forked from tudelft/fastPyDroneSim
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_drone_sac.py
325 lines (274 loc) · 11.5 KB
/
train_drone_sac.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
# custom code
# from custom_collector import FastPyDroneSimCollector
from fastPyDroneSim_gym.fastPyDroneSim.gym_sim import Drone_Sim
# tianshou code
from tianshou.policy import SACPolicy, BasePolicy
from tianshou.utils.net.continuous import ActorProb, Critic, RecurrentActorProb, RecurrentCritic
from tianshou.utils.net.common import Net
from tianshou.data import VectorReplayBuffer,HERVectorReplayBuffer,PrioritizedVectorReplayBuffer
from tianshou.trainer import OffpolicyTrainer
from tianshou.highlevel.logger import LoggerFactoryDefault
from tianshou.utils import WandbLogger, MultipleLRSchedulers
from tianshou.data.collector import Collector
from tianshou.env import SubprocVectorEnv, DummyVectorEnv
# spiking specific code
# from spiking_gym_wrapper import SpikingEnv
# from spikingActorProb import SpikingNet
# from masked_actors import MaskedNet
#
import torch
import numpy as np
import os
# set wandb in debug mode
import wandb
# define training args
args = {
'epoch': 2e2,
'step_per_epoch': 2e4,
'step_per_collect': 5e3, # 2.5 s
'test_num': 50,
'update_per_step': 2,
'batch_size': 100,
'wandb_project': 'FastPyDroneGym',
'resume_id':1,
'logger':'wandb',
'algo_name': 'sac',
'task': 'stabilize',
'seed': int(3),
'logdir':'',
'spiking':False,
'recurrent':False,
'masked':False,
'logger': 'wandb',
'drone': 'stock drone',
'buffer_size': 300000,
'collector_type': 'Collector',
'reinit': True,
'reward_function': 'reward_squared_fast_learning',
}
# wandb.init(mode='disabled')
# init for the models only
# wandb.init(mode='disabled')
# log
import datetime
now = datetime.datetime.now().strftime("%y%m%d-%H%M%S")
# args['algo_name = "sac"
current_path = os.path.dirname(os.path.abspath(__file__))
log_path = os.path.join(current_path,args['logdir'], args['task'], "sac")
from tianshou.utils import WandbLogger
from torch.utils.tensorboard import SummaryWriter
logger = WandbLogger(project="tianshou",config=args)
writer = SummaryWriter(log_path)
writer.add_text("args", str(args))
logger.load(writer)
# model_logger = wandb.init(project='Model Logging of RL Crazyflie', reinit=True, config=args)
# torch.cuda.set_device(0)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# device = torch.device('cpu')
if device == torch.device('cuda'):
gpu = True
else:
gpu = False
print('Device in use:', device)
def create_policy():
# create the networks behind actors and critics
if args['masked']:
mask = np.ones((observation_space))
# set velocities, angular velocities, and orientation to 0
mask[3:6] = 0
mask[10:13] = 0
net_a = net_a = MaskedNet(state_shape=observation_space,
mask=mask, action_shape=action_space,
hidden_sizes=[64,64], device=device)
else:
net_a = Net(state_shape=observation_space,
hidden_sizes=[64,64], device=device)
net_c1 = Net(state_shape=observation_space,action_shape=action_space,
hidden_sizes=[64,64],
concat=True,device=device)
net_c2 = Net(state_shape=observation_space,action_shape=action_space,
hidden_sizes=[64,64],
concat=True,device=device)
# model_logger.watch(net_a)
# model_logger.watch(net_c1)
# model_logger.watch(net_c2)
# create actors and critics
actor = ActorProb(
net_a,
action_space,
unbounded=True,
conditioned_sigma=True,
device=device
)
critic1 = Critic(net_c1, device=device)
critic2 = Critic(net_c2, device=device)
# create the optimizers
actor_optim = torch.optim.Adam(actor.parameters(), lr=1e-4)
critic_optim = torch.optim.Adam(critic1.parameters(), lr=1e-4)
critic2_optim = torch.optim.Adam(critic2.parameters(), lr=1e-4)
# create one learning rate scheduler for the 3 optimizers
lr_scheduler_a = torch.optim.lr_scheduler.StepLR(actor_optim, step_size=1000, gamma=0.5)
lr_scheduler_c1 = torch.optim.lr_scheduler.StepLR(critic_optim,step_size=1e3, gamma=0.5)
lr_scheduler_c2 = torch.optim.lr_scheduler.StepLR(critic2_optim,step_size=1e3, gamma=0.5)
lr_scheduler = MultipleLRSchedulers(lr_scheduler_a,lr_scheduler_c1,lr_scheduler_c2)
# create the policy
policy = SACPolicy(actor=actor, actor_optim=actor_optim, \
critic=critic1, critic_optim=critic_optim,\
critic2=critic2, critic2_optim=critic2_optim,lr_scheduler=lr_scheduler,\
action_space=env.action_space,\
observation_space=env.observation_space, \
action_scaling=True, action_bound_method=None) # make sure actions are scaled properly
return policy
def create_spiking_policy():
# create the networks behind actors and critics
net_a = SpikingNet(state_shape=observation_space, action_shape=action_space,
hidden_sizes=[64,64], device=device, repeat=6)
net_c1 = Net(state_shape=observation_space,action_shape=action_space,
hidden_sizes=[64,64],
concat=True,device=device)
net_c2 = Net(state_shape=observation_space,action_shape=action_space,
hidden_sizes=[64,64],
concat=True,device=device)
if args['masked']:
mask = np.ones((observation_space))
# set velocities, angular velocities, and orientation to 0
mask[3:6] = 0
mask[10:13] = 0
raise UserWarning('Masked SpikingNet not implemented')
model_logger.watch(net_a)
model_logger.watch(net_c1)
model_logger.watch(net_c2)
