-
Notifications
You must be signed in to change notification settings - Fork 25
/
Copy pathutils.py
119 lines (91 loc) · 3.28 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
import os
import os.path
import torchvision
import torch
from torch import nn
from torch.autograd import Variable
from torch.utils.data import DataLoader
from torch.utils.data.dataloader import default_collate
def label_squeezing_collate_fn(batch):
x, y = default_collate(batch)
return x, y.long().squeeze()
def get_data_loader(dataset, batch_size, cuda=False, collate_fn=None):
return DataLoader(
dataset, batch_size=batch_size, shuffle=True,
collate_fn=(collate_fn or default_collate),
**({'num_workers': 0, 'pin_memory': True} if cuda else {})
)
def save_checkpoint(model, model_dir):
path = os.path.join(model_dir, model.name)
# save the checkpoint.
if not os.path.exists(model_dir):
os.makedirs(model_dir)
torch.save({'state': model.state_dict()}, path)
# notify that we successfully saved the checkpoint.
print('=> saved the model {name} to {path}'.format(
name=model.name, path=path
))
def load_checkpoint(model, model_dir):
path = os.path.join(model_dir, model.name)
# load the checkpoint.
checkpoint = torch.load(path)
print('=> loaded checkpoint of {name} from {path}'.format(
name=model.name, path=path
))
# load parameters and return the checkpoint's epoch and precision.
model.load_state_dict(checkpoint['state'])
def test_model(model, sample_size, path, verbose=True):
os.makedirs(os.path.dirname(path), exist_ok=True)
torchvision.utils.save_image(
model.sample(sample_size).data,
path + '.jpg',
nrow=6,
)
if verbose:
print('=> generated sample images at "{}".'.format(path))
def validate(model, dataset, test_size=1024,
cuda=False, verbose=True, collate_fn=None):
data_loader = get_data_loader(
dataset, 128, cuda=cuda,
collate_fn=(collate_fn or default_collate),
)
total_tested = 0
total_correct = 0
for data, labels in data_loader:
# break on test size.
if total_tested >= test_size:
break
# test the model.
data = Variable(data).cuda() if cuda else Variable(data)
labels = Variable(labels).cuda() if cuda else Variable(labels)
scores = model(data)
_, predicted = torch.max(scores, 1)
# update statistics.
total_correct += (predicted == labels).sum().data[0]
total_tested += len(data)
precision = total_correct / total_tested
if verbose:
print('=> precision: {:.3f}'.format(precision))
return precision
def xavier_initialize(model):
modules = [m for n, m in model.named_modules() if 'conv' in n or 'fc' in n]
parameters = [p for m in modules for p in m.parameters()]
for p in parameters:
if p.dim() >= 2:
nn.init.xavier_normal(p)
else:
nn.init.constant(p, 0)
def gaussian_intiailize(model, std=.01):
modules = [m for n, m in model.named_modules() if 'conv' in n or 'fc' in n]
parameters = [p for m in modules for p in m.parameters()]
for p in parameters:
if p.dim() >= 2:
nn.init.normal(p, std=std)
else:
nn.init.constant(p, 0)
class LambdaModule(nn.Module):
def __init__(self, f):
super().__init__()
self.f = f
def forward(self, x):
return self.f(x)