forked from openai/iaf
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
261 lines (216 loc) · 7.91 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
import graphy as G
import numpy as np
import time, sys, os
from sacred import Experiment
from __builtin__ import False
ex = Experiment('Deep VAE')
@ex.config
def config():
# optimization:
n_reporting = 10 #epochs between reporting
px = 'logistic'
pad_x = 0
# datatype
problem = 'cifar10'
n_batch = 16 # Minibatch size
if problem == 'mnist':
shape_x = (1,28,28)
px = 'bernoulli'
pad_x = 2
n_h = 64
n_z = 32
if problem == 'cifar10':
shape_x = (3,32,32)
n_h = 160
n_z = 32
if problem == 'svhn':
shape_x = (3,32,32)
n_reporting = 1
n_h = 160
n_z = 32
if problem == 'lfw':
shape_x = (3,64,48)
n_h = 160
n_z = 32
n_h1 = n_h
n_h2 = n_h
# dataset
n_train = 0
# model
model_type = 'cvae1'
if model_type == 'cvae1':
depths = [2,2]
margs = {
'shape_x': shape_x,
'depths': depths,
'n_h1': n_h1,
'n_h2': n_h2,
'n_z': n_z,
'prior': 'diag',
'posterior': 'down_diag',
'px': px,
'nl': 'elu',
'kernel_x': (5,5),
'kernel_h': (3,3),
'kl_min': 0.25,
'optim': 'adamax',
'alpha': 0.002,
'beta1': 0.1,
'pad_x': pad_x,
'weightsharing': False,
'depth_ar': 1,
'downsample_type': 'nn'
}
if model_type == 'simplecvae1':
depths = [2,2,2]
widths = [32,64,128]
margs = {
'shape_x': shape_x,
'depths': depths,
'widths': widths,
'n_z': n_z,
'prior': 'diag',
'posterior': 'down_diag',
'px': px,
'nl': 'elu',
'kernel_x': (5,5),
'kernel_h': (3,3),
'kl_min': 0.25,
'optim': 'adamax',
'alpha': 0.002,
'beta1': 0.1,
'pad_x': pad_x,
'weightsharing': False
}
# model loading/saving
save_model = True
load_model_path = None
load_model_complete = True # Whether loaded parameters are complete
# Estimate the marginal likelihood
est_marglik = 0.
est_marglik_data = 'valid'
def init_logs():
global logpath, logdir
# Create log directory
logdir = str(time.time())
logpath = os.environ['ML_LOG_PATH']+'/'+logdir+'/'
print 'Logpath: '+logpath
os.makedirs(logpath)
# Log stdout messages to file
sys.stdout = G.misc.logger.Logger(logpath+"log.txt")
# Clone local source to logdir
os.system("rsync -au --include '*/' --include '*.py' --exclude '*' . "+logpath+"source")
with open(logpath+"source/run.sh", 'w') as f:
f.write("python "+" ".join(sys.argv)+"\n")
os.chmod(logpath+"source/run.sh", 0700)
@ex.capture
def construct_model(data_init, model_type, margs, load_model_path, load_model_complete, n_batch):
import models
margs['data_init'] = data_init
if model_type == 'fcvae1':
model = models.fcvae(**margs)
if model_type == 'cvae1':
model = models.cvae1(**margs)
if model_type == 'simplecvae1':
import simplemodel
model = simplemodel.simplecvae1(**margs)
if load_model_path != None:
print 'Loading existing model at '+load_model_path
_w = G.ndict.np_loadz(load_model_path+'/weights.ndict.tar.gz')
G.ndict.set_value(model.w, _w, load_model_complete)
G.ndict.set_value(model.w_avg, _w, load_model_complete)
return model
@ex.capture
def get_data(problem, n_train, n_batch):
if problem == 'cifar10':
# Load data
data_train, data_valid = G.misc.data.cifar10(False)
if problem == 'svhn':
# Load data
data_train, data_valid = G.misc.data.svhn(False, True)
elif problem == 'mnist':
