-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathunivariate_mix_gauss_adam.py
180 lines (150 loc) · 6.26 KB
/
univariate_mix_gauss_adam.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
# Copyright (c) 2017, Kyle Lo
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import numpy as np
import tensorflow as tf
from util.sprint import sfill, sfloat, sarray
# NUM_COMPONENTS = 2
# TRUE_PROBS = np.array([0.6, 0.4])
# TRUE_MU = np.array([-1.5, 1.5])
# TRUE_SIGMA = np.array([1.50, 0.50])
# SAMPLE_SIZE = 10000
NUM_COMPONENTS = 3
TRUE_PROBS = np.array([0.5, 0.3, 0.2])
TRUE_MU = np.array([-1.5, 0.0, 1.0])
TRUE_SIGMA = np.array([0.5, 0.4, 0.3])
SAMPLE_SIZE = 10000
if TRUE_PROBS.sum() != 1.0:
raise Exception('Component weights should sum to 1.0')
INIT_LOGIT_PARAMS = {'mean': 0.0, 'stddev': 0.1}
INIT_MU_PARAMS = {'mean': 0.0, 'stddev': 0.1}
INIT_PHI_PARAMS = {'mean': 1.0, 'stddev': 0.1}
LEARNING_RATE = 0.001
MAX_ITER = 10000
TOL_PARAM, TOL_LOSS, TOL_GRAD = 1e-8, 1e-8, 1e-8
RANDOM_SEED = 0
MAX_CHARS = 15
# generate sample
np.random.seed(0)
z_obs = np.random.choice(range(NUM_COMPONENTS),
size=SAMPLE_SIZE,
p=TRUE_PROBS)
x_obs = np.random.normal(loc=TRUE_MU[z_obs],
scale=TRUE_SIGMA[z_obs],
size=SAMPLE_SIZE)
# plot
# import matplotlib.pyplot as plt
# plt.hist([x_obs[z_obs == i] for i in range(NUM_COMPONENTS)],
# bins=100, stacked=True, alpha=0.5, normed=True,
# label=['component {}'.format(i + 1) for i in range(NUM_COMPONENTS)])
# plt.legend(loc='upper left')
# plt.show()
# center and scale the data
CENTER = x_obs.mean()
SCALE = x_obs.std()
x_obs = (x_obs - CENTER) / SCALE
# tensor for data
x = tf.placeholder(dtype=tf.float32)
# tensors representing parameters and variables
logit = tf.Variable(initial_value=tf.random_normal(shape=[NUM_COMPONENTS],
seed=RANDOM_SEED,
**INIT_LOGIT_PARAMS),
dtype=tf.float32)
p = tf.nn.softmax(logits=logit)
mu = tf.Variable(initial_value=tf.random_normal(shape=[NUM_COMPONENTS],
seed=RANDOM_SEED,
**INIT_MU_PARAMS),
dtype=tf.float32)
phi = tf.Variable(initial_value=tf.random_normal(shape=[NUM_COMPONENTS],
seed=RANDOM_SEED,
**INIT_PHI_PARAMS),
dtype=tf.float32)
sigma = tf.square(phi)
# loss function
categorical_dist = tf.contrib.distributions.Categorical(probs=p)
gaussian_dists = []
for i in range(NUM_COMPONENTS):
gaussian_dists.append(tf.contrib.distributions.Normal(loc=mu[i],
scale=sigma[i]))
mixture_dist = tf.contrib.distributions.Mixture(cat=categorical_dist,
components=gaussian_dists)
log_prob = mixture_dist.log_prob(value=x)
neg_log_likelihood = -1.0 * tf.reduce_sum(log_prob)
# optimizer
optimizer = tf.train.AdamOptimizer(learning_rate=LEARNING_RATE)
train_op = optimizer.minimize(loss=neg_log_likelihood)
# gradient
grad = tf.gradients(neg_log_likelihood, [logit, mu, phi])
with tf.Session() as sess:
sess.run(fetches=tf.global_variables_initializer())
i = 1
obs_logit, obs_p, obs_mu, obs_phi, obs_sigma = sess.run(
fetches=[[logit], [p], [mu], [phi], [sigma]])
obs_loss = sess.run(fetches=[neg_log_likelihood], feed_dict={x: x_obs})
obs_grad = sess.run(fetches=[grad], feed_dict={x: x_obs})
print(' {} | {} | {} | {} | {} | {}'
.format(sfill('iter', len(str(MAX_ITER)), '>'),
sfill('p', MAX_CHARS + 2 * NUM_COMPONENTS, '^'),
sfill('mu', MAX_CHARS + 2 * NUM_COMPONENTS, '^'),
sfill('sigma', MAX_CHARS + 2 * NUM_COMPONENTS, '^'),
sfill('loss', MAX_CHARS, '^'),
sfill('grad', MAX_CHARS, '^')))
while True:
# gradient step
sess.run(fetches=train_op, feed_dict={x: x_obs})
# update parameters
new_logit, new_p, new_mu, new_phi, new_sigma = sess.run(
fetches=[logit, p, mu, phi, sigma])
diff_norm = np.linalg.norm(np.subtract(
[param for param_list in [new_logit, new_mu, new_phi]
for param in param_list],
[param for param_list in [obs_logit[-1], obs_mu[-1], obs_phi[-1]]
for param in param_list]
))
# update loss
new_loss = sess.run(fetches=neg_log_likelihood, feed_dict={x: x_obs})
loss_diff = np.abs(new_loss - obs_loss[-1])
# update gradient
new_grad = sess.run(fetches=grad, feed_dict={x: x_obs})
grad_norm = np.linalg.norm(new_grad)
obs_logit.append(new_logit)
obs_p.append(new_p)
obs_mu.append(new_mu)
obs_phi.append(new_phi)
obs_sigma.append(new_sigma)
obs_loss.append(new_loss)
obs_grad.append(new_grad)
if (i - 1) % 100 == 0:
print(' {} | {} | {} | {} | {} | {}'
.format(sfill(i, len(str(MAX_ITER))),
sarray(new_p, MAX_CHARS),
sarray(new_mu, MAX_CHARS),
sarray(new_sigma, MAX_CHARS),
sfloat(new_loss, MAX_CHARS),
sfloat(grad_norm, MAX_CHARS)))
if diff_norm < TOL_PARAM:
print('Parameter convergence in {} iterations!'.format(i))
break
if loss_diff < TOL_LOSS:
print('Loss function convergence in {} iterations!'.format(i))
break
if grad_norm < TOL_GRAD:
print('Gradient convergence in {} iterations!'.format(i))
break
if i >= MAX_ITER:
print('Max number of iterations reached without convergence.')
break
i += 1
# print results
print('Fitted MLE:')
for j in range(NUM_COMPONENTS):
print('Component {}: [p={:.4f}, mu={:.4f}, sigma={:.4f}]'
.format(j + 1, obs_p[-1][j],
SCALE * obs_mu[-1][j] + CENTER,
SCALE * obs_sigma[-1][j]))
print('True Values:')
for j in range(NUM_COMPONENTS):
print('Component {}: [p={:.4f}, mu={:.4f}, sigma={:.4f}]'
.format(j + 1, TRUE_PROBS[j], TRUE_MU[j], TRUE_SIGMA[j]))