# create actors and critics
actor = ActorProb(
net_a,
action_shape=action_space,
unbounded=True,
conditioned_sigma=True,
device=device
)
critic1 = Critic(net_c1, device=device)
critic2 = Critic(net_c2, device=device)
# create the optimizers
actor_optim = torch.optim.Adam(actor.parameters(), lr=1e-3)
critic_optim = torch.optim.Adam(critic1.parameters(), lr=1e-3)
critic2_optim = torch.optim.Adam(critic2.parameters(), lr=1e-3)
# create the policy
policy = SACPolicy(actor=actor, actor_optim=actor_optim, \
critic=critic1, critic_optim=critic_optim,\
critic2=critic2, critic2_optim=critic2_optim,\
action_space=env.action_space,\
observation_space=env.observation_space, \
action_scaling=True) # make sure actions are scaled properly
return policy, net_a
def create_recurrent_policy():
# create actors and critics
actor = RecurrentActorProb(
layer_num=2,
state_shape=observation_space,
action_shape=action_space,
hidden_layer_size=64,
device=device,
unbounded=True
)
critic1 = RecurrentCritic(
layer_num=2,
state_shape=observation_space,
action_shape=action_space,
hidden_layer_size=64,
device=device,
)
critic2 = RecurrentCritic(
layer_num=2,
state_shape=observation_space,
action_shape=action_space,
hidden_layer_size=64,
device=device,
)
if args['masked']:
mask = np.ones((observation_space))
# set velocities, angular velocities, and orientation to 0
mask[3:6] = 0
mask[10:13] = 0
raise UserWarning('Masked SpikingNet not implemented')
model_logger.watch(net_a)
model_logger.watch(net_c1)
model_logger.watch(net_c2)
# create the optimizers
actor_optim = torch.optim.Adam(actor.parameters(), lr=1e-3)
critic_optim = torch.optim.Adam(critic1.parameters(), lr=1e-3)
critic2_optim = torch.optim.Adam(critic2.parameters(), lr=1e-3)
# create the policy
policy = SACPolicy(actor=actor, actor_optim=actor_optim, \
critic=critic1, critic_optim=critic_optim,\
critic2=critic2, critic2_optim=critic2_optim,\
action_space=env.action_space,\
observation_space=env.observation_space, \
action_scaling=True) # make sure actions are scaled properly
return policy
def save_best_fn(policy: BasePolicy, log_path='') -> None:
torch.save(policy.state_dict(), os.path.join(log_path, "policy.pth"))
# define number of drones to be simulated
if not gpu:
N_envs = 100
else:
blocks = 32
threads = 8
N_envs = blocks*threads
N_envs = 1
if args['recurrent']:
# define action buffer True to encapsulate action history in observation space
env = Drone_Sim(N_drones=N_envs, action_buffer=False,test=False, gpu=False, device=device)
test_env = Drone_Sim(N_drones=1, action_buffer=False, test=True, gpu=False, device=device)
observation_space = env.observation_space.shape or env.observation_space.n
action_space = env.action_space.shape or env.action_space.n
policy = create_recurrent_policy()
# create buffer (stack_num defines the number of sequenctial samples)
buffer=PrioritizedVectorReplayBuffer(total_size=300000,buffer_num=N_envs, stack_num=64, alpha=0.4, beta=0.6)
else:
# define action buffer True to encapsulate action history in observation space
env = Drone_Sim(N_drones=N_envs, action_buffer=True,test=False, gpu=False, device=device, drone=args['drone'])
test_env = Drone_Sim(N_drones=1, action_buffer=True, test=True, gpu=False, device=device,drone=args['drone'])
observation_space = env.observation_space.shape or env.observation_space.n
action_space = env.action_space.shape or env.action_space.n
if args['spiking']:
policy, spikingnet = create_spiking_policy()
env = SpikingEnv(env, spikingnet)
test_env = SpikingEnv(test_env,spikingnet)
else:
policy = create_policy()
# create buffer (stack_num defines the number of sequenctial samples)
# buffer=PrioritizedVectorReplayBuffer(total_size=200000,buffer_num=N_envs, stack_num=1, alpha=0.4, beta=0.6)
buffer = VectorReplayBuffer(total_size=300000,buffer_num=N_envs, stack_num=1)
if not device == torch.device('cpu'):
policy = policy.cuda()
print('\nI was working on figuring out how to get data on GPU before training, Batch has to_torch_ where you can pass device as well\n')
# create the parallel train_collector, which is optimized to gather custom vectorized envs
# train_collector = FastPyDroneSimCollector(policy=policy, env=env, buffer=buffer, device=device)
env = DummyVectorEnv([lambda: env])
train_collector = Collector(policy=policy, env=env, buffer=buffer)
train_collector.reset()
# test_collector = FastPyDroneSimCollector(policy=policy,env=test_env, device=device)
test_env = DummyVectorEnv([lambda: test_env])
test_collector = Collector(policy=policy,env=test_env)
test_collector.reset()
# define a number of start timesteps to fill buffer (now one sec of data *100 drones )
train_collector.collect(n_step=1000)
print("Start training")
# trainer
result = OffpolicyTrainer(
policy=policy,
train_collector=train_collector,
test_collector=test_collector, # no testing performed
max_epoch=args['epoch'],
step_per_epoch=args['step_per_epoch'],
step_per_collect=args['step_per_collect'],
episode_per_test=args['test_num'],
batch_size=args['batch_size'],
save_best_fn=save_best_fn,
logger=logger,
update_per_step=args['update_per_step'],
test_in_train=False,
buffer=buffer,).run()
# print with nice formatting
import pprint
pprint.pprint(result)