_ptr].skip >= (1 << 3)) {
return;
}
lp->ptr = p[valid_ptr].ptr;
if (!p[valid_ptr].skip) {
/* If our only child is a leaf, make this a leaf. */
/* By design, we should have made this node a leaf to begin with so we
* should never reach here.
* But since it's so simple to handle this, let's do it just in case we
* change this rule.
*/
lp->skip = 0;
} else {
lp->skip += p[valid_ptr].skip;
}
}
void address_space_dispatch_compact(AddressSpaceDispatch *d)
{
if (d->phys_map.skip) {
phys_page_compact(&d->phys_map, d->map.nodes);
}
}
static inline bool section_covers_addr(const MemoryRegionSection *section,
hwaddr addr)
{
/* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
* the section must cover the entire address space.
*/
return int128_gethi(section->size) ||
range_covers_byte(section->offset_within_address_space,
int128_getlo(section->size), addr);
}
static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
{
PhysPageEntry lp = d->phys_map, *p;
Node *nodes = d->map.nodes;
MemoryRegionSection *sections = d->map.sections;
hwaddr index = addr >> TARGET_PAGE_BITS;
int i;
for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
if (lp.ptr == PHYS_MAP_NODE_NIL) {
return §ions[PHYS_SECTION_UNASSIGNED];
}
p = nodes[lp.ptr];
lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
}
if (section_covers_addr(§ions[lp.ptr], addr)) {
return §ions[lp.ptr];
} else {
return §ions[PHYS_SECTION_UNASSIGNED];
}
}
/* Called from RCU critical section */
static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
hwaddr addr,
bool resolve_subpage)
{
MemoryRegionSection *section = atomic_read(&d->mru_section);
subpage_t *subpage;
if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] ||
!section_covers_addr(section, addr)) {
section = phys_page_find(d, addr);
atomic_set(&d->mru_section, section);
}
if (resolve_subpage && section->mr->subpage) {
subpage = container_of(section->mr, subpage_t, iomem);
section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
}
return section;
}
/* Called from RCU critical section */
static MemoryRegionSection *
address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
hwaddr *plen, bool resolve_subpage)
{
MemoryRegionSection *section;
MemoryRegion *mr;
Int128 diff;
section = address_space_lookup_region(d, addr, resolve_subpage);
/* Compute offset within MemoryRegionSection */
addr -= section->offset_within_address_space;
/* Compute offset within MemoryRegion */
*xlat = addr + section->offset_within_region;
mr = section->mr;
/* MMIO registers can be expected to perform full-width accesses based only
* on their address, without considering adjacent registers that could
* decode to completely different MemoryRegions. When such registers
* exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
* regions overlap wildly. For this reason we cannot clamp the accesses
* here.
*
* If the length is small (as is the case for address_space_ldl/stl),
* everything works fine. If the incoming length is large, however,
* the caller really has to do the clamping through memory_access_size.
*/
if (memory_region_is_ram(mr)) {
diff = int128_sub(section->size, int128_make64(addr));
*plen = int128_get64(int128_min(diff, int128_make64(*plen)));
}
return section;
}
/**
* address_space_translate_iommu - translate an address through an IOMMU
* memory region and then through the target address space.
*
* @iommu_mr: the IOMMU memory region that we start the translation from
* @addr: the address to be translated through the MMU
* @xlat: the translated address offset within the destination memory region.
* It cannot be %NULL.
* @plen_out: valid read/write length of the translated address. It
* cannot be %NULL.
* @page_mask_out: page mask for the translated address. This
* should only be meaningful for IOMMU translated
* addresses, since there may be huge pages that this bit
* would tell. It can be %NULL if we don't care about it.
* @is_write: whether the translation operation is for write
* @is_mmio: whether this can be MMIO, set true if it can
* @target_as: the address space targeted by the IOMMU
* @attrs: transaction attributes
*
* This function is called from RCU critical section. It is the common
* part of flatview_do_translate and address_space_translate_cached.
*/
static MemoryRegionSection address_space_translate_iommu(IOMMUMemoryRegion *iommu_mr,
hwaddr *xlat,
hwaddr *plen_out,
hwaddr *page_mask_out,
bool is_write,
bool is_mmio,
AddressSpace **target_as,
MemTxAttrs attrs)
{
MemoryRegionSection *section;
hwaddr page_mask = (hwaddr)-1;
do {
hwaddr addr = *xlat;
IOMMUMemoryRegionClass *imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
int iommu_idx = 0;
IOMMUTLBEntry iotlb;
if (imrc->attrs_to_index) {
iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
}
iotlb = imrc->translate(iommu_mr, addr, is_write ?
