-
Notifications
You must be signed in to change notification settings - Fork 101
/
Copy pathdensenets.py
1017 lines (863 loc) · 48.4 KB
/
densenets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# -*- coding: utf-8 -*-
'''
code from Keras.contrib. This is just a local copy in case that repo changes.
DenseNet and DenseNet-FCN models for Keras.
DenseNet is a network architecture where each layer is directly connected
to every other layer in a feed-forward fashion (within each dense block).
For each layer, the feature maps of all preceding layers are treated as
separate inputs whereas its own feature maps are passed on as inputs to
all subsequent layers. This connectivity pattern yields state-of-the-art
accuracies on CIFAR10/100 (with or without data augmentation) and SVHN.
On the large scale ILSVRC 2012 (ImageNet) dataset, DenseNet achieves a
similar accuracy as ResNet, but using less than half the amount of
parameters and roughly half the number of FLOPs.
DenseNets support any input image size of 32x32 or greater, and are thus
suited for CIFAR-10 or CIFAR-100 datasets. There are two types of DenseNets,
one suited for smaller images (DenseNet) and one suited for ImageNet,
called DenseNetImageNet. They are differentiated by the strided convolution
and pooling operations prior to the initial dense block.
The following table describes the size and accuracy of DenseNetImageNet models
on the ImageNet dataset (single crop), for which weights are provided:
------------------------------------------------------------------------------------
Model type | ImageNet Acc (Top 1) | ImageNet Acc (Top 5) | Params (M) |
------------------------------------------------------------------------------------
| DenseNet-121 | 25.02 % | 7.71 % | 8.0 |
| DenseNet-169 | 23.80 % | 6.85 % | 14.3 |
| DenseNet-201 | 22.58 % | 6.34 % | 20.2 |
| DenseNet-161 | 22.20 % | - % | 28.9 |
------------------------------------------------------------------------------------
DenseNets can be extended to image segmentation tasks as described in the
paper "The One Hundred Layers Tiramisu: Fully Convolutional DenseNets for
Semantic Segmentation". Here, the dense blocks are arranged and concatenated
with long skip connections for state of the art performance on the CamVid dataset.
# Reference
- [Densely Connected Convolutional Networks](https://arxiv.org/pdf/1608.06993.pdf)
- [The One Hundred Layers Tiramisu: Fully Convolutional DenseNets for Semantic Segmentation]
(https://arxiv.org/pdf/1611.09326.pdf)
This implementation is based on the following reference code:
- https://github.com/gpleiss/efficient_densenet_pytorch
- https://github.com/liuzhuang13/DenseNet
'''
from __future__ import print_function
from __future__ import absolute_import
from __future__ import division
import warnings
from keras.models import Model
from keras.layers import Dense
from keras.layers import Dropout
from keras.layers import Activation
from keras.layers import Reshape
from keras.layers import Conv2D
from keras.layers import Conv2DTranspose
from keras.layers import UpSampling2D
from keras.layers import MaxPooling2D
from keras.layers import AveragePooling2D
from keras.layers import GlobalMaxPooling2D
from keras.layers import GlobalAveragePooling2D
from keras.layers import Input
from keras.layers import concatenate
from keras.layers import BatchNormalization
from keras.regularizers import l2
from keras.utils.layer_utils import convert_all_kernels_in_model
from keras.utils.data_utils import get_file
from keras.engine.topology import get_source_inputs
from keras.applications.imagenet_utils import _obtain_input_shape
from keras.applications.imagenet_utils import decode_predictions
from keras.applications.imagenet_utils import preprocess_input as _preprocess_input
import keras.backend as K
from keras.callbacks import ModelCheckpoint, CSVLogger, EarlyStopping, ReduceLROnPlateau
from subpixel_upscaling import SubPixelUpscaling
DENSENET_121_WEIGHTS_PATH = r'https://github.com/titu1994/DenseNet/releases/download/v3.0/DenseNet-BC-121-32.h5'
DENSENET_161_WEIGHTS_PATH = r'https://github.com/titu1994/DenseNet/releases/download/v3.0/DenseNet-BC-161-48.h5'
DENSENET_169_WEIGHTS_PATH = r'https://github.com/titu1994/DenseNet/releases/download/v3.0/DenseNet-BC-169-32.h5'
DENSENET_121_WEIGHTS_PATH_NO_TOP = r'https://github.com/titu1994/DenseNet/releases/download/v3.0/DenseNet-BC-121-32-no-top.h5'
DENSENET_161_WEIGHTS_PATH_NO_TOP = r'https://github.com/titu1994/DenseNet/releases/download/v3.0/DenseNet-BC-161-48-no-top.h5'
DENSENET_169_WEIGHTS_PATH_NO_TOP = r'https://github.com/titu1994/DenseNet/releases/download/v3.0/DenseNet-BC-169-32-no-top.h5'
def preprocess_input(x, data_format=None):
"""Preprocesses a tensor encoding a batch of images.
# Arguments
x: input Numpy tensor, 4D.
data_format: data format of the image tensor.
# Returns
Preprocessed tensor.
