-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmechanics.html
416 lines (402 loc) · 11.2 KB
/
mechanics.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1">
<title>Classical Mechanics: Notes</title>
<meta name="generator" content="Org mode">
<meta name="author" content="George Kontsevich">
<meta name="description" content="Projectors"
>
<link rel="stylesheet" type="text/css" href="../web/worg.css" />
<link rel="shortcut icon" href="../web/panda.svg" type="image/x-icon">
</head>
<body>
<div id="content">
<h1 class="title">Classical Mechanics: Notes</h1>
<div id="table-of-contents">
<h2>Table of Contents</h2>
<div id="text-table-of-contents">
<ul>
<li><a href="#org4e11192">Newton's Laws</a>
<ul>
<li><a href="#org3d05b66">First Law</a></li>
<li><a href="#org8e69e61">Second Law</a>
<ul>
<li><a href="#org09d5bba">Solve for velocity and position</a></li>
</ul>
</li>
<li><a href="#org39e76d9">Third Law</a>
<ul>
<li><a href="#org3d86fc0">Conservation of momentum</a></li>
<li><a href="#org07cd5a9">leveraging cartesian coordinates</a></li>
</ul>
</li>
</ul>
</li>
<li><a href="#orge9f688e">Projectiles</a>
<ul>
<li><a href="#org06a8122">Linear Drag</a>
<ul>
<li><a href="#org16bcd41">Dropping a weight</a></li>
</ul>
</li>
</ul>
</li>
</ul>
</div>
</div>
<div id="outline-container-org4e11192" class="outline-2">
<h2 id="org4e11192">Newton's Laws</h2>
<div class="outline-text-2" id="text-org4e11192">
<dl class="org-dl">
<dt>Mass</dt><dd>resistance to being accelerated</dd>
<dt>Weight</dt><dd>gravitation force of an object</dd>
<dt>Momentum</dt><dd>mass * velocity</dd>
<dt>1 Newton</dt><dd>force to accelerate <i>1 kg</i> by <i>1 m/s<sup>2</sup></i></dd>
</dl>
</div>
<div id="outline-container-org3d05b66" class="outline-3">
<h3 id="org3d05b66">First Law</h3>
<div class="outline-text-3" id="text-org3d05b66">
<blockquote>
<p>
In the absense of forces - a point mass moves with constant velocity <b>v</b> (= zero acceleration)
</p>
</blockquote>
</div>
</div>
<div id="outline-container-org8e69e61" class="outline-3">
<h3 id="org8e69e61">Second Law</h3>
<div class="outline-text-3" id="text-org8e69e61">
<blockquote>
<p>
The net force on a particle is <b>F=ma</b> <br>
Where <b>a = dv/dt = d<sup>2</sup>r/dt<sup>2</sup></b> <br>
In other words, force is a change in momentum <b>p</b>. ie. <b>F= dp/dt</b>
</p>
</blockquote>
</div>
<div id="outline-container-org09d5bba" class="outline-4">
<h4 id="org09d5bba">Solve for velocity and position</h4>
<div class="outline-text-4" id="text-org09d5bba">
<p>
Ex: Accelerting a particle with force <b>F<sub>0</sub></b> we can write out the equation for the second law
</p>
<blockquote>
<p>
F<sub>0</sub> = m ⋅ a(t) = m ⋅ d<sup>2</sup>x(t)/dt<sup>2</sup>
</p>
</blockquote>
<p>
Then by integration we can solve
</p>
<blockquote>
<p>
∫F<sub>0</sub> = ∫m⋅d<sup>2</sup>x(t)/dt<sup>2</sup> <br>
∫F<sub>0</sub>/m = ∫d<sup>2</sup>x(t)/dt<sup>2</sup> <br>
[F<sub>0</sub>/m] t = v<sub>0</sub> + dx(t)/dt <br>
</p>
</blockquote>
<p>
With this, given a starting velocity <b>v<sub>0</sub></b> and a time <b>t</b> we can solve for the velocity <b>dx/dt</b>
</p>
<blockquote>
<p>
∫[F<sub>0</sub>/m] t = ∫v<sub>0</sub> + dx(t)/dt <br>
[F<sub>0</sub>/2m] t<sup>2</sup> = v<sub>0</sub>t + x<sub>0</sub> + x(t) <br>
</p>
</blockquote>
<p>
Integrating once more we get an equation for the position. We just need a starting position <b>x<sub>0</sub></b> to solve
</p>
</div>
</div>
</div>
<div id="outline-container-org39e76d9" class="outline-3">
<h3 id="org39e76d9">Third Law</h3>
<div class="outline-text-3" id="text-org39e76d9">
<blockquote>
<p>
If <code>Object1</code> exerts a force <b>F<sub>21</sub></b> on <code>Object2</code><br>
Then <code>Object2</code> always exerts an opposite force <b>F<sub>12</sub></b> <br>
Such that <b>F<sub>12</sub> = -F<sub>21</sub></b>
</p>
</blockquote>
</div>
<div id="outline-container-org3d86fc0" class="outline-4">
<h4 id="org3d86fc0">Conservation of momentum</h4>
<div class="outline-text-4" id="text-org3d86fc0">
<p>
Givens:
</p>
<ul class="org-ul">
<li>If you have a system with many particles <b>α = [1,2 … N]</b></li>
<li>They extert an influence on each other particle <b>F<sub>α β</sub></b></li>
<li>They are under some external force <b>F<sup>ext</sup><sub>α</sub></b></li>
</ul>
<p>
The total force on each particle will be:
</p>
<blockquote>
<p>
F<sub>α</sub> = ∑<sub>β≠α</sub> F<sub>αβ</sub> + F<sup>ext</sup><sub>α</sub>
</p>
</blockquote>
<p>
This will equal the change in momentum for that particle - <b>dp<sub>α</sub>/dt</b> (b/c Force = change in momentum)
</p>
<blockquote>
<p>
dp<sub>α</sub>/dt = ∑<sub>β≠α</sub> F<sub>αβ</sub> + F<sup>ext</sup><sub>α</sub>
</p>
</blockquote>
<p>
The total momentum of the system will be
</p>
<blockquote>
<p>
P = ∑p<sub>α</sub>
</p>
</blockquote>
<p>
The corresponding change in momentum of the system will be
</p>
<blockquote>
<p>
dP/dt = ∑dp<sub>α</sub>/dt
</p>
</blockquote>
<p>
(the derivative of a sum is the sum of derivatives) <br>
And then we just plug in..
