-
Notifications
You must be signed in to change notification settings - Fork 46
/
Copy pathutils.py
109 lines (89 loc) · 3.11 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
import os
import os.path
import shutil
import torch
from torch.autograd import Variable
from torch.utils.data import DataLoader
from torch.utils.data.dataloader import default_collate
from torch.nn import init
def get_data_loader(dataset, batch_size, cuda=False, collate_fn=None):
return DataLoader(
dataset, batch_size=batch_size,
shuffle=True, collate_fn=(collate_fn or default_collate),
**({'num_workers': 2, 'pin_memory': True} if cuda else {})
)
def save_checkpoint(model, model_dir, epoch, precision, best=True):
path = os.path.join(model_dir, model.name)
path_best = os.path.join(model_dir, '{}-best'.format(model.name))
# save the checkpoint.
if not os.path.exists(model_dir):
os.makedirs(model_dir)
torch.save({
'state': model.state_dict(),
'epoch': epoch,
'precision': precision,
}, path)
# override the best model if it's the best.
if best:
shutil.copy(path, path_best)
print('=> updated the best model of {name} at {path}'.format(
name=model.name, path=path_best
))
# notify that we successfully saved the checkpoint.
print('=> saved the model {name} to {path}'.format(
name=model.name, path=path
))
def load_checkpoint(model, model_dir, best=True):
path = os.path.join(model_dir, model.name)
path_best = os.path.join(model_dir, '{}-best'.format(model.name))
# load the checkpoint.
checkpoint = torch.load(path_best if best else path)
print('=> loaded checkpoint of {name} from {path}'.format(
name=model.name, path=(path_best if best else path)
))
# load parameters and return the checkpoint's epoch and precision.
model.load_state_dict(checkpoint['state'])
epoch = checkpoint['epoch']
precision = checkpoint['precision']
return epoch, precision
def validate(model, dataset, test_size=256, batch_size=32,
cuda=False, verbose=True):
mode = model.training
model.train(mode=False)
data_loader = get_data_loader(dataset, batch_size, cuda=cuda)
total_tested = 0
total_correct = 0
for x, y in data_loader:
# break on test size.
if total_tested >= test_size:
break
# test the model.
x = x.view(batch_size, -1)
x = Variable(x).cuda() if cuda else Variable(x)
y = Variable(y).cuda() if cuda else Variable(y)
scores = model(x)
_, predicted = scores.max(1)
# update statistics.
total_correct += int((predicted == y).sum())
total_tested += len(x)
model.train(mode=mode)
precision = total_correct / total_tested
if verbose:
print('=> precision: {:.3f}'.format(precision))
return precision
def xavier_initialize(model):
modules = [
m for n, m in model.named_modules() if
'conv' in n or 'linear' in n
]
parameters = [
p for
m in modules for
p in m.parameters() if
p.dim() >= 2
]
for p in parameters:
init.xavier_normal(p)
def gaussian_intiailize(model, std=.1):
for p in model.parameters():
init.normal(p, std=std)