IOMMU_WO : IOMMU_RO, iommu_idx);
if (!(iotlb.perm & (1 << is_write))) {
goto unassigned;
}
addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
| (addr & iotlb.addr_mask));
page_mask &= iotlb.addr_mask;
*plen_out = MIN(*plen_out, (addr | iotlb.addr_mask) - addr + 1);
*target_as = iotlb.target_as;
section = address_space_translate_internal(
address_space_to_dispatch(iotlb.target_as), addr, xlat,
plen_out, is_mmio);
iommu_mr = memory_region_get_iommu(section->mr);
} while (unlikely(iommu_mr));
if (page_mask_out) {
*page_mask_out = page_mask;
}
return *section;
unassigned:
return (MemoryRegionSection) { .mr = &io_mem_unassigned };
}
/**
* flatview_do_translate - translate an address in FlatView
*
* @fv: the flat view that we want to translate on
* @addr: the address to be translated in above address space
* @xlat: the translated address offset within memory region. It
* cannot be @NULL.
* @plen_out: valid read/write length of the translated address. It
* can be @NULL when we don't care about it.
* @page_mask_out: page mask for the translated address. This
* should only be meaningful for IOMMU translated
* addresses, since there may be huge pages that this bit
* would tell. It can be @NULL if we don't care about it.
* @is_write: whether the translation operation is for write
* @is_mmio: whether this can be MMIO, set true if it can
* @target_as: the address space targeted by the IOMMU
* @attrs: memory transaction attributes
*
* This function is called from RCU critical section
*/
static MemoryRegionSection flatview_do_translate(FlatView *fv,
hwaddr addr,
hwaddr *xlat,
hwaddr *plen_out,
hwaddr *page_mask_out,
bool is_write,
bool is_mmio,
AddressSpace **target_as,
MemTxAttrs attrs)
{
MemoryRegionSection *section;
IOMMUMemoryRegion *iommu_mr;
hwaddr plen = (hwaddr)(-1);
if (!plen_out) {
plen_out = &plen;
}
section = address_space_translate_internal(
flatview_to_dispatch(fv), addr, xlat,
plen_out, is_mmio);
iommu_mr = memory_region_get_iommu(section->mr);
if (unlikely(iommu_mr)) {
return address_space_translate_iommu(iommu_mr, xlat,
plen_out, page_mask_out,
is_write, is_mmio,
target_as, attrs);
}
if (page_mask_out) {
/* Not behind an IOMMU, use default page size. */
*page_mask_out = ~TARGET_PAGE_MASK;
}
return *section;
}
/* Called from RCU critical section */
IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
bool is_write, MemTxAttrs attrs)
{
MemoryRegionSection section;
hwaddr xlat, page_mask;
/*
* This can never be MMIO, and we don't really care about plen,
* but page mask.
*/
section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat,
NULL, &page_mask, is_write, false, &as,
attrs);
/* Illegal translation */
if (section.mr == &io_mem_unassigned) {
goto iotlb_fail;
}
/* Convert memory region offset into address space offset */
xlat += section.offset_within_address_space -
section.offset_within_region;
return (IOMMUTLBEntry) {
.target_as = as,
.iova = addr & ~page_mask,
.translated_addr = xlat & ~page_mask,
.addr_mask = page_mask,
/* IOTLBs are for DMAs, and DMA only allows on RAMs. */
.perm = IOMMU_RW,
};
iotlb_fail:
return (IOMMUTLBEntry) {0};
}
/* Called from RCU critical section */
MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat,
hwaddr *plen, bool is_write,
MemTxAttrs attrs)
{
MemoryRegion *mr;
MemoryRegionSection section;
AddressSpace *as = NULL;
/* This can be MMIO, so setup MMIO bit. */
section = flatview_do_translate(fv, addr, xlat, plen, NULL,
is_write, true, &as, attrs);
mr = section.mr;
if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
*plen = MIN(page, *plen);
}
return mr;
}
typedef struct TCGIOMMUNotifier {
IOMMUNotifier n;
MemoryRegion *mr;
CPUState *cpu;
int iommu_idx;
bool active;
} TCGIOMMUNotifier;
static void tcg_iommu_unmap_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb)
{
TCGIOMMUNotifier *notifier = container_of(n, TCGIOMMUNotifier, n);
if (!notifier->active) {
return;
}
tlb_flush(notifier->cpu);
notifier->active = false;
/* We leave the notifier struct on the list to avoid reallocating it later.
* Generally the number of IOMMUs a CPU deals with will be small.
* In any case we can't unregister the iommu notifier from a notify
* callback.
*/
}
static void tcg_register_iommu_notifier(CPUState *cpu,
IOMMUMemoryRegion *iommu_mr,
int iommu_idx)
{
/* Make sure this CPU has an IOMMU notifier registered for this
* IOMMU/IOMMU index combination, so that we can flush its TLB
* when the IOMMU tells us the mappings we've cached have changed.