# Load data
validset = False
if validset:
data_train, data_valid, data_test = G.misc.data.mnist_binarized(validset, False)
else:
data_train, data_valid = G.misc.data.mnist_binarized(validset, False)
data_train['x'] = data_train['x'].reshape((-1,1,28,28))
data_valid['x'] = data_valid['x'].reshape((-1,1,28,28))
elif problem == 'lfw':
data_train = G.misc.data.lfw(False,True)
data_valid = G.ndict.getRows(data_train, 0, 1000)
data_init = {'x':data_train['x'][:n_batch]}
if n_train > 0:
data_train = G.ndict.getRows(data_train, 0, n_train)
data_valid = G.ndict.getRows(data_valid, 0, n_train)
return data_train, data_valid, data_init
@ex.automain
def train(shape_x, problem, n_batch, n_train, n_reporting, save_model, est_marglik, est_marglik_data, margs):
global logpath
# Initialize logs
init_logs()
# Get data
data_train, data_valid, data_init = get_data()
# Construct model
model = construct_model(data_init)
# Estimate the marginal likelihood
if est_marglik > 0:
if est_marglik_data == 'valid':
data = data_valid
elif est_marglik_data == 'train':
data = data_train
# Correction since model's actual cost is divided by this factor
correctionfactor = - (np.prod(shape_x) * np.log(2.))
obj_test = []
for i in range(est_marglik):
cost = model.eval(data, n_batch=n_batch, randomorder=False)['cost'] * correctionfactor
obj_test.append(cost)
_obj = np.vstack(obj_test)
_max = np.max(_obj, axis=0)
_est = np.log(np.exp(_obj - _max).mean(axis=0)) + _max
if i%1 == 0:
print 'Estimate of logp(x) after', i+1, 'samples:', _est.mean() / correctionfactor
raise Exception()
sys.exit()
# Report
cost_best = [None]
eps_fixed = model.eps({'n_batch':100})
def report(epoch, dt, cost):
if np.isnan(cost):
raise Exception('NaN detected!!')
results_valid = model.eval(data_valid, n_batch=n_batch)
for i in results_valid: results_valid[i] = results_valid[i].mean()
_w = G.ndict.get_value(model.w_avg)
G.ndict.np_savez(_w, logpath+'weights')
if cost_best[0] is None or results_valid['cost'] < cost_best[0]:
cost_best[0] = results_valid['cost']
if save_model:
G.ndict.np_savez(_w, logpath+'weights_best')
if True:
# Write all results to file
with open(logpath+"results.txt", "a") as log:
if epoch == 0:
log.write("Epoch "+" ".join(map(str, results_valid.keys())) + "\n")
log.write(str(epoch)+" "+" ".join(map(str, results_valid.values())) + "\n")
if True:
eps = model.eps({'n_batch':100})
image = model.decode(eps)
G.graphics.save_raster(image, logpath+'sample_'+str(epoch)+'.png')
image = model.decode(eps_fixed)
G.graphics.save_raster(image, logpath+'sample_fixed1_'+str(epoch)+'.png')
#eps_fixed_copy = G.ndict.clone(eps_fixed)
#for i in range(len(eps_fixed)):
# eps_fixed_copy['']
if epoch == 0:
print 'logdir:', 't:', 'Epoch:', 'Train cost:', 'Valid cost:', 'Best:', 'log(stdev) of p(x|z):'
logsd_x = 0.
if 'logsd_x' in model.w_avg:
logsd_x = model.w_avg['logsd_x'].get_value()
print logdir, '%.2f'%dt, epoch, '%.5f'%cost, '%.5f'%results_valid['cost'], '%.5f'%cost_best[0], logsd_x
print 'Training'
for epoch in xrange(1000000):
t0 = time.time()
result = model.train(data_train, n_batch=n_batch)
if epoch <= 10 or epoch%n_reporting == 0:
report(epoch, time.time()-t0, cost=np.mean(result))