"""
x = _preprocess_input(x, data_format=data_format)
x *= 0.017 # scale values
return x
def DenseNet(input_shape=None,
depth=40,
nb_dense_block=3,
growth_rate=12,
nb_filter=-1,
nb_layers_per_block=-1,
bottleneck=False,
reduction=0.0,
dropout_rate=0.0,
weight_decay=1e-4,
subsample_initial_block=False,
include_top=True,
weights=None,
input_tensor=None,
pooling=None,
classes=10,
activation='softmax',
transition_pooling='avg'):
'''Instantiate the DenseNet architecture.
The model and the weights are compatible with both
TensorFlow and Theano. The dimension ordering
convention used by the model is the one
specified in your Keras config file.
# Arguments
input_shape: optional shape tuple, only to be specified
if `include_top` is False (otherwise the input shape
has to be `(224, 224, 3)` (with `channels_last` dim ordering)
or `(3, 224, 224)` (with `channels_first` dim ordering).
It should have exactly 3 inputs channels,
and width and height should be no smaller than 8.
E.g. `(224, 224, 3)` would be one valid value.
depth: number or layers in the DenseNet
nb_dense_block: number of dense blocks to add to end
growth_rate: number of filters to add per dense block
nb_filter: initial number of filters. -1 indicates initial
number of filters will default to 2 * growth_rate
nb_layers_per_block: number of layers in each dense block.
Can be a -1, positive integer or a list.
If -1, calculates nb_layer_per_block from the network depth.
If positive integer, a set number of layers per dense block.
If list, nb_layer is used as provided. Note that list size must
be nb_dense_block
bottleneck: flag to add bottleneck blocks in between dense blocks
reduction: reduction factor of transition blocks.
Note : reduction value is inverted to compute compression.
dropout_rate: dropout rate
weight_decay: weight decay rate
subsample_initial_block: Changes model type to suit different datasets.
Should be set to True for ImageNet, and False for CIFAR datasets.
When set to True, the initial convolution will be strided and
adds a MaxPooling2D before the initial dense block.
include_top: whether to include the fully-connected
layer at the top of the network.
weights: one of `None` (random initialization) or
'imagenet' (pre-training on ImageNet)..
input_tensor: optional Keras tensor (i.e. output of `layers.Input()`)
to use as image input for the model.
pooling: Optional pooling mode for feature extraction
when `include_top` is `False`.
- `None` means that the output of the model
will be the 4D tensor output of the
last convolutional layer.
- `avg` means that global average pooling
will be applied to the output of the
last convolutional layer, and thus
the output of the model will be a
2D tensor.
- `max` means that global max pooling will
be applied.
classes: optional number of classes to classify images
into, only to be specified if `include_top` is True, and
if no `weights` argument is specified.
activation: Type of activation at the top layer. Can be one of
'softmax' or 'sigmoid'. Note that if sigmoid is used,
classes must be 1.
transition_pooling: `avg` for avg pooling (default), `max` for max pooling,
None for no pooling during scale transition blocks. Please note that this
default differs from the DenseNetFCN paper in accordance with the DenseNet
paper.
# Returns
A Keras model instance.
# Raises
ValueError: in case of invalid argument for `weights`,
or invalid input shape.
'''
if weights not in {'imagenet', None}:
raise ValueError('The `weights` argument should be either '
'`None` (random initialization) or `imagenet` '
'(pre-training on ImageNet).')
if weights == 'imagenet' and include_top and classes != 1000:
raise ValueError('If using `weights` as ImageNet with `include_top` '
'as true, `classes` should be 1000')
if activation not in ['softmax', 'sigmoid']:
raise ValueError('activation must be one of "softmax" or "sigmoid"')
if activation == 'sigmoid' and classes != 1:
raise ValueError('sigmoid activation can only be used when classes = 1')
# Determine proper input shape
input_shape = _obtain_input_shape(input_shape,
default_size=32,
min_size=8,
data_format=K.image_data_format(),
require_flatten=include_top)
if input_tensor is None:
img_input = Input(shape=input_shape)
else:
if not K.is_keras_tensor(input_tensor):
img_input = Input(tensor=input_tensor, shape=input_shape)
else:
img_input = input_tensor
x = __create_dense_net(classes, img_input, include_top, depth, nb_dense_block,
growth_rate, nb_filter, nb_layers_per_block, bottleneck,
reduction, dropout_rate, weight_decay, subsample_initial_block,
pooling, activation, transition_pooling)
# Ensure that the model takes into account
# any potential predecessors of `input_tensor`.
if input_tensor is not None:
inputs = get_source_inputs(input_tensor)
else:
