Skip to content

Latest commit

 

History

History
46 lines (34 loc) · 1.22 KB

README.md

File metadata and controls

46 lines (34 loc) · 1.22 KB

Improving Domain Specific QA: Inter IIT Tech Meet 11.0, 2023

Retriever

Approach Top-1 Accuracy Top-5 Accuracy
Cosine Similarity b/w MPNet (multi-qa-mpnet-base) Embeddings 63.57 88.4
BM25 Scores 58.57 79.82
MPNet Embeddings + BM25 70.67 89.63

Accuracies on SQuAD-V2 dev set with theme information

Reader

Architecture F1 EM
BERT-base 74.67 71.15
ELECTRA-base 81.71 77.60
DeBERTa-V3-base 87.41 83.92

F1 and EM on SQuAD-V2 dev set

Domain Adaptation

Retriever

Approach Top-1 Accuracy Top-5 Accuracy
multi-qa-mpnet-base 63.57 88.4
GPL (multi-qa-mpnet-base) 66.5 86.4
LaPraDoR (checkpoint not trained on SQuADV2 Retrieval) 51.2 79.9

Reader

Approach F1 EM
BERT-base zero shot 74.67 71.15
CAQA (Synthetic - QAGen-T5-base) 72.42 68.91
CAQA (No Synthetic Data) 76.27 72.87
QADA (4 epochs) 76.50 73.23
Approach F1 EM
DeBERTa-V3-base zero shot 87.41 83.92
CAQA (Synthetic - QAGen-T5-base) 86.12 82.68
CAQA (No Synthetic Data) 88.93 85.07