forked from fmihpc/vlasiator
-
Notifications
You must be signed in to change notification settings - Fork 1
/
velocity_blocks.h
289 lines (255 loc) · 10.1 KB
/
velocity_blocks.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
/*
* This file is part of Vlasiator.
* Copyright 2010-2016 Finnish Meteorological Institute
*
* For details of usage, see the COPYING file and read the "Rules of the Road"
* at http://www.physics.helsinki.fi/vlasiator/
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#ifndef VELOCITY_BLOCKS_H
#define VELOCITY_BLOCKS_H
#include <iostream>
#include "common.h"
namespace vblock {
namespace interpmethod {
enum Method {
NGP, /**< Nearest grid point, i.e., no interpolation.*/
CIC, /**< Cloud in cell, i.e., linear interpolation.*/
TSC
};
}
template<int PADDING,int METHOD> void accum_xyz(Realf* array,const Real* coords,const Realf& value);
template<int PADDING,typename T> void addToFine_x(const T& octant,const T* coarseOffset);
template<int METHOD,typename REAL> Realf interp_xy(const REAL* pos,Realf* data);
template<int METHOD,typename REAL> Realf interp_xz(const REAL* pos,Realf* data);
template<int METHOD,typename REAL> Realf interp_yz(const REAL* pos,Realf* data);
template<int METHOD,typename REAL> Realf interp_xyz(const REAL* pos,Realf* data);
template<typename T> T index(const T& i,const T& j,const T& k);
template<typename T> T nbrIndex(const T& i_off,const T& j_off,const T& k_off);
template<int PADDING,typename T> T padIndex(const T& i,const T& j,const T& k);
template<typename T> T refIndex(const T& i,const T& j,const T& k,T& i_trgt,T& j_trgt,T& k_trgt);
// ***** DEFINITIONS OF TEPLATE FUNCTION ***** //
template<int PAD,int METHOD> inline
void accum_xyz(Realf* array,const Real* pos,const Realf& value) {
switch (METHOD) {
case interpmethod::NGP:
{
const int i = static_cast<int>(pos[0]);
const int j = static_cast<int>(pos[1]);
const int k = static_cast<int>(pos[2]);
array[padIndex<PAD>(i+1,j+1,k+1)] += value;
}
break;
case interpmethod::CIC:
{
const int i = static_cast<int>(pos[0] + 0.5);
const int j = static_cast<int>(pos[1] + 0.5);
const int k = static_cast<int>(pos[2] + 0.5);
const Realf W_x = pos[0]-i+0.5;
const Realf W_y = pos[1]-j+0.5;
const Realf W_z = pos[2]-k+0.5;
array[padIndex<PAD>(i ,j ,k )] += value * (1-W_x)*(1-W_y)*(1-W_z);
array[padIndex<PAD>(i+1,j ,k )] += value * ( W_x )*(1-W_y)*(1-W_z);
array[padIndex<PAD>(i ,j+1,k )] += value * (1-W_x)*( W_y )*(1-W_z);
array[padIndex<PAD>(i+1,j+1,k )] += value * ( W_x )*( W_y )*(1-W_z);
array[padIndex<PAD>(i ,j ,k+1)] += value * (1-W_x)*(1-W_y)*( W_z );
array[padIndex<PAD>(i+1,j ,k+1)] += value * ( W_x )*(1-W_y)*( W_z );
array[padIndex<PAD>(i ,j+1,k+1)] += value * (1-W_x)*( W_y )*( W_z );
array[padIndex<PAD>(i+1,j+1,k+1)] += value * ( W_x )*( W_y )*( W_z );
}
break;
case interpmethod::TSC:
{
int indices[3];
indices[0] = static_cast<int>(pos[0]);
indices[1] = static_cast<int>(pos[1]);
indices[2] = static_cast<int>(pos[2]);
Realf sf[9];
sf[0] = 0.5*(indices[0]+1-pos[0])*(indices[0]+1-pos[0]);
sf[2] = 0.5*(pos[0] -indices[0] )*(pos[0] -indices[0] );
sf[1] = 1-sf[0]-sf[2];
sf[3] = 0.5*(indices[1]+1-pos[1])*(indices[1]+1-pos[1]);
sf[5] = 0.5*(pos[1] - indices[1] )*(pos[1] - indices[1] );
sf[4] = 1-sf[3]-sf[5];
sf[6] = 0.5*(indices[2]+1-pos[2])*(indices[2]+1-pos[2]);
sf[8] = 0.5*(pos[2] -indices[2] )*(pos[2] -indices[2] );
sf[7] = 1-sf[6]-sf[8];
for (int k_off=-1; k_off<2; ++k_off) for (int j_off=-1; j_off<2; ++j_off) for (int i_off=-1; i_off<2; ++i_off) {
const Realf shapeFactor = sf[0+i_off+1] * sf[3+j_off+1] * sf[6+k_off+1];
array[padIndex<PAD>(indices[0]+i_off+1,indices[1]+j_off+1,indices[2]+k_off+1)] += value*shapeFactor;
}
}
break;
default:
std::cerr << "Unknown accumulation method in " << __FILE__ << ' ' << __LINE__ << std::endl;
exit(1);
break;
}
}
template<int PAD,typename T> inline
void addToFine_x(const T& j_fine,const T& k_fine,const T* coarseOffset,Realf* fineArray,const Realf* coarseArray) {
/*const T k_coarse = coarseOffset[2] + 2*(octant / 4);
const T j_coarse = coarseOffset[1] + 2*((octant - 4*(octant/4))/2);
const T i_coarse = coarseOffset[0] + 2*(octant % 2);*/
/*
std::cerr << octant << ' ';
std::cerr << j_fine << ' ' << k_fine << " <- ";
std::cerr << i_coarse << ' ' << j_coarse << ' ' << k_coarse;
std::cerr << std::endl;*/
for (T i_fine=0; i_fine<WID; ++i_fine) {
const T coarseIndex = padIndex<PAD>(coarseOffset[0]+i_fine/2,coarseOffset[1]+j_fine/2,coarseOffset[2]+k_fine/2);
fineArray[index(i_fine,j_fine,k_fine)] += coarseArray[coarseIndex];
//fineArray[index(i_fine,j_fine,k_fine)] += coarseArray[padIndex<PAD>(i_coarse+i_fine/2,j_coarse+j_fine/2,k_coarse+k_fine/2)];
}
}
template<typename T> inline
T nbrIndex(const T& i_off,const T& j_off,const T& k_off) {
return (k_off+1)*9 + (j_off+1)*3 + i_off+1;
}
template<typename T> inline
T index(const T& i,const T& j,const T& k) {
return k*WID2 + j*WID + i;
}
template<int METHOD,typename REAL> inline
Realf interp_xy(const REAL* pos,const Realf* data) {
switch (METHOD) {
case interpmethod::NGP:
{
const int i = static_cast<int>(pos[0]);
const int j = static_cast<int>(pos[1]);
const int k = static_cast<int>(pos[2]);
return data[index(i,j,k)];
}
break;
case interpmethod::CIC:
{
const int i = static_cast<int>(pos[0] - 0.5);
const int j = static_cast<int>(pos[1] - 0.5);
const int k = static_cast<int>(pos[2] - 0.5);
Realf W_x = pos[0]-i-0.5;
Realf W_y = pos[1]-j-0.5;
return data[index(i+0,j+0,k)]*(1-W_x)*(1-W_y)
+ data[index(i+1,j+0,k)]*( W_x )*(1-W_y)
+ data[index(i+0,j+1,k)]*(1-W_x)*( W_y )
+ data[index(i+1,j+1,k)]*( W_x )*( W_y );
}
break;
default:
std::cerr << "Unknown interpolation method in " << __FILE__ << ' ' << __LINE__ << std::endl;
exit(1);
break;
}
}
template<int METHOD,typename REAL> inline
Realf interp_xz(const REAL* pos,const Realf* data) {
switch (METHOD) {
case interpmethod::NGP:
{
const int i = static_cast<int>(pos[0]);
const int j = static_cast<int>(pos[1]);
const int k = static_cast<int>(pos[2]);
return data[index(i,j,k)];
}
break;
case interpmethod::CIC:
{
const int i = static_cast<int>(pos[0] - 0.5);
const int j = static_cast<int>(pos[1] - 0.5);
const int k = static_cast<int>(pos[2] - 0.5);
Realf W_x = pos[0]-i-0.5;
Realf W_z = pos[2]-k-0.5;
return data[index(i+0,j,k+0)]*(1-W_x)*(1-W_z)
+ data[index(i+1,j,k+0)]*( W_x )*(1-W_z)
+ data[index(i+0,j,k+1)]*(1-W_x)*( W_z )
+ data[index(i+1,j,k+1)]*( W_x )*( W_z );
}
break;
default:
std::cerr << "Unknown interpolation method in " << __FILE__ << ' ' << __LINE__ << std::endl;
exit(1);
break;
}
}
template<int METHOD,typename REAL> inline
Realf interp_yz(const REAL* pos,const Realf* data) {
switch (METHOD) {
case interpmethod::NGP:
{
const int i = static_cast<int>(pos[0]);
const int j = static_cast<int>(pos[1]);
const int k = static_cast<int>(pos[2]);
return data[index(i,j,k)];
}
break;
case interpmethod::CIC:
{
const int i = static_cast<int>(pos[0] - 0.5);
const int j = static_cast<int>(pos[1] - 0.5);
const int k = static_cast<int>(pos[2] - 0.5);
Realf W_y = pos[1]-j-0.5;
Realf W_z = pos[2]-k-0.5;
return data[index(i,j+0,k+0)]*(1-W_y)*(1-W_z)
+ data[index(i,j+1,k+0)]*( W_y )*(1-W_z)
+ data[index(i,j+0,k+1)]*(1-W_y)*( W_z )
+ data[index(i,j+1,k+1)]*( W_y )*( W_z );
}
break;
default:
std::cerr << "Unknown interpolation method in " << __FILE__ << ' ' << __LINE__ << std::endl;
exit(1);
break;
}
}
template<int METHOD,typename REAL> inline
Realf interp_xyz(const REAL* pos,const Realf* data) {
switch (METHOD) {
case interpmethod::NGP:
{
const int i = static_cast<int>(pos[0]);
const int j = static_cast<int>(pos[1]);
const int k = static_cast<int>(pos[2]);
return data[index(i,j,k)];
}
break;
default:
std::cerr << "Unknown interpolation method in " << __FILE__ << ' ' << __LINE__ << std::endl;
exit(1);
break;
}
}
template<int PADDING,typename T> inline
T padIndex(const T& i,const T& j,const T& k) {
const T W = WID+2*PADDING;
return k*W*W + j*W + i;
}
/** Calculate the target octant and (refined) cell indices
* from the given (coarse) cell indices.
* @param i Cell i-index in coarse block.
* @param j Cell j-index in coarse block.
* @param k Cell k-index in coarse block.
* @param i_trgt Target cell i-index in refined block.
* @param j_trgt Target cell j-index in refined block.
* @param k_trgt Target cell k-index in refined block.
* @return Octant of the target block.*/
template<typename T> inline
T refIndex(const T& i,const T& j,const T& k,T& i_trgt,T& j_trgt,T& k_trgt) {
i_trgt = (i % 2) * 2;
j_trgt = (j % 2) * 2;
k_trgt = (k % 2) * 2;
return (k/2)*4 + (j/2)*2 + (i/2);
}
}; // namespace vblock
#endif