inputs = img_input
# Create model.
model = Model(inputs, x, name='densenet')
# load weights
if weights == 'imagenet':
weights_loaded = False
if (depth == 121) and (nb_dense_block == 4) and (growth_rate == 32) and (nb_filter == 64) and \
(bottleneck is True) and (reduction == 0.5) and (subsample_initial_block):
if include_top:
weights_path = get_file('DenseNet-BC-121-32.h5',
DENSENET_121_WEIGHTS_PATH,
cache_subdir='models',
md5_hash='a439dd41aa672aef6daba4ee1fd54abd')
else:
weights_path = get_file('DenseNet-BC-121-32-no-top.h5',
DENSENET_121_WEIGHTS_PATH_NO_TOP,
cache_subdir='models',
md5_hash='55e62a6358af8a0af0eedf399b5aea99')
model.load_weights(weights_path, by_name=True)
weights_loaded = True
if (depth == 161) and (nb_dense_block == 4) and (growth_rate == 48) and (nb_filter == 96) and \
(bottleneck is True) and (reduction == 0.5) and (subsample_initial_block):
if include_top:
weights_path = get_file('DenseNet-BC-161-48.h5',
DENSENET_161_WEIGHTS_PATH,
cache_subdir='models',
md5_hash='6c326cf4fbdb57d31eff04333a23fcca')
else:
weights_path = get_file('DenseNet-BC-161-48-no-top.h5',
DENSENET_161_WEIGHTS_PATH_NO_TOP,
cache_subdir='models',
md5_hash='1a9476b79f6b7673acaa2769e6427b92')
model.load_weights(weights_path, by_name=True)
weights_loaded = True
if (depth == 169) and (nb_dense_block == 4) and (growth_rate == 32) and (nb_filter == 64) and \
(bottleneck is True) and (reduction == 0.5) and (subsample_initial_block):
if include_top:
weights_path = get_file('DenseNet-BC-169-32.h5',
DENSENET_169_WEIGHTS_PATH,
cache_subdir='models',
md5_hash='914869c361303d2e39dec640b4e606a6')
else:
weights_path = get_file('DenseNet-BC-169-32-no-top.h5',
DENSENET_169_WEIGHTS_PATH_NO_TOP,
cache_subdir='models',
md5_hash='89c19e8276cfd10585d5fadc1df6859e')
model.load_weights(weights_path, by_name=True)
weights_loaded = True
if weights_loaded:
if K.backend() == 'theano':
convert_all_kernels_in_model(model)
if K.image_data_format() == 'channels_first' and K.backend() == 'tensorflow':
warnings.warn('You are using the TensorFlow backend, yet you '
'are using the Theano '
'image data format convention '
'(`image_data_format="channels_first"`). '
'For best performance, set '
'`image_data_format="channels_last"` in '
'your Keras config '
'at ~/.keras/keras.json.')
print("Weights for the model were loaded successfully")
return model
def DenseNetFCN(input_shape, nb_dense_block=5, growth_rate=16, nb_layers_per_block=4,
reduction=0.0, dropout_rate=0.2, weight_decay=1E-4, init_conv_filters=48,
include_top=True, weights=None, input_tensor=None, classes=1, activation='sigmoid',
upsampling_conv=128, upsampling_type='deconv', early_transition=False,
transition_pooling='max', initial_kernel_size=(3, 3)):
'''Instantiate the DenseNet FCN architecture.
Note that when using TensorFlow,
for best performance you should set
`image_data_format='channels_last'` in your Keras config
at ~/.keras/keras.json.
# Arguments
nb_dense_block: number of dense blocks to add to end (generally = 3)
growth_rate: number of filters to add per dense block
nb_layers_per_block: number of layers in each dense block.
Can be a positive integer or a list.
If positive integer, a set number of layers per dense block.
If list, nb_layer is used as provided. Note that list size must
be (nb_dense_block + 1)
reduction: reduction factor of transition blocks.
Note : reduction value is inverted to compute compression.
dropout_rate: dropout rate
weight_decay: weight decay factor
init_conv_filters: number of layers in the initial convolution layer
include_top: whether to include the fully-connected
layer at the top of the network.
weights: one of `None` (random initialization) or
'cifar10' (pre-training on CIFAR-10)..
input_tensor: optional Keras tensor (i.e. output of `layers.Input()`)
to use as image input for the model.
input_shape: optional shape tuple, only to be specified
if `include_top` is False (otherwise the input shape
has to be `(32, 32, 3)` (with `channels_last` dim ordering)
or `(3, 32, 32)` (with `channels_first` dim ordering).
It should have exactly 3 inputs channels,
and width and height should be no smaller than 8.
E.g. `(200, 200, 3)` would be one valid value.
classes: optional number of classes to classify images
into, only to be specified if `include_top` is True, and
if no `weights` argument is specified.
activation: Type of activation at the top layer. Can be one of 'softmax' or 'sigmoid'.
Note that if sigmoid is used, classes must be 1.
upsampling_conv: number of convolutional layers in upsampling via subpixel convolution
upsampling_type: Can be one of 'deconv', 'upsampling' and
'subpixel'. Defines type of upsampling algorithm used.
batchsize: Fixed batch size. This is a temporary requirement for
computation of output shape in the case of Deconvolution2D layers.
Parameter will be removed in next iteration of Keras, which infers
output shape of deconvolution layers automatically.
early_transition: Start with an extra initial transition down and end with an extra
transition up to reduce the network size.
initial_kernel_size: The first Conv2D kernel might vary in size based on the
application, this parameter makes it configurable.
# Returns
A Keras model instance.
