-
Notifications
You must be signed in to change notification settings - Fork 101
/
Copy pathtrain.py
154 lines (131 loc) · 6.61 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
'''
Capsules for Object Segmentation (SegCaps)
Original Paper by Rodney LaLonde and Ulas Bagci (https://arxiv.org/abs/1804.04241)
Code written by: Rodney LaLonde
If you use significant portions of this code or the ideas from our paper, please cite it :)
If you have any questions, please email me at [email protected].
This file is used for training models. Please see the README for details about training.
'''
from __future__ import print_function
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
plt.ioff()
from os.path import join
import numpy as np
from keras.optimizers import Adam
from keras import backend as K
K.set_image_data_format('channels_last')
from keras.utils.training_utils import multi_gpu_model
from keras.callbacks import ModelCheckpoint, CSVLogger, EarlyStopping, ReduceLROnPlateau, TensorBoard
import tensorflow as tf
from custom_losses import dice_hard, weighted_binary_crossentropy_loss, dice_loss, margin_loss
from load_3D_data import load_class_weights, generate_train_batches, generate_val_batches
def get_loss(root, split, net, recon_wei, choice):
if choice == 'w_bce':
pos_class_weight = load_class_weights(root=root, split=split)
loss = weighted_binary_crossentropy_loss(pos_class_weight)
elif choice == 'bce':
loss = 'binary_crossentropy'
elif choice == 'dice':
loss = dice_loss
elif choice == 'w_mar':
pos_class_weight = load_class_weights(root=root, split=split)
loss = margin_loss(margin=0.4, downweight=0.5, pos_weight=pos_class_weight)
elif choice == 'mar':
loss = margin_loss(margin=0.4, downweight=0.5, pos_weight=1.0)
else:
raise Exception("Unknow loss_type")
if net.find('caps') != -1:
return {'out_seg': loss, 'out_recon': 'mse'}, {'out_seg': 1., 'out_recon': recon_wei}
else:
return loss, None
def get_callbacks(arguments):
if arguments.net.find('caps') != -1:
monitor_name = 'val_out_seg_dice_hard'
else:
monitor_name = 'val_dice_hard'
csv_logger = CSVLogger(join(arguments.log_dir, arguments.output_name + '_log_' + arguments.time + '.csv'), separator=',')
tb = TensorBoard(arguments.tf_log_dir, batch_size=arguments.batch_size, histogram_freq=0)
model_checkpoint = ModelCheckpoint(join(arguments.check_dir, arguments.output_name + '_model_' + arguments.time + '.hdf5'),
monitor=monitor_name, save_best_only=True, save_weights_only=True,
verbose=1, mode='max')
lr_reducer = ReduceLROnPlateau(monitor=monitor_name, factor=0.05, cooldown=0, patience=5,verbose=1, mode='max')
early_stopper = EarlyStopping(monitor=monitor_name, min_delta=0, patience=25, verbose=0, mode='max')
return [model_checkpoint, csv_logger, lr_reducer, early_stopper, tb]
def compile_model(args, net_input_shape, uncomp_model):
# Set optimizer loss and metrics
opt = Adam(lr=args.initial_lr, beta_1=0.99, beta_2=0.999, decay=1e-6)
if args.net.find('caps') != -1:
metrics = {'out_seg': dice_hard}
else:
metrics = [dice_hard]
loss, loss_weighting = get_loss(root=args.data_root_dir, split=args.split_num, net=args.net,
recon_wei=args.recon_wei, choice=args.loss)
# If using CPU or single GPU
if args.gpus <= 1:
uncomp_model.compile(optimizer=opt, loss=loss, loss_weights=loss_weighting, metrics=metrics)
return uncomp_model
# If using multiple GPUs
else:
with tf.device("/cpu:0"):
uncomp_model.compile(optimizer=opt, loss=loss, loss_weights=loss_weighting, metrics=metrics)
model = multi_gpu_model(uncomp_model, gpus=args.gpus)
model.__setattr__('callback_model', uncomp_model)
model.compile(optimizer=opt, loss=loss, loss_weights=loss_weighting, metrics=metrics)
return model
def plot_training(training_history, arguments):
f, (ax1, ax2) = plt.subplots(2, sharex=True, figsize=(10, 10))
f.suptitle(arguments.net, fontsize=18)
if arguments.net.find('caps') != -1:
ax1.plot(training_history.history['out_seg_dice_hard'])
ax1.plot(training_history.history['val_out_seg_dice_hard'])
else:
ax1.plot(training_history.history['dice_hard'])
ax1.plot(training_history.history['val_dice_hard'])
ax1.set_title('Dice Coefficient')
ax1.set_ylabel('Dice', fontsize=12)
ax1.legend(['Train', 'Val'], loc='upper left')
ax1.set_yticks(np.arange(0, 1.05, 0.05))
if arguments.net.find('caps') != -1:
ax1.set_xticks(np.arange(0, len(training_history.history['out_seg_dice_hard'])))
else:
ax1.set_xticks(np.arange(0, len(training_history.history['dice_hard'])))
ax1.grid(True)
gridlines1 = ax1.get_xgridlines() + ax1.get_ygridlines()
for line in gridlines1:
line.set_linestyle('-.')
ax2.plot(training_history.history['loss'])
ax2.plot(training_history.history['val_loss'])
ax2.set_title('Model Loss')
ax2.set_ylabel('Loss', fontsize=12)
ax2.set_xlabel('Epoch', fontsize=12)
ax2.legend(['Train', 'Val'], loc='upper right')
ax1.set_xticks(np.arange(0, len(training_history.history['loss'])))
ax2.grid(True)
gridlines2 = ax2.get_xgridlines() + ax2.get_ygridlines()
for line in gridlines2:
line.set_linestyle('-.')
f.savefig(join(arguments.output_dir, arguments.output_name + '_plots_' + arguments.time + '.png'))
plt.close()
def train(args, train_list, val_list, u_model, net_input_shape):
# Compile the loaded model
model = compile_model(args=args, net_input_shape=net_input_shape, uncomp_model=u_model)
# Set the callbacks
callbacks = get_callbacks(args)
# Training the network
history = model.fit_generator(
generate_train_batches(args.data_root_dir, train_list, net_input_shape, net=args.net,
batchSize=args.batch_size, numSlices=args.slices, subSampAmt=args.subsamp,
stride=args.stride, shuff=args.shuffle_data, aug_data=args.aug_data),
max_queue_size=40, workers=4, use_multiprocessing=False,
steps_per_epoch=10000,
validation_data=generate_val_batches(args.data_root_dir, val_list, net_input_shape, net=args.net,
batchSize=args.batch_size, numSlices=args.slices, subSampAmt=0,
stride=20, shuff=args.shuffle_data),
validation_steps=500, # Set validation stride larger to see more of the data.
epochs=200,
callbacks=callbacks,
verbose=1)
# Plot the training data collected
plot_training(history, args)