Skip to content

Latest commit

 

History

History
1050 lines (820 loc) · 38.7 KB

readme.md

File metadata and controls

1050 lines (820 loc) · 38.7 KB

Lenticular Lens

Lenticular Lens is a tool which allows users to construct linksets between entities from different Timbuctoo datasets (so called data-alignment or reconciliation). Lenticular Lens tracks the configuration and the algorithms used in the alignment and is also able to report on manual corrections and the amount of manual validation done.

  1. Installation with Docker
  2. Definition of terms
  3. API
    1. Default
    2. Authentication and authorization
    3. Job creation and updates
    4. Job processes
    5. Data retrieval
    6. Linksets interaction
    7. Export
    8. Admin tasks
  4. Websocket
    1. Default namespace
    2. Job namespace
  5. Job configuration with JSON
    1. Entity-type selections
    2. Linkset specs
    3. Lens specs
    4. Views
    5. Logic boxes
    6. Property paths
    7. Fuzzy logic

Installation with Docker

  1. Make sure Docker and Docker Compose are installed
  2. Use the provided docker-compose.yml as a baseline
  3. Run docker-compose up
  4. Visit http://localhost:8000 in your browser

Note: This will create a folder pgdata with the database data. To clean up the database and start from scratch, simply remove this folder.

Configuration

Misc. configuration:

  • APP_DOMAIN: The application domain; defaults to http://localhost
  • SECRET_KEY: The secret key used for session signing
  • ADMIN_ACCESS_TOKEN: The access token used for running admin tasks
  • LOG_LEVEL: The logging level; defaults to INFO
  • PUBLISHER: The publisher to be registered in the RDF export; defaults to Lenticular Lens
  • AUTO_DELETE_JOB_DAYS: The minimum number of days after creation of a job making the job eligible for deletion
  • WORKER_TYPE: For a worker instance, the type of the worker to run:
    • TIMBUCTOO
    • LINKSET
    • LENS
    • CLUSTERING
    • RECONCILIATION

Database configuration:

  • DATABASE_HOST: The database host; defaults to localhost
  • DATABASE_PORT: The database port; defaults to 5432
  • DATABASE_DB: The database name; defaults to postgres
  • DATABASE_USER: The database user; defaults to postgres
  • DATABASE_PASSWORD: The database password; defaults to postgres
  • DATABASE_MAX_CONNECTIONS: The maximum number of database connections in the connection pool; defaults to 5

OpenID Connect authentication configuration:

  • OIDC_SERVER: The OpenID Connect provider server; leave empty to disable authentication
  • OIDC_CLIENT_ID: The OpenID Connect client id
  • OIDC_CLIENT_SECRET: The OpenID Connect client secret

Definition of terms

  • Job

    A job encloses a research question, which highlights the scope/context in which linksets and lenses are created, analysed, validated and exported.

  • Entity-type selection

    An entity-type selection is a selection of entities (stemmed from a dataset) of a certain type based on zero or more filters. The set of entity-type selections in a job comprises the entities of interest for a research question.

  • Linkset specification

    A linkset specification is the specification determining how entities from one or more entity-type selections should be matched using one or more entity matching algorithms. Running a linkset specification will result in a _ linkset_.

  • Linkset

    A linkset is a set of paired resources (URIs) that matched according to a linkset specification.

  • Lens specification

    A lens specification is the specification that specifies one or more modifications (union, intersection, ...) over a number of linksets or lenses. The lens inherits the specifications of all _ linksets_ and lenses it originates from.

  • Lens

    A lens is a set of paired resources (URIs) resulting from one or more modifications according to a lens specification.

  • Clustering

    A clustering is the partitioning of the resources (URIs) in a linkset or lens into clusters based on transitivity of the links in the linkset or lens.

  • Cluster

    A cluster is a set of potentially similar resources (URIs). As a cluster originates from the clustering of a _ linkset_ or a lens, the cluster holds only with respect to their linkset specifications.

API

Default

URL: /
Method: GET

Root page. Will return the GUI for the tool.


URL: /datasets
Method: GET
Parameters: endpoint

Returns all available datasets for a specific Timbuctoo GraphQL endpoint.

Example: /datasets?endpoint=https://repository.goldenagents.org/v5/graphql


URL: /downloads
Method: GET

Returns all currently running data downloads and finished data downloads from Timbuctoo.


URL: /download
Method: GET
Parameters: endpoint, dataset_id, collection_id

Starts a data download from Timbuctoo from the given Timbuctoo GraphQL endpoint. Use dataset_id to specify from which dataset to download and collection_id to specify the collection from the dataset to download.

_ Example: /download?endpoint=https://repository.goldenagents.org/v5/graphql&dataset_id=ufab7d657a250e3461361c982ce9b38f3816e0c4b__ecartico_20190805&collection_id=schema_Person_


URL: /stopwords/<dictionary>
Method: GET

Returns the stopwords for the given dictionary.


URL: /methods
Method: GET

Returns the various available filter functions, matching methods and transformers.

Authentication and authorization

URL: /login
Method: GET
Parameters: redirect-uri

Allow the user to login and then redirect back to the given redirect-uri.

Example: /login?redirect-uri=https://lenticularlens.org


URL: /user_info
Method: GET

Returns the user information of the logged-in user.

Job creation and updates

URL: /job/create
Method: POST
Form data: job_title, job_description

Creates a new job with the given job_title and job_description. Returns the identifier of this new job.


URL: /job/update
Method: POST
JSON: job_id, job_title, job_description, job_link, entity_type_selections, linkset_specs, lens_specs , views

Updates a job with the given job_id. Updates the job_title, job_description, job_link, entity_type_selections , linkset_specs, lens_specs and views.