'''
if weights not in {None}:
raise ValueError('The `weights` argument should be '
'`None` (random initialization) as no '
'model weights are provided.')
upsampling_type = upsampling_type.lower()
if upsampling_type not in ['upsampling', 'deconv', 'subpixel']:
raise ValueError('Parameter "upsampling_type" must be one of "upsampling", '
'"deconv" or "subpixel".')
if input_shape is None:
raise ValueError('For fully convolutional models, input shape must be supplied.')
if type(nb_layers_per_block) is not list and nb_dense_block < 1:
raise ValueError('Number of dense layers per block must be greater than 1. Argument '
'value was %d.' % (nb_layers_per_block))
if activation not in ['softmax', 'sigmoid']:
raise ValueError('activation must be one of "softmax" or "sigmoid"')
if activation == 'sigmoid' and classes != 1:
raise ValueError('sigmoid activation can only be used when classes = 1')
# Determine proper input shape
min_size = 2 ** nb_dense_block
if K.image_data_format() == 'channels_first':
if input_shape is not None:
if ((input_shape[1] is not None and input_shape[1] < min_size) or
(input_shape[2] is not None and input_shape[2] < min_size)):
raise ValueError('Input size must be at least ' +
str(min_size) + 'x' + str(min_size) + ', got '
'`input_shape=' + str(input_shape) + '`')
else:
input_shape = (classes, None, None)
else:
if input_shape is not None:
if ((input_shape[0] is not None and input_shape[0] < min_size) or
(input_shape[1] is not None and input_shape[1] < min_size)):
raise ValueError('Input size must be at least ' +
str(min_size) + 'x' + str(min_size) + ', got '
'`input_shape=' + str(input_shape) + '`')
else:
input_shape = (None, None, classes)
if input_tensor is None:
img_input = Input(shape=input_shape)
else:
if not K.is_keras_tensor(input_tensor):
img_input = Input(tensor=input_tensor, shape=input_shape)
else:
img_input = input_tensor
x = __create_fcn_dense_net(classes, img_input, include_top, nb_dense_block, growth_rate,
reduction, dropout_rate, weight_decay,
nb_layers_per_block, upsampling_conv, upsampling_type,
init_conv_filters, input_shape, activation,
early_transition, transition_pooling, initial_kernel_size)
# Ensure that the model takes into account
# any potential predecessors of `input_tensor`.
if input_tensor is not None:
inputs = get_source_inputs(input_tensor)
else:
inputs = img_input
# Create model.
model = Model(inputs, x, name='fcn-densenet')
return model
def DenseNetImageNet121(input_shape=None,
bottleneck=True,
reduction=0.5,
dropout_rate=0.0,
weight_decay=1e-4,
include_top=True,
weights='imagenet',
input_tensor=None,
pooling=None,
classes=1000,
activation='softmax'):
return DenseNet(input_shape, depth=121, nb_dense_block=4, growth_rate=32, nb_filter=64,
nb_layers_per_block=[6, 12, 24, 16], bottleneck=bottleneck, reduction=reduction,
dropout_rate=dropout_rate, weight_decay=weight_decay, subsample_initial_block=True,
include_top=include_top, weights=weights, input_tensor=input_tensor,
pooling=pooling, classes=classes, activation=activation)
def DenseNetImageNet169(input_shape=None,
bottleneck=True,
reduction=0.5,
dropout_rate=0.0,
weight_decay=1e-4,
include_top=True,
weights='imagenet',
input_tensor=None,
pooling=None,
classes=1000,
activation='softmax'):
return DenseNet(input_shape, depth=169, nb_dense_block=4, growth_rate=32, nb_filter=64,
nb_layers_per_block=[6, 12, 32, 32], bottleneck=bottleneck, reduction=reduction,
dropout_rate=dropout_rate, weight_decay=weight_decay, subsample_initial_block=True,
include_top=include_top, weights=weights, input_tensor=input_tensor,
pooling=pooling, classes=classes, activation=activation)
def DenseNetImageNet201(input_shape=None,
bottleneck=True,
reduction=0.5,
dropout_rate=0.0,
weight_decay=1e-4,
include_top=True,
weights=None,
input_tensor=None,
pooling=None,
classes=1000,
activation='softmax'):
return DenseNet(input_shape, depth=201, nb_dense_block=4, growth_rate=32, nb_filter=64,
nb_layers_per_block=[6, 12, 48, 32], bottleneck=bottleneck, reduction=reduction,
dropout_rate=dropout_rate, weight_decay=weight_decay, subsample_initial_block=True,
include_top=include_top, weights=weights, input_tensor=input_tensor,
pooling=pooling, classes=classes, activation=activation)
def DenseNetImageNet264(input_shape=None,
bottleneck=True,
reduction=0.5,
dropout_rate=0.0,
weight_decay=1e-4,
include_top=True,
weights=None,
input_tensor=None,
pooling=None,
classes=1000,
activation='softmax'):
return DenseNet(input_shape, depth=201, nb_dense_block=4, growth_rate=32, nb_filter=64,
nb_layers_per_block=[6, 12, 64, 48], bottleneck=bottleneck, reduction=reduction,
dropout_rate=dropout_rate, weight_decay=weight_decay, subsample_initial_block=True,
include_top=include_top, weights=weights, input_tensor=input_tensor,
pooling=pooling, classes=classes, activation=activation)
def DenseNetImageNet161(input_shape=None,
bottleneck=True,
reduction=0.5,
dropout_rate=0.0,
weight_decay=1e-4,
include_top=True,
weights='imagenet',
input_tensor=None,
pooling=None,
classes=1000,
activation='softmax'):
return DenseNet(input_shape, depth=161, nb_dense_block=4, growth_rate=48, nb_filter=96,
nb_layers_per_block=[6, 12, 36, 24], bottleneck=bottleneck, reduction=reduction,
dropout_rate=dropout_rate, weight_decay=weight_decay, subsample_initial_block=True,
include_top=include_top, weights=weights, input_tensor=input_tensor,
pooling=pooling, classes=classes, activation=activation)
def name_or_none(prefix, name):
return prefix + name if (prefix is not None and name is not None) else None
def __conv_block(ip, nb_filter, bottleneck=False, dropout_rate=None, weight_decay=1e-4, block_prefix=None):
'''
Adds a convolution layer (with batch normalization and relu),
and optionally a bottleneck layer.
