-
Notifications
You must be signed in to change notification settings - Fork 0
/
research.jemdoc
53 lines (35 loc) · 2.27 KB
/
research.jemdoc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
# jemdoc: menu{MENU}{research.html}, nofooter
==Panos Patrinos---Research
[https://www.esat.kuleuven.be/english/overview Department of Electrical Engineering (ESAT)], [https://www.kuleuven.be/english/ KU Leuven]
=== SuperSCS
SuperSCS is a fast solver for conic problems
=== Embedded nonlinear model predictive control
This is a C implementation of PANOC, a Proximal Averaged Newton-type method for Optimal Control.
PANOC is a fast solver for nonlinear optimal control problems which arise in nonlinear model predictive control (NMPC) and other applications.
Features of the method:
- Very fast convergence, sub-millisecond-fast MPC
- Low memory requirements
- Suitable for embedded applications
- Global convergence properties
- Not sensitive to ill conditioning
- Unlike SQP, does not a quadratic programming (QP) solver
Features of the implementation:
- Dependency-free C implementation (no libraries, C89 standard)
- Very easy to install
- Controller design in MATLAB, implementation in C (powered by [https://github.com/casadi/casadi/wiki CasADi])
- Unit-tested (very high [https://codecov.io/gh/kul-forbes/EmbeddedMPC coverage])
- Memory-leak-free (checked with [http://valgrind.org/ valgrind])
- Detailed documentation
- MEX interface for testing/simulation purposes
PANOC comes with a MATLAB toolbox that allows the design of obstacle avoidance controllers based on nonlinear model predictive control while it produces C code (following the C89 standard) which can be used on embedded devices.
~~~
{}{img_left}{https://kul-forbes.github.io/PANOC/pics/navigation-01.png}{Obstacle Avoidance using PANOC}{599}{469}{https://kul-forbes.github.io/PANOC/pics/navigation-01.png}
~~~
{{<video width="590" controls>
<source src="https://kul-forbes.github.io/PANOC/pics/navigation-v0.1-001.mp4" type="video/mp4">
Your browser does not support the video tag.
</video>}}
See more obstacle avoidance examples here.
Please, cite PANOC as follows:
. L. Stella, A. Themelis, P. Sopasakis and P. Patrinos, A Simple and Efficient Algorithm for Nonlinear Model Predictive Control, IEEE CDC 2017, Melbourne, Australia, Dec 2017.
. A. Sathya, P. Sopasakis, A. Themelis, R. Van Parys, G. Pipeleers and P. Patrinos, Embedded nonlinear model predictive control for obstacle avoidance using PANOC, submitted to ECC 2018.