*/
MemoryRegion *mr = MEMORY_REGION(iommu_mr);
TCGIOMMUNotifier *notifier;
int i;
for (i = 0; i < cpu->iommu_notifiers->len; i++) {
notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
if (notifier->mr == mr && notifier->iommu_idx == iommu_idx) {
break;
}
}
if (i == cpu->iommu_notifiers->len) {
/* Not found, add a new entry at the end of the array */
cpu->iommu_notifiers = g_array_set_size(cpu->iommu_notifiers, i + 1);
notifier = g_new0(TCGIOMMUNotifier, 1);
g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i) = notifier;
notifier->mr = mr;
notifier->iommu_idx = iommu_idx;
notifier->cpu = cpu;
/* Rather than trying to register interest in the specific part
* of the iommu's address space that we've accessed and then
* expand it later as subsequent accesses touch more of it, we
* just register interest in the whole thing, on the assumption
* that iommu reconfiguration will be rare.
*/
iommu_notifier_init(¬ifier->n,
tcg_iommu_unmap_notify,
IOMMU_NOTIFIER_UNMAP,
0,
HWADDR_MAX,
iommu_idx);
memory_region_register_iommu_notifier(notifier->mr, ¬ifier->n);
}
if (!notifier->active) {
notifier->active = true;
}
}
static void tcg_iommu_free_notifier_list(CPUState *cpu)
{
/* Destroy the CPU's notifier list */
int i;
TCGIOMMUNotifier *notifier;
for (i = 0; i < cpu->iommu_notifiers->len; i++) {
notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
memory_region_unregister_iommu_notifier(notifier->mr, ¬ifier->n);
g_free(notifier);
}
g_array_free(cpu->iommu_notifiers, true);
}
/* Called from RCU critical section */
MemoryRegionSection *
address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
hwaddr *xlat, hwaddr *plen,
MemTxAttrs attrs, int *prot)
{
MemoryRegionSection *section;
IOMMUMemoryRegion *iommu_mr;
IOMMUMemoryRegionClass *imrc;
IOMMUTLBEntry iotlb;
int iommu_idx;
AddressSpaceDispatch *d = atomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch);
for (;;) {
section = address_space_translate_internal(d, addr, &addr, plen, false);
iommu_mr = memory_region_get_iommu(section->mr);
if (!iommu_mr) {
break;
}
imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
tcg_register_iommu_notifier(cpu, iommu_mr, iommu_idx);
/* We need all the permissions, so pass IOMMU_NONE so the IOMMU
* doesn't short-cut its translation table walk.
*/
iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, iommu_idx);
addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
| (addr & iotlb.addr_mask));
/* Update the caller's prot bits to remove permissions the IOMMU
* is giving us a failure response for. If we get down to no
* permissions left at all we can give up now.
*/
if (!(iotlb.perm & IOMMU_RO)) {
*prot &= ~(PAGE_READ | PAGE_EXEC);
}
if (!(iotlb.perm & IOMMU_WO)) {
*prot &= ~PAGE_WRITE;
}
if (!*prot) {
goto translate_fail;
}
d = flatview_to_dispatch(address_space_to_flatview(iotlb.target_as));
}
assert(!memory_region_is_iommu(section->mr));
*xlat = addr;
return section;
translate_fail:
return &d->map.sections[PHYS_SECTION_UNASSIGNED];
}
#endif
#if !defined(CONFIG_USER_ONLY)
static int cpu_common_post_load(void *opaque, int version_id)
{
CPUState *cpu = opaque;
/* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
version_id is increased. */
cpu->interrupt_request &= ~0x01;
tlb_flush(cpu);
/* loadvm has just updated the content of RAM, bypassing the
* usual mechanisms that ensure we flush TBs for writes to
* memory we've translated code from. So we must flush all TBs,
* which will now be stale.
