-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtoolbox.py
122 lines (84 loc) · 2.28 KB
/
toolbox.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
import torch
import pysurvival as psurv
from pysurvival.models.semi_parametric import NonLinearCoxPHModel
from pysurvival.utils.metrics import concordance_index
import pandas as pd
import numpy as np
import pickle as pi
import matplotlib.pyplot as plt
import plotly.graph_objects as go
from pysurvival.utils import load_model
def generateHighRes(risks, times, res = 0.001, maxTim = 5) :
hrTimes = []
hrProb = []
tmpRisk = 1
iteratorInd = 0
for i in range(0, int(maxTim / res)) :
tmpI = i * res
hrTimes.append(tmpI)
hrProb.append(tmpRisk)
if iteratorInd == len(risks) - 1 :
continue
if times[iteratorInd + 1] <= tmpI :
iteratorInd += 1
tmpRisk = risks[iteratorInd]
# add new record for the same time to preserve Manhattan-like shape
hrTimes.append(tmpI)
hrProb.append(tmpRisk)
return [hrTimes, hrProb]
def calculateCUETO(gender, age, tumN, stage, conCis, grade) :
if grade == 0.5:
grade = 1
if grade == 1.5:
grade = 2
if grade == 3.01:
grade = 3
rec = 0
prog = 0
#gender
rec += (gender == 0) * 3
prog += 0
#age
rec += int(age >= 60) + int(age > 70)
prog += (age > 70) * 2
#number of tumors
rec += tumN * 2
prog += tumN
#stage
rec += 0
prog += stage * 2
#concurrent cis
rec += conCis * 2
prog += conCis
#grade
rec += (grade == 2) + (grade == 3) * 3
prog += (grade == 2) * 2 + (grade == 3) * 6
return [rec, prog]
def calculateEORTC(tumN, diam, recRate, stage, conCis, grade) :
if grade == 0.5:
grade = 1
if grade == 1.5:
grade = 2
if grade == 3.01:
grade = 3
rec = 0
prog = 0
#number of tumors
prog += (tumN * 3)
rec += (tumN * 3)
#tumor diameter
prog += diam * 3
rec += diam * 3
#reccurence rate
#prog += (recRate != 0) * 2 assuming no prior reccurence
#rec += ((recRate != 0) + (recRate > 1)) * 2
# stage; assuming Ta = 0 and T1 = 1
prog += stage * 4
rec += stage
# concurrent cis
prog += conCis * 6
rec += conCis
# grade
prog += (grade == 3) * 5
rec += grade - 1
return [rec, prog]