forked from ernestyalumni/Gravite
-
Notifications
You must be signed in to change notification settings - Fork 29
/
Copy pathlecture6.tex
192 lines (150 loc) · 11.9 KB
/
lecture6.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
\section{Fields}
So far, we have focussed technically on a single tangent space and a vector/ covector in it, a basis if we chose a chart. As physicists, we are interested in things such as vector fields such that at any point of a manifold, there is a vector. The proper way to deal with it technically is \textit{theory of bundles}.
\subsection{Bundles}
\begin{definition}
A \textbf{bundle} is a triple $\boxed{E \projmapto M}$, where \\
$E$ is a smooth manifold, called the \textbf{total space}, \\
$M$ is a smooth manifold, called the \textbf{base space}, and \\
$\pi$ is a smooth map (surjective), called the \textbf{projection map}. \\
\end{definition}
\begin{definition}
Let $E \projmapto M$ be a bundle and $p \in M$. Then, \textbf{fibre over} $p := \text{preim}_{\pi}(\lbrace p \rbrace)$. \\
\end{definition}
\begin{definition}
A \textbf{section} $\sigma$ of a bundle $E \projmapto M$ is the map $\sigma : M \to E$ such that $\pi \after \sigma = id_M$. \\
\end{definition}
\begin{tikzpicture}
\matrix (m) [matrix of math nodes, row sep=3em, column sep=8em, minimum width=1em]
{ E & M \\ };
\path[->]
(m-1-1) edge node [above] {$\pi$} (m-1-2)
(m-1-2) edge [bend left=30] node [below] {$\sigma$} (m-1-1);
\end{tikzpicture}
\underline{Example}: $E$ is a cylinder, $M$ a circle and $\pi$ maps vertical lines on the cylinder to the point of intersection of this line with the circle.
\underline{Example}: If the fibre of $p \in M$ is a tangent space, the section would pick one vector from the tangent space.
\underline{Aside}: In quantum mechanics, $\psi : M \to \mathbb{C}$ is called a wavefunction, but it is actually a section which selects one value from $\mathbb{C}$ for each $p \in M$.
\subsection{Tangent bundle of smooth manifold}
For this entire subsection, let $\mfd$ be a smooth manifold and let $d := dim \, M$.
Define the set,
\begin{equation}
\boxed{TM : = \dot{\bigcup}_{p \in M} T_pM}
\end{equation}
Now define a surjective map $\pi$ as follows:
\begin{equation}
\boxed{\begin{split}
\pi : & TM \to M \\
& X \mapsto \pi(X) := p \in M \text{ such that } X \in T_pM
\end{split}}
\end{equation}
\underline{Situation}: $\underbrace{TM}_{\text{set}} \underbrace{ \projmapto}_{\text{surjective map}} \underbrace{M}_{\text{smooth manifold}}$
For a bundle, $TM$ should be a smooth manifold and $\pi$ a smooth map. Let us construct a topology on $TM$ that is the coarsest topology such that $\pi$ is just continuous. (\textbf{initial topology} with respect to $\pi$). Define
\begin{equation}
\boxed{\mathcal{O}_{TM} := \lbrace \text{preim}_{\pi}(U) | U \in \mathcal{O} \rbrace}
\end{equation}
It can be shown that $(TM,\mathcal{O}_{TM})$ is a topological space. But we need a smooth atlas.\\
\underline{Construction of a $C^{\infty}$-atlas on $TM$ from the $C^{\infty}$-atlas $\A$ on $M$} \\
Define
\begin{equation}\label{eq:atlasTangentBundle}
\boxed{
\begin{split}
\A_{TM} := & \lbrace (TU,\xi_x) \, | \, (U,x) \in \A \rbrace \text{ where } \\
\xi_x : & TU \to \R^{2d} \\
& X \mapsto \left(\underbrace{(x^1 \after \pi)(X), \dotsc, (x^d \after \pi)(X)}_{(U,x)-\text{ coords of } \pi(X) \, (d\text{-many})}, \underbrace{(dx^1)_{\pi(X)}(X), \dotsc, (dx^d)_{\pi(X)}(X)}_{\text{components of $X$ w.r.t } (U,x) \, (d\text{-many})}\right)
\end{split}
}
\end{equation}
In the above, $(x^1 \after \pi)(X) = x^1(\pi(X)) = x^1(p) = x^1 \text{-coordinate}$, and \\
$X \in T_{\pi(X)}M \implies X = X_{(x)}^i \left(\cibasis{x^i}\right)_{\pi(X)} \implies (dx^j)_{\pi(X)}(X) = (dx^j)_{\pi(X)} \left(X^i_{(x)}\left(\cibasis{x^i}\right)_{\pi(X)} \right) = X^i_{(x)}\delta_i^j = X^j_{(x)}$. \\
Thus $\xi_x$ maps $X$ to the coordinates of its base point $\pi(X)$ under the chart $(U,x)$ and the components of the vector $X$ w.r.t the basis induced by this chart.