</p>
<blockquote>
<p>
dP/dt = ∑<sub>α</sub>∑<sub>β≠α</sub> F<sub>αβ</sub> + ∑<sub>α</sub>F<sup>ext</sup><sub>α</sub>
</p>
</blockquote>
<p>
But for every term F<sub>ab</sub> = -F<sub>ba</sub>, so all the terms cancel out in the first sum
</p>
<blockquote>
<p>
dP/dt = 0 + ∑<sub>α</sub>F<sup>ext</sup><sub>α</sub> <br>
dP/dt = F<sup>ext</sup>
</p>
</blockquote>
<p>
And the total change in momentum is just the sum all the external forces. The forces internal to the system can't change the momentum of the system as a whole!
</p>
</div>
</div>
<div id="outline-container-org07cd5a9" class="outline-4">
<h4 id="org07cd5a9">leveraging cartesian coordinates</h4>
<div class="outline-text-4" id="text-org07cd5a9">
<p>
We can also break up forces along coordinates to make our lives easier by using unit vectors ex: <i>x<sup>^</sup></i>, <i>y<sup>^</sup></i>
</p>
<blockquote>
<p>
F = F<sub>x</sub>x<sup>^</sup> + F<sub>y</sub>y<sup>^</sup>
</p>
</blockquote>
<p>
And these components can be treated separately b/c they differentiate independently
</p>
<blockquote>
<p>
r = x ⋅ x<sup>^</sup> + y ⋅ y<sup>^</sup> <br>
dr/dt = dx/dt ⋅ x<sup>^</sup> + dy/dt ⋅ y<sup>^</sup> <br>
d<sup>2</sup>r/dt<sup>2</sup> = d<sup>2</sup>x/dt<sup>2</sup> ⋅ x<sup>^</sup> + d<sup>2</sup>y/dt<sup>2</sup> ⋅ y<sup>^</sup>
</p>
</blockquote>
<p>
So our <i>F=ma</i> can be rewritten
</p>
<blockquote>
<p>
F = F<sub>x</sub>x<sup>^</sup> + F<sub>y</sub>y<sup>^</sup> = m ⋅ d<sup>2</sup>x/dt<sup>2</sup> ⋅ x<sup>^</sup> + m ⋅ d<sup>2</sup>y/dt<sup>2</sup> ⋅ y<sup>^</sup>
</p>
</blockquote>
<p>
And each force can be looked at explicitely
</p>
<blockquote>
<p>
F<sub>x</sub> = m ⋅ d<sup>2</sup>x/dt<sup>2</sup> <br>
F<sub>y</sub> = m ⋅ d<sup>2</sup>y/dt<sup>2</sup>
</p>
</blockquote>
<p>
So if you have a sliding block on a plane.. you set your coordinate system so that <i>x<sup>^</sup></i> is along the plane and <i>y<sup>^</sup></i> is orthogonal to the plane and then you can look at the forces separately.