# Arguments
ip: Input tensor
nb_filter: integer, the dimensionality of the output space
(i.e. the number output of filters in the convolution)
bottleneck: if True, adds a bottleneck convolution block
dropout_rate: dropout rate
weight_decay: weight decay factor
block_prefix: str, for unique layer naming
# Input shape
4D tensor with shape:
`(samples, channels, rows, cols)` if data_format='channels_first'
or 4D tensor with shape:
`(samples, rows, cols, channels)` if data_format='channels_last'.
# Output shape
4D tensor with shape:
`(samples, filters, new_rows, new_cols)` if data_format='channels_first'
or 4D tensor with shape:
`(samples, new_rows, new_cols, filters)` if data_format='channels_last'.
`rows` and `cols` values might have changed due to stride.
# Returns
output tensor of block
'''
with K.name_scope('ConvBlock'):
concat_axis = 1 if K.image_data_format() == 'channels_first' else -1
x = BatchNormalization(axis=concat_axis, epsilon=1.1e-5, name=name_or_none(block_prefix, '_bn'))(ip)
x = Activation('relu')(x)
if bottleneck:
inter_channel = nb_filter * 4
x = Conv2D(inter_channel, (1, 1), kernel_initializer='he_normal', padding='same', use_bias=False,
kernel_regularizer=l2(weight_decay), name=name_or_none(block_prefix, '_bottleneck_conv2D'))(x)
x = BatchNormalization(axis=concat_axis, epsilon=1.1e-5,
name=name_or_none(block_prefix, '_bottleneck_bn'))(x)
x = Activation('relu')(x)
x = Conv2D(nb_filter, (3, 3), kernel_initializer='he_normal', padding='same', use_bias=False,
name=name_or_none(block_prefix, '_conv2D'))(x)
if dropout_rate:
x = Dropout(dropout_rate)(x)
return x
def __dense_block(x, nb_layers, nb_filter, growth_rate, bottleneck=False, dropout_rate=None,
weight_decay=1e-4, grow_nb_filters=True, return_concat_list=False, block_prefix=None):
'''
Build a dense_block where the output of each conv_block is fed
to subsequent ones
# Arguments
x: input keras tensor
nb_layers: the number of conv_blocks to append to the model
nb_filter: integer, the dimensionality of the output space
(i.e. the number output of filters in the convolution)
growth_rate: growth rate of the dense block
bottleneck: if True, adds a bottleneck convolution block to
each conv_block
dropout_rate: dropout rate
weight_decay: weight decay factor
grow_nb_filters: if True, allows number of filters to grow
return_concat_list: set to True to return the list of
feature maps along with the actual output
block_prefix: str, for block unique naming
# Return
If return_concat_list is True, returns a list of the output
keras tensor, the number of filters and a list of all the
dense blocks added to the keras tensor
If return_concat_list is False, returns a list of the output
keras tensor and the number of filters
'''
with K.name_scope('DenseBlock'):
concat_axis = 1 if K.image_data_format() == 'channels_first' else -1
x_list = [x]
for i in range(nb_layers):
cb = __conv_block(x, growth_rate, bottleneck, dropout_rate, weight_decay,
block_prefix=name_or_none(block_prefix, '_%i' % i))
x_list.append(cb)
x = concatenate([x, cb], axis=concat_axis)
if grow_nb_filters:
nb_filter += growth_rate
if return_concat_list:
return x, nb_filter, x_list
else:
return x, nb_filter
def __transition_block(ip, nb_filter, compression=1.0, weight_decay=1e-4, block_prefix=None, transition_pooling='max'):
'''
Adds a pointwise convolution layer (with batch normalization and relu),
and an average pooling layer. The number of output convolution filters
can be reduced by appropriately reducing the compression parameter.