We can write $\xi_x^{-1}$ as follows:
\begin{equation}\label{eq:xiInverseTangentBundle}
\boxed{
\begin{split}
\xi_x^{-1} \, : \, & \underbrace{\xi_x(TU)}_{\subseteq \R^{2d}} \to TU \\
& (\alpha^1, \dotsc, \alpha^d, \beta^1, \dotsc, \beta^d) := \beta^i \left(\cibasis{x^i}\right)_{\underbrace{x^{-1}(\alpha^1, \dotsc, \alpha^d)}_{\pi(X)}}
\end{split}
}
\end{equation}
Now we check, whether the atlas $\A_{TM}$ smooth. That is, are the transitions between its charts smooth?
\begin{theorem}
$\A_{TM}$ is a smooth atlas.
\end{theorem}
\begin{proof}
Let $(U,\xi_x) \in \A_{TM}, \quad (V,\xi_y) \in \A_{TM} \quad \text{ and } \quad U \cap V \ne \emptyset$. Calculate the chart transition
\begin{align*}
& (\xi_y \after \xi_x^{-1})(\alpha^1, \dotsc, \alpha^d, \beta^1, \dotsc, \beta^d) = \xi_y \left(\beta^i \left(\cibasis{x^i} \right)_{x^{-1}(\alpha^1, \dotsc, \alpha^d)}\right) && \text{by Eq.~\ref{eq:xiInverseTangentBundle}} \\
& = \left(\dotsc, (y^i \after \pi)\left(\beta^m \cdot \left(\cibasis{x^m}\right)_{x^{-1}(\alpha^1, \dotsc, \alpha^d)}\right), \dotsc, \dotsc, (dy^i)_{x^{-1}(\alpha^1, \dotsc, \alpha^d)} \left(\beta^m \left(\cibasis{x^m} \right)_{x^{-1}(\alpha^1, \dotsc, \alpha^d)} \right), \dotsc \right) && \text{by Eq.~\ref{eq:atlasTangentBundle}} \\
& = \left(\dotsc, y^i \left(\underbrace{\pi\left(\beta^m \cdot \left(\cibasis{x^m}\right)_{x^{-1}(\alpha^1, \dotsc, \alpha^d)}\right)}_{\text{the base point,}\, x^{-1}(\alpha^1, \dotsc, \alpha^d)}\right), \dotsc, \dotsc, (\beta^m \underbrace{(dy^i)_{x^{-1} (\alpha^1, \dotsc, \alpha^d)} \left( \left(\cibasis{x^m}\right)_{x^{-1}(\alpha^1, \dotsc, \alpha^d)} \right)}_{\left(\cibasis[y^i]{x^m}\right)_{x^{-1}(\alpha^1, \dotsc, \alpha^d)}}, \dotsc \right) \\
& = \left(\dotsc, (y^i \after x^{-1})(\alpha^1, \dotsc, \alpha^d), \dotsc, \dotsc, \beta^m \left(\left(\cibasis[y^i]{x^m}\right)_{x^{-1}(\alpha^1, \dotsc, \alpha^d)} \right), \dotsc\right) \\
& = \left(\dotsc, (y^i \after x^{-1})(\alpha^1, \dotsc, \alpha^d), \dotsc, \dotsc, \beta^m \left(\partial_m (y^i \after x^{-1})( x (x^{-1}(\alpha^1, \dotsc, \alpha^d))) \right), \dotsc\right) \\
& = \left(\dotsc, \underbrace{(y^i \after x^{-1})(\alpha^1, \dotsc, \alpha^d)}_{\text{smooth } \because \mathcal(A) \text{ is smooth atlas}}, \dotsc, \dotsc, \underbrace{\beta^m \left(\partial_m (y^i \after x^{-1})(\alpha^1, \dotsc, \alpha^d)\right)}_{\text{smooth } \because \text{ chart transition map is } C^\infty \text{ smooth}}, \dotsc\right) \\