</p>
<p>
In the <i>y</i> direction there is no movement so the normal force cancels out with the force of gravity
</p>
<blockquote>
<p>
F<sub>y</sub> = N - mg cos(θ) = 0 <br>
<i>so we can solve for the normal force</i> N <br>
N = mg cos(θ)
</p>
</blockquote>
<p>
In the <i>x</i> direction there is gravity and friction - where friction is a function of the <i>normal force N</i>
</p>
<blockquote>
<p>
f = μN <br>
f = μmg cos(θ)
</p>
</blockquote>
<p>
And gravity we already know how to calculate
</p>
<blockquote>
<p>
<i>gravitation force in the direction of</i> x<sup>^</sup> = mg sin(θ)
</p>
</blockquote>
<p>
So the total force in <i>x<sup>^</sup></i>
</p>
<blockquote>
<p>
F<sub>x</sub> = m ⋅ d<sup>2</sup>x/dt<sup>2</sup> = mg sin(θ) + f <br>
m ⋅ d<sup>2</sup>x/dt<sup>2</sup> = mg sin(θ) + μmg cos(θ)
</p>
</blockquote>
<p>
And we can solve for <i>d<sup>2</sup>x/dt<sup>2</sup></i>, <i>dx/dt</i>, <i>x</i>
</p>
<blockquote>
<p>
d<sup>2</sup>x/dt<sup>2</sup> = g sin(θ) + μg cos(θ) <br>
dx/dt = [g sin(θ) + μg cos(θ)]t <br>
x(t) = (1/2)[g sin(θ) + μg cos(θ)]t<sup>2</sup>
</p>
</blockquote>
<p>
(these assume the initial velocity and position are <i>0</i>)
</p>
</div>
</div>
</div>
</div>
<div id="outline-container-orge9f688e" class="outline-2">
<h2 id="orge9f688e">Projectiles</h2>
<div class="outline-text-2" id="text-orge9f688e">
<p>
A class of problems involve projectiles traveling through air. These undergo two forms of drag - quadratic and linear grad - with the former dominating for large object and the latter dominating for small things (like small oil drops and mist)
</p>
</div>
<div id="outline-container-org06a8122" class="outline-3">
<h3 id="org06a8122">Linear Drag</h3>
<div class="outline-text-3" id="text-org06a8122">
<p>
This kind of drag decreases the speed of an object proportional to the current speed
</p>
<blockquote>
<p>
dv/dt = -kv
</p>
</blockquote>
<p>
When you have a variable that changes as a function of itself then you should think of the exponential <i>e<sup>-kt</sup></i>. It has the property that its derivative is equal to itself
</p>
<blockquote>
<p>
v = Ae<sup>-kt</sup>
</p>
</blockquote>
</div>
<div id="outline-container-org16bcd41" class="outline-4">
<h4 id="org16bcd41">Dropping a weight</h4>
<div class="outline-text-4" id="text-org16bcd41">
<blockquote>
<p>
F<sub>falling</sub> = F<sub>gravity</sub> + F<sub>drag</sub> <br>
m⋅dv(t)/dt = mg - bv(t)
</p>
</blockquote>
<p>
Solving this is a bit more difficult. You proceed by subsitution..
</p>
<blockquote>
<p>
u=(v(t)-mg/b) <br>
du/dt = dv(t)/dt <br>
∴ <br>
m⋅dv(t)/dt = mg - bv(t) <br>
m (dv(t)/dt) = -b ((v(t)-mg/b) <br>
m du/dt = -b u <br>
</p>
</blockquote>
<p>
We have gotten it into the same form as the simpler problem and therefore
</p>
<blockquote>
<p>
u = Ae<sup>-tb/m</sup> = (v(t)-mg/b) <br>
∴ <br>
v(t) = Ae<sup>-tb/m</sup>+mg/b <br>
<i>and</i> <br>
dv(t)/dt = -A(b/m)e<sup>-tb/m</sup>
</p>
</blockquote>
<p>
<i>A</i> is still a free variable, which we constrain by adding a starting velocity so that at <i>t=0</i> -> <i>v(0) = v<sub>0</sub></i>
</p>
<blockquote>
<p>
v<sub>0</sub> = Ae<sup>0</sup>+mg/b<br>
A = v<sub>0</sub> - mg/b
</p>
</blockquote>
<p>
So the final velocity is
</p>
<blockquote>
<p>
v(t) = (v<sub>0</sub> - mg/b)e<sup>-tb/m</sup>+mg/b <br>
</p>
</blockquote>
<p>
..<br>
Pluggin back into the original equation to double check
</p>
<blockquote>
<p>
m⋅dv(t)/dt = mg - bv(t) <br>
-mAe<sup>-tb/m</sup> = mg - b(Ae<sup>-tb/m</sup>+mg/b) <br>
✓
</p>
</blockquote>
<p>
<b>Note:</b> When the net force is zero and acceleration stops (the terminal velocity)
</p>
<blockquote>
<p>
m⋅dv(t)/dt = mg - bv(t) <br>
0 = mg - bv<sub>terminal</sub> <br>
v<sub>terminal</sub> = mg/b
</p>
</blockquote>
<p>
Alternately you can put in <i>t=∞</i> into our equation for <i>v(t)</i>
</p>
<blockquote>
<p>
v(t) = (v<sub>0</sub> - mg/b)e<sup>-tb/m</sup>+mg/b <br>
v(∞) = (v<sub>0</sub> - mg/b)e<sup>-∞b/m</sup>+mg/b <br>
v(∞) = mg/b
</p>
</blockquote>
</div>
</div>
</div>
</div>
</div>
</body>
</html>