# Arguments
ip: input keras tensor
nb_filter: integer, the dimensionality of the output space
(i.e. the number output of filters in the convolution)
compression: calculated as 1 - reduction. Reduces the number
of feature maps in the transition block.
weight_decay: weight decay factor
block_prefix: str, for block unique naming
# Input shape
4D tensor with shape:
`(samples, channels, rows, cols)` if data_format='channels_first'
or 4D tensor with shape:
`(samples, rows, cols, channels)` if data_format='channels_last'.
# Output shape
4D tensor with shape:
`(samples, nb_filter * compression, rows / 2, cols / 2)`
if data_format='channels_first'
or 4D tensor with shape:
`(samples, rows / 2, cols / 2, nb_filter * compression)`
if data_format='channels_last'.
# Returns
a keras tensor
'''
with K.name_scope('Transition'):
concat_axis = 1 if K.image_data_format() == 'channels_first' else -1
x = BatchNormalization(axis=concat_axis, epsilon=1.1e-5, name=name_or_none(block_prefix, '_bn'))(ip)
x = Activation('relu')(x)
x = Conv2D(int(nb_filter * compression), (1, 1), kernel_initializer='he_normal', padding='same',
use_bias=False, kernel_regularizer=l2(weight_decay), name=name_or_none(block_prefix, '_conv2D'))(x)
if transition_pooling == 'avg':
x = AveragePooling2D((2, 2), strides=(2, 2))(x)
elif transition_pooling == 'max':
x = MaxPooling2D((2, 2), strides=(2, 2))(x)
return x
def __transition_up_block(ip, nb_filters, type='deconv', weight_decay=1E-4, block_prefix=None):
'''Adds an upsampling block. Upsampling operation relies on the the type parameter.
# Arguments
ip: input keras tensor
nb_filters: integer, the dimensionality of the output space
(i.e. the number output of filters in the convolution)
type: can be 'upsampling', 'subpixel', 'deconv'. Determines
type of upsampling performed
weight_decay: weight decay factor
block_prefix: str, for block unique naming
# Input shape
4D tensor with shape:
`(samples, channels, rows, cols)` if data_format='channels_first'
or 4D tensor with shape:
`(samples, rows, cols, channels)` if data_format='channels_last'.
# Output shape
4D tensor with shape:
`(samples, nb_filter, rows * 2, cols * 2)` if data_format='channels_first'
or 4D tensor with shape:
`(samples, rows * 2, cols * 2, nb_filter)` if data_format='channels_last'.
# Returns
a keras tensor
'''
with K.name_scope('TransitionUp'):
if type == 'upsampling':
x = UpSampling2D(name=name_or_none(block_prefix, '_upsampling'))(ip)
elif type == 'subpixel':
x = Conv2D(nb_filters, (3, 3), activation='relu', padding='same', kernel_regularizer=l2(weight_decay),
use_bias=False, kernel_initializer='he_normal', name=name_or_none(block_prefix, '_conv2D'))(ip)
x = SubPixelUpscaling(scale_factor=2, name=name_or_none(block_prefix, '_subpixel'))(x)
x = Conv2D(nb_filters, (3, 3), activation='relu', padding='same', kernel_regularizer=l2(weight_decay),
use_bias=False, kernel_initializer='he_normal', name=name_or_none(block_prefix, '_conv2D'))(x)
else:
x = Conv2DTranspose(nb_filters, (3, 3), activation='relu', padding='same', strides=(2, 2),
kernel_initializer='he_normal', kernel_regularizer=l2(weight_decay),
name=name_or_none(block_prefix, '_conv2DT'))(ip)
return x
def __create_dense_net(nb_classes, img_input, include_top, depth=40, nb_dense_block=3, growth_rate=12, nb_filter=-1,
nb_layers_per_block=-1, bottleneck=False, reduction=0.0, dropout_rate=None, weight_decay=1e-4,
subsample_initial_block=False, pooling=None, activation='sigmoid', transition_pooling='avg'):
''' Build the DenseNet model
# Arguments
nb_classes: number of classes
img_input: tuple of shape (channels, rows, columns) or (rows, columns, channels)
include_top: flag to include the final Dense layer
depth: number or layers
nb_dense_block: number of dense blocks to add to end (generally = 3)
growth_rate: number of filters to add per dense block
nb_filter: initial number of filters. Default -1 indicates initial number of filters is 2 * growth_rate
nb_layers_per_block: number of layers in each dense block.
Can be a -1, positive integer or a list.
If -1, calculates nb_layer_per_block from the depth of the network.
If positive integer, a set number of layers per dense block.
If list, nb_layer is used as provided. Note that list size must
be (nb_dense_block + 1)
bottleneck: add bottleneck blocks
reduction: reduction factor of transition blocks. Note : reduction value is inverted to compute compression
dropout_rate: dropout rate
weight_decay: weight decay rate
subsample_initial_block: Changes model type to suit different datasets.
Should be set to True for ImageNet, and False for CIFAR datasets.
When set to True, the initial convolution will be strided and
adds a MaxPooling2D before the initial dense block.
pooling: Optional pooling mode for feature extraction
when `include_top` is `False`.
- `None` means that the output of the model
will be the 4D tensor output of the
last convolutional layer.