& \implies (\xi_y \after \xi_x^{-1}) \text{ is smooth} \implies \A_{TM} \text{ is smooth}
\end{align*}
\end{proof}
Further, the surjective map $\pi$ is a smooth map because, in the chart representation, $\pi$ takes the $2d$ components of $X \in TM$ to the $d$-coordinates of the base point in $M$, which can be seen to happen smoothly by seeing how the components are mapped. Therefore, we have the following definition.
\begin{definition}
Then, using the smooth manifold $\mfd$ as the base space and the smooth manifold $(TM, \mathcal{O}_{TM}, \A_{TM})$ as the total space, the \textbf{tangent bundle} is the triple
\begin{equation}\label{eq:TangentBundle}
\boxed{TM \projmapto M}
\end{equation}
\end{definition}
\subsection{Vector fields}
Why did we put so much effort in making a smooth atlas on $TM$ and defining a tangent bundle? The answer is in the following definition of \emph{smooth} vector field, not just any vector field.
\begin{definition}
For a tangent bundle $TM \projmapto M$, a \textbf{smooth vector field} $\chi$ is a smooth map such that $\pi \after \chi = id_{M}$, $\chi$ is a \textit{smooth section}.
\end{definition}
\begin{tikzpicture}
\matrix (m) [matrix of math nodes, row sep=3em, column sep=8em, minimum width=1em]
{ TM & M \\ };
\path[->]
(m-1-1) edge node [above] {$\pi$} (m-1-2)
(m-1-2) edge [bend left=30] node [below] {$\chi$} (m-1-1);
\end{tikzpicture}
\textit{Remarks: $\chi$ is a section, which couldn't have been a smooth map unless we had both $M$ and $TM$ as smooth manifolds.}
\subsection{The $C^{\infty}(M)$-module $\Gamma(TM)$}
We already know that $C^{\infty}(M)$, the collection of all smooth functions is a vector space with S-multiplication with $\R$. So we may also consider the structure $(C^{\infty}(M),+,\cdot)$ with point-wise addition between elements of $C^{\infty}(M)$ and point-wise multiplication between elements of $C^{\infty}(M)$. This structure satisfies all the requirements of a field (commutativity, associativity, neutral element, inverse element under both operations, and distributivity) except that there is no inverse for all non-zero elements under multiplication. This is so because a function that is not zero everywhere, may be zero at some points and then point-wise multiplication with no function would result in the value 1 everywhere. Such a structure is called a \textit{ring}.
A module over a ring is a generalization of the notion of vector space over a field, wherein the corresponding scalars are the elements of an arbitrary given ring.
