-
Notifications
You must be signed in to change notification settings - Fork 293
/
Copy pathflask_api.py
86 lines (71 loc) · 1.95 KB
/
flask_api.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
# -*- coding: utf-8 -*-
"""
Created on Fri May 15 12:50:04 2020
@author: krish.naik
"""
from flask import Flask, request
import numpy as np
import pickle
import pandas as pd
import flasgger
from flasgger import Swagger
app=Flask(__name__)
Swagger(app)
pickle_in = open("classifier.pkl","rb")
classifier=pickle.load(pickle_in)
@app.route('/')
def welcome():
return "Welcome All"
@app.route('/predict',methods=["Get"])
def predict_note_authentication():
"""Let's Authenticate the Banks Note
This is using docstrings for specifications.
---
parameters:
- name: variance
in: query
type: number
required: true
- name: skewness
in: query
type: number
required: true
- name: curtosis
in: query
type: number
required: true
- name: entropy
in: query
type: number
required: true
responses:
200:
description: The output values
"""
variance=request.args.get("variance")
skewness=request.args.get("skewness")
curtosis=request.args.get("curtosis")
entropy=request.args.get("entropy")
prediction=classifier.predict([[variance,skewness,curtosis,entropy]])
print(prediction)
return "Hello The answer is"+str(prediction)
@app.route('/predict_file',methods=["POST"])
def predict_note_file():
"""Let's Authenticate the Banks Note
This is using docstrings for specifications.
---
parameters:
- name: file
in: formData
type: file
required: true
responses:
200:
description: The output values
"""
df_test=pd.read_csv(request.files.get("file"))
print(df_test.head())
prediction=classifier.predict(df_test)
return str(list(prediction))
if __name__=='__main__':
app.run(host='0.0.0.0',port=8000)