- `avg` means that global average pooling
will be applied to the output of the
last convolutional layer, and thus
the output of the model will be a
2D tensor.
- `max` means that global max pooling will
be applied.
activation: Type of activation at the top layer. Can be one of 'softmax' or 'sigmoid'.
Note that if sigmoid is used, classes must be 1.
transition_pooling: `avg` for avg pooling (default), `max` for max pooling,
None for no pooling during scale transition blocks. Please note that this
default differs from the DenseNetFCN paper in accordance with the DenseNet
paper.
# Returns
a keras tensor
# Raises
ValueError: in case of invalid argument for `reduction`
or `nb_dense_block`
'''
with K.name_scope('DenseNet'):
concat_axis = 1 if K.image_data_format() == 'channels_first' else -1
if reduction != 0.0:
if not (reduction <= 1.0 and reduction > 0.0):
raise ValueError('`reduction` value must lie between 0.0 and 1.0')
# layers in each dense block
if type(nb_layers_per_block) is list or type(nb_layers_per_block) is tuple:
nb_layers = list(nb_layers_per_block) # Convert tuple to list
if len(nb_layers) != (nb_dense_block):
raise ValueError('If `nb_dense_block` is a list, its length must match '
'the number of layers provided by `nb_layers`.')
final_nb_layer = nb_layers[-1]
nb_layers = nb_layers[:-1]
else:
if nb_layers_per_block == -1:
assert (depth - 4) % 3 == 0, 'Depth must be 3 N + 4 if nb_layers_per_block == -1'
count = int((depth - 4) / 3)
if bottleneck:
count = count // 2
nb_layers = [count for _ in range(nb_dense_block)]
final_nb_layer = count
else:
final_nb_layer = nb_layers_per_block
nb_layers = [nb_layers_per_block] * nb_dense_block
# compute initial nb_filter if -1, else accept users initial nb_filter
if nb_filter <= 0:
nb_filter = 2 * growth_rate
# compute compression factor
compression = 1.0 - reduction
# Initial convolution
if subsample_initial_block:
initial_kernel = (7, 7)
initial_strides = (2, 2)
else:
initial_kernel = (3, 3)
initial_strides = (1, 1)
x = Conv2D(nb_filter, initial_kernel, kernel_initializer='he_normal', padding='same', name='initial_conv2D',
strides=initial_strides, use_bias=False, kernel_regularizer=l2(weight_decay))(img_input)
if subsample_initial_block:
x = BatchNormalization(axis=concat_axis, epsilon=1.1e-5, name='initial_bn')(x)
x = Activation('relu')(x)
x = MaxPooling2D((3, 3), strides=(2, 2), padding='same')(x)
# Add dense blocks
for block_idx in range(nb_dense_block - 1):
x, nb_filter = __dense_block(x, nb_layers[block_idx], nb_filter, growth_rate, bottleneck=bottleneck,
dropout_rate=dropout_rate, weight_decay=weight_decay,
block_prefix='dense_%i' % block_idx)
# add transition_block
x = __transition_block(x, nb_filter, compression=compression, weight_decay=weight_decay,
block_prefix='tr_%i' % block_idx, transition_pooling=transition_pooling)
nb_filter = int(nb_filter * compression)
# The last dense_block does not have a transition_block
x, nb_filter = __dense_block(x, final_nb_layer, nb_filter, growth_rate, bottleneck=bottleneck,
dropout_rate=dropout_rate, weight_decay=weight_decay,
block_prefix='dense_%i' % (nb_dense_block - 1))
x = BatchNormalization(axis=concat_axis, epsilon=1.1e-5, name='final_bn')(x)
x = Activation('relu')(x)
if include_top:
if pooling == 'avg':
x = GlobalAveragePooling2D()(x)
elif pooling == 'max':
x = GlobalMaxPooling2D()(x)
x = Dense(nb_classes, activation=activation)(x)
else:
if pooling == 'avg':
x = GlobalAveragePooling2D()(x)
elif pooling == 'max':
x = GlobalMaxPooling2D()(x)
return x
def __create_fcn_dense_net(nb_classes, img_input, include_top, nb_dense_block=5, growth_rate=12,
reduction=0.0, dropout_rate=None, weight_decay=1e-4,
nb_layers_per_block=4, nb_upsampling_conv=128, upsampling_type='deconv',
init_conv_filters=48, input_shape=None, activation='sigmoid',
early_transition=False, transition_pooling='max', initial_kernel_size=(3, 3)):
''' Build the DenseNet-FCN model
# Arguments
nb_classes: number of classes
img_input: tuple of shape (channels, rows, columns) or (rows, columns, channels)
include_top: flag to include the final Dense layer
nb_dense_block: number of dense blocks to add to end (generally = 3)
growth_rate: number of filters to add per dense block
reduction: reduction factor of transition blocks. Note : reduction value is inverted to compute compression
dropout_rate: dropout rate
weight_decay: weight decay
nb_layers_per_block: number of layers in each dense block.
Can be a positive integer or a list.
If positive integer, a set number of layers per dense block.