Let us consider the module made from the set of all smooth vector fields over the ring $C^{\infty}(M)$. Define \\
\begin{equation}
\Gamma(TM) = \lbrace \chi \, : \, M \to TM \, | \, \chi \text{ is a smooth section} \rbrace
\end{equation}
\begin{definition}
$(\Gamma(TM),\oplus,\odot)$ is a $C^{\infty}(M)$-module over the ring of $C^{\infty}(M)$ functions with $\chi, \widetilde{\chi} \in \Gamma(TM)$ and $g \in C^{\infty}(M)$, such that \\
$(\chi \oplus \widetilde{\chi})(f) := (\chi f) \underbrace{+}_{C^{\infty}(M)} (\widetilde{\chi}f)$ \\
$(g \odot \chi)(f) := g \underbrace{\cdot}_{C^{\infty}(M)} (\chi f)$
\end{definition}
\underline{Facts}: Besides other differences, there are following 2 important facts:
\begin{enumerate}
\item[(1)] Proving that \textit{every vector space has a basis} depends upon the choice of set theory; in particular, on the Axiom of Choice in ZFC theory.
\item[(2)] No such result exists for modules.
\end{enumerate}
This is a shame, because otherwise, we could have chosen (for any manifold) vector fields, $\chi_{(1)}, \dotsc, \chi_{(d)} \in \Gamma(TM)$ and would be able to write every vector field $\chi$ in terms of component functions $f^i$ as $\chi = f^i \cdot \chi_{(i)}$.
\textbf{Simple counterexample:} Take a sphere. Can we find a smooth vector field over the entire sphere. Can you comb the sphere? No. For the field to be smooth, there is a problem. Morse Theory tells us that every smooth vector field on a sphere must vanish at 2 points $\implies$ basis cannot be chosen. We cannot choose a global basis. Therefore, if required, we only expand a vector field in terms of a basis on a domain where it is possible.
\textit{Remarks: Although we cannot have a global basis for $\Gamma(TM)$, it is possible to do so locally. Thus, for the chart $(U,x)$ we can take the \textbf{chart-induced basis of the vector field} in the chart domain $U$ as the map \\
\begin{equation}
\begin{split}
\cibasis{x^i} : & \, U \xrightarrow{\text{ smooth }} TU \\
& p \mapsto \left(\cibasis{x^i}\right)_p
\end{split}
\end{equation}
}
\subsection{Tensor fields}
So far we have constructed the sections over the tangent bundle. That is, $\Gamma(TM) = $''set of smooth vector fields'' as a $C^{\infty}(M)$-module.
Exactly along the same lines we can construct the \textbf{cotangent bundle} $\Gamma(T^*M) = $ ``set of covector fields'' as a $C^{\infty}(M)$-module, by mapping a covector to the coordinates of its base point and components of the covector. $\Gamma(TM)$ and $\Gamma(T^*M)$ are the basic building blocks for every tensor field.
\begin{definition}
An \textbf{$(r,s)$-tensor field} $T$ is a $C^{\infty}(M)$ multilinear map
\begin{equation}
T:\underbrace{\Gamma(T^*M) \times \dotsb \times \Gamma(T^*M)}_{r} \times \underbrace{\Gamma(TM) \times \dotsb \times \Gamma(TM)}_{s} \linearmapto C^{\infty}(M)
\end{equation}
\end{definition}
\textit{Remarks: the multilinearity is in $C^{\infty}(M)$, in terms of addition in the modules and S-multiplication with functions in $C^{\infty}(M)$.}
\textbf{Example:} Let $f\in C^{\infty}(M)$. Then, define a ($0,1$)-tensor field $df$ as
\[
\begin{gathered}
\begin{aligned}
df : & \Gamma(TM) \linearmapto C^{\infty}(M) \\
& \chi \mapsto df(\chi) := \chi f && \text{ such that } (\chi f)(\underbrace{p}_{ \in M}) := \underbrace{\chi(p)}_{\in T_pM}f
\end{aligned}
\end{gathered}
\]
It can be checked that $df$ is $C^{\infty}-$linear.