*/
tb_flush(cpu);
return 0;
}
static int cpu_common_pre_load(void *opaque)
{
CPUState *cpu = opaque;
cpu->exception_index = -1;
return 0;
}
static bool cpu_common_exception_index_needed(void *opaque)
{
CPUState *cpu = opaque;
return tcg_enabled() && cpu->exception_index != -1;
}
static const VMStateDescription vmstate_cpu_common_exception_index = {
.name = "cpu_common/exception_index",
.version_id = 1,
.minimum_version_id = 1,
.needed = cpu_common_exception_index_needed,
.fields = (VMStateField[]) {
VMSTATE_INT32(exception_index, CPUState),
VMSTATE_END_OF_LIST()
}
};
static bool cpu_common_crash_occurred_needed(void *opaque)
{
CPUState *cpu = opaque;
return cpu->crash_occurred;
}
static const VMStateDescription vmstate_cpu_common_crash_occurred = {
.name = "cpu_common/crash_occurred",
.version_id = 1,
.minimum_version_id = 1,
.needed = cpu_common_crash_occurred_needed,
.fields = (VMStateField[]) {
VMSTATE_BOOL(crash_occurred, CPUState),
VMSTATE_END_OF_LIST()
}
};
const VMStateDescription vmstate_cpu_common = {
.name = "cpu_common",
.version_id = 1,
.minimum_version_id = 1,
.pre_load = cpu_common_pre_load,
.post_load = cpu_common_post_load,
.fields = (VMStateField[]) {
VMSTATE_UINT32(halted, CPUState),
VMSTATE_UINT32(interrupt_request, CPUState),
VMSTATE_END_OF_LIST()
},
.subsections = (const VMStateDescription*[]) {
&vmstate_cpu_common_exception_index,
&vmstate_cpu_common_crash_occurred,
NULL
}
};
#endif
CPUState *qemu_get_cpu(int index)
{
CPUState *cpu;
CPU_FOREACH(cpu) {
if (cpu->cpu_index == index) {
return cpu;
}
}
return NULL;
}
#if !defined(CONFIG_USER_ONLY)
void cpu_address_space_init(CPUState *cpu, int asidx,
const char *prefix, MemoryRegion *mr)
{
CPUAddressSpace *newas;
AddressSpace *as = g_new0(AddressSpace, 1);
char *as_name;
assert(mr);
as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index);
address_space_init(as, mr, as_name);
g_free(as_name);
/* Target code should have set num_ases before calling us */
assert(asidx < cpu->num_ases);
if (asidx == 0) {
/* address space 0 gets the convenience alias */
cpu->as = as;
}
/* KVM cannot currently support multiple address spaces. */
assert(asidx == 0 || !kvm_enabled());
if (!cpu->cpu_ases) {
cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
}
newas = &cpu->cpu_ases[asidx];
newas->cpu = cpu;
newas->as = as;
if (tcg_enabled()) {
newas->tcg_as_listener.commit = tcg_commit;
memory_listener_register(&newas->tcg_as_listener, as);
}
}
AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
{
/* Return the AddressSpace corresponding to the specified index */
return cpu->cpu_ases[asidx].as;
}
#endif
void cpu_exec_unrealizefn(CPUState *cpu)
{
CPUClass *cc = CPU_GET_CLASS(cpu);
cpu_list_remove(cpu);
if (cc->vmsd != NULL) {
vmstate_unregister(NULL, cc->vmsd, cpu);
}
if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
vmstate_unregister(NULL, &vmstate_cpu_common, cpu);
}
#ifndef CONFIG_USER_ONLY
tcg_iommu_free_notifier_list(cpu);
#endif
}
Property cpu_common_props[] = {
#ifndef CONFIG_USER_ONLY
/* Create a memory property for softmmu CPU object,
* so users can wire up its memory. (This can't go in qom/cpu.c
* because that file is compiled only once for both user-mode
* and system builds.) The default if no link is set up is to use
* the system address space.
*/
DEFINE_PROP_LINK("memory", CPUState, memory, TYPE_MEMORY_REGION,
MemoryRegion *),
#endif
DEFINE_PROP_END_OF_LIST(),
};
void cpu_exec_initfn(CPUState *cpu)
{
cpu->as = NULL;
cpu->num_ases = 0;
#ifndef CONFIG_USER_ONLY
cpu->thread_id = qemu_get_thread_id();
cpu->memory = system_memory;
object_ref(OBJECT(cpu->memory));
#endif
}
void cpu_exec_realizefn(CPUState *cpu, Error **errp)
{
CPUClass *cc = CPU_GET_CLASS(cpu);
static bool tcg_target_initialized;
cpu_list_add(cpu);
if (tcg_enabled() && !tcg_target_initialized) {
tcg_target_initialized = true;
cc->tcg_initialize();
}
tlb_init(cpu);
#ifndef CONFIG_USER_ONLY
if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
vmstate_register(NULL, cpu->cpu_index, &vmstate_cpu_common, cpu);
}
if (cc->vmsd != NULL) {
vmstate_register(NULL, cpu->cpu_index, cc->vmsd, cpu);
}
cpu->iommu_notifiers = g_array_new(false, true, sizeof(TCGIOMMUNotifier *));
#endif
}
const char *parse_cpu_option(const char *cpu_option)
{
ObjectClass *oc;
CPUClass *cc;
gchar **model_pieces;
const char *cpu_type;
model_pieces = g_strsplit(cpu_option, ",", 2);
if (!model_pieces[0]) {
error_report("-cpu option cannot be empty");
exit(1);
}