If list, nb_layer is used as provided. Note that list size must
be (nb_dense_block + 1)
nb_upsampling_conv: number of convolutional layers in upsampling via subpixel convolution
upsampling_type: Can be one of 'upsampling', 'deconv' and 'subpixel'. Defines
type of upsampling algorithm used.
input_shape: Only used for shape inference in fully convolutional networks.
activation: Type of activation at the top layer. Can be one of 'softmax' or 'sigmoid'.
Note that if sigmoid is used, classes must be 1.
early_transition: Start with an extra initial transition down and end with an extra
transition up to reduce the network size.
transition_pooling: 'max' for max pooling (default), 'avg' for average pooling,
None for no pooling. Please note that this default differs from the DenseNet
paper in accordance with the DenseNetFCN paper.
initial_kernel_size: The first Conv2D kernel might vary in size based on the
application, this parameter makes it configurable.
# Returns
a keras tensor
# Raises
ValueError: in case of invalid argument for `reduction`,
`nb_dense_block` or `nb_upsampling_conv`.
'''
with K.name_scope('DenseNetFCN'):
concat_axis = 1 if K.image_data_format() == 'channels_first' else -1
if concat_axis == 1: # channels_first dim ordering
_, rows, cols = input_shape
else:
rows, cols, _ = input_shape
if reduction != 0.0:
if not (reduction <= 1.0 and reduction > 0.0):
raise ValueError('`reduction` value must lie between 0.0 and 1.0')
# check if upsampling_conv has minimum number of filters
# minimum is set to 12, as at least 3 color channels are needed for correct upsampling
if not (nb_upsampling_conv > 12 and nb_upsampling_conv % 4 == 0):
raise ValueError('Parameter `nb_upsampling_conv` number of channels must '
'be a positive number divisible by 4 and greater than 12')
# layers in each dense block
if type(nb_layers_per_block) is list or type(nb_layers_per_block) is tuple:
nb_layers = list(nb_layers_per_block) # Convert tuple to list
if len(nb_layers) != (nb_dense_block + 1):
raise ValueError('If `nb_dense_block` is a list, its length must be '
'(`nb_dense_block` + 1)')
bottleneck_nb_layers = nb_layers[-1]
rev_layers = nb_layers[::-1]
nb_layers.extend(rev_layers[1:])
else:
bottleneck_nb_layers = nb_layers_per_block
nb_layers = [nb_layers_per_block] * (2 * nb_dense_block + 1)
# compute compression factor
compression = 1.0 - reduction
# Initial convolution
x = Conv2D(init_conv_filters, initial_kernel_size, kernel_initializer='he_normal', padding='same', name='initial_conv2D',
use_bias=False, kernel_regularizer=l2(weight_decay))(img_input)
x = BatchNormalization(axis=concat_axis, epsilon=1.1e-5, name='initial_bn')(x)
x = Activation('relu')(x)
nb_filter = init_conv_filters
skip_list = []
if early_transition:
x = __transition_block(x, nb_filter, compression=compression, weight_decay=weight_decay,
block_prefix='tr_early', transition_pooling=transition_pooling)
# Add dense blocks and transition down block
for block_idx in range(nb_dense_block):
x, nb_filter = __dense_block(x, nb_layers[block_idx], nb_filter, growth_rate, dropout_rate=dropout_rate,
weight_decay=weight_decay, block_prefix='dense_%i' % block_idx)
# Skip connection
skip_list.append(x)
# add transition_block
x = __transition_block(x, nb_filter, compression=compression, weight_decay=weight_decay,
block_prefix='tr_%i' % block_idx, transition_pooling=transition_pooling)
nb_filter = int(nb_filter * compression) # this is calculated inside transition_down_block
# The last dense_block does not have a transition_down_block
# return the concatenated feature maps without the concatenation of the input
_, nb_filter, concat_list = __dense_block(x, bottleneck_nb_layers, nb_filter, growth_rate,
dropout_rate=dropout_rate, weight_decay=weight_decay,
return_concat_list=True,
block_prefix='dense_%i' % nb_dense_block)
skip_list = skip_list[::-1] # reverse the skip list
# Add dense blocks and transition up block
for block_idx in range(nb_dense_block):
n_filters_keep = growth_rate * nb_layers[nb_dense_block + block_idx]
# upsampling block must upsample only the feature maps (concat_list[1:]),
# not the concatenation of the input with the feature maps (concat_list[0].
l = concatenate(concat_list[1:], axis=concat_axis)
t = __transition_up_block(l, nb_filters=n_filters_keep, type=upsampling_type, weight_decay=weight_decay,
block_prefix='tr_up_%i' % block_idx)
# concatenate the skip connection with the transition block
x = concatenate([t, skip_list[block_idx]], axis=concat_axis)
# Dont allow the feature map size to grow in upsampling dense blocks
x_up, nb_filter, concat_list = __dense_block(x, nb_layers[nb_dense_block + block_idx + 1],
nb_filter=growth_rate, growth_rate=growth_rate,
dropout_rate=dropout_rate, weight_decay=weight_decay,
return_concat_list=True, grow_nb_filters=False,
block_prefix='dense_%i' % (nb_dense_block + 1 + block_idx))
if early_transition: