Skip to content

Latest commit

 

History

History
134 lines (109 loc) · 2.97 KB

README.md

File metadata and controls

134 lines (109 loc) · 2.97 KB

PostgreSQL 101

How to create a production-ready PostgreSQL database.

Setup

Heroku application

  1. Create project
cd ~/code/<user.github_nickname>
mkdir postgresql101
cd postgresql101
  1. Start versioning with Git
git init
git add .
git commit -m 'kickstart PostgreSQL project'
  1. Create Heroku app (in Europe for instance)
heroku create --region eu
  1. Add a PostgreSQL database to the Heroku app matching your needs (choose one), this can take a while (3-5min)
# Free - 10k rows
heroku addons:create heroku-postgresql:hobby-dev
# 9$/momth - 10M rows
heroku addons:create heroku-postgresql:hobby-basic
# 50$/month - 64Go no row limit
heroku addons:create heroku-postgresql:standard-0

ℹ️ Plans & Pricing 5. Wait for your database to be created

heroku addons:wait heroku-postgresql
  1. Get your DATABASE_URL
heroku config:get DATABASE_URL

which looks like:

postgres://******************:*********************@**********.eu-west-1.compute.amazonaws.com:5432/***********
  1. That URL is a secret, keep it safe!

Create a safe place for your secrets:

touch .env

Copy the DATABASE_URL in the .env file:

DATABASE_URL="YOUR_DATABASE_URL"

Keep the .env file away from git:

touch .gitignore
echo ".env" >> .gitignore
  1. Save your setup
git status # .env should be ignored
git add .
git commit -m 'setup the postgresql database'

🚀 Congrats! Your PostgreSQL production database is ready!

Minimal requirements

Install the minimal requirement packages with:

pip install -r requirements.txt

Installed packages:

  • psycopg a specific connector for PostgreSQL database
  • SQLAlchemy a Pytrhon SQL object relational mapper
  • python-dotenv a secret manager
  • The good old pandas

Build your database

Connect to the DB

Open a Jupyter notebook then:

import os
from sqlalchemy import create_engine


DATABASE_URL = os.getenv("DATABASE_URL")
engine = create_engine(DATABASE_URL)

Create your first table movies

Create a new cell then:

movies_df = pd.DataFrame([
  {"movie_id":1, "title": "The Dark Knight", "rating": 4},
  {"movie_id":2,"title": "The Dark Knight Rises", "rating": 5}
])
movies_df.to_sql("movies", engine, if_exists='replace', index=False)

ℹ️ pandas.DataFrame.to_sql documentation

Query your DB

Create a new cell then:

# The SQLAlchemy way
pd.read_sql("movies", engine).head()

You can also query your DB the good old Python way with psycopg2:

conn = psycopg2.connect(DATABASE_URL, sslmode='require')
c = conn.cursor()
fetch_films = '''
SELECT * FROM films;
'''
c.execute(fetch_films)
c.fetchall()

🚀 Your turn!