URL: /job/<job_id>
Method: GET

Returns the details of a job with the given job_id.

Example: /job/d697ea3869422ce3c7cc1889264d03c7

Job processes

URL: /job/<job_id>/linksets
Method: GET

Returns the details of all linksets with the given job_id.

Example: /job/d697ea3869422ce3c7cc1889264d03c7/linksets


URL: /job/<job_id>/lenses
Method: GET

Returns the details of all lenses with the given job_id.

Example: /job/d697ea3869422ce3c7cc1889264d03c7/lenses


URL: /job/<job_id>/clusterings
Method: GET

Returns the details of all clustering jobs with the given job_id.

Example: /job/d697ea3869422ce3c7cc1889264d03c7/clusterings


URL: /job/<job_id>/run/<type>/<linkset>
Method: POST
Form data: restart

Start a process for the given spec of type (linkset or lens) of a specific job_id. Specify restart to restart the process.

Example: /job/d697ea3869422ce3c7cc1889264d03c7/run/linkset/0


URL: /job/<job_id>/run_clustering/<type>/<id>
Method: POST

Start a clustering process of type (linkset or lens) for the linkset/lens with the given id of a specific job_id.

Example: /job/d697ea3869422ce3c7cc1889264d03c7/run_clustering/linkset/0


URL: /job/<job_id>/kill/<type>/<linkset>
Method: POST

Stop a process for the given spec of type (linkset or lens) of a specific job_id.

Example: /job/d697ea3869422ce3c7cc1889264d03c7/kill/linkset/0


URL: /job/<job_id>/kill_clustering/<type>/<id>
Method: POST

Stop a clustering process of type (linkset or lens) for the linkset/lens with the given id of a specific job_id.

Example: /job/d697ea3869422ce3c7cc1889264d03c7/kill_clustering/lens/0


URL: /job/<job_id>
Method: DELETE

Deletion of the job with the given job_id.

Example: /job/d697ea3869422ce3c7cc1889264d03c7


URL: /job/<job_id>/<type>/<id>
Method: DELETE

Deletion of type (linkset or lens) for the linkset/lens with the given id of a specific job_id.

Example: /job/d697ea3869422ce3c7cc1889264d03c7/lens/0

Data retrieval

URL: /job/list
Method: GET

Returns all the logged-in user his/her jobs.


URL: /job/<job_id>/entity_type_selection_total/<id>
Method: GET

Returns the total number of entities for an entity-type selection with the given id of the given job_id.

Example: /job/d697ea3869422ce3c7cc1889264d03c7/entity_type_selection_total/0


URL: /job/<job_id>/links_totals/<type>/<id>
Method: GET, POST
Parameters: apply_filters, uri, cluster_id, min, max

Returns the total number of links of type (linkset or lens) for the linkset/lens with id of the given job_id.

Specify apply_filters to apply the filters specified by the user. Specify uri to only return links with the specified URIs. Specify cluster_id to only return the links of specific clusters. Specify min and/or max to only return links with a similarity score within the specified minimum and maximum score.

Example: /job/d697ea3869422ce3c7cc1889264d03c7/links_totals/linkset/0


URL: /job/<job_id>/clusters_totals/<type>/<id>
Method: GET, POST
Parameters: apply_filters, uri, cluster_id, min, max

Returns the total number of clusters of type (linkset or lens) for the linkset/lens with id of the given job_id.

Specify apply_filters to apply the filters specified by the user. Specify uri to only return links with the specified URIs. Specify cluster_id to only return the links of specific clusters. Specify min and/or max to only take into account links with a similarity score within the specified minimum and maximum score. Specify min_size and/or max_size to only return clusters with a size that is within the specified minimum and maximum size. Specify min_count and/or max_count to only return clusters with a links count that is within the specified minimum and maximum count.

Example: /job/d697ea3869422ce3c7cc1889264d03c7/clusters_totals/linkset/0


URL: /job/<job_id>/entity_type_selection/<id>
Method: GET
Parameters: limit, offset

Returns all data for an entity-type selection with the given id of the given job_id. Use limit and offset for paging.

Example: /job/d697ea3869422ce3c7cc1889264d03c7/entity_type_selection/0


URL: /job/<job_id>/links/<type>/<id>
Method: GET, POST
Parameters: with_properties, apply_filters, valid, uri, cluster_id, min, max, sort, limit , offset

Returns the links of type (linkset or lens) for the linkset/lens with id of the given job_id. Use limit and offset for paging.

Specify with_properties with 'none' to return no property values, 'single' to only return a single property value or ' multiple' to return multiple property values. Specify apply_filters to apply the filters specified by the user. Specify valid with accepted, rejected, uncertain and/or unchecked to only return from the specified validity types. Specify uri to only return links with the specified URIs. Specify cluster_id to only return the links of specific clusters. Specify min and/or max to only return links with a similarity score within the specified minimum and maximum score. Specify sort if you want to enable sorting on similarity score using asc or desc.

Example: /job/d697ea3869422ce3c7cc1889264d03c7/links/linkset/0


URL: /job/<job_id>/clusters/<type>/<id>
Method: GET, POST
Parameters: with_properties, apply_filters, include_nodes, uri, cluster_id, min, max, min_size , max_size, min_count, max_count, limit, offset

Returns the clusters of type (linkset or lens) for the linkset/lens with id of the given job_id. Use limit and offset for paging.

Specify with_properties with 'none' to return no property values, 'single' to only return a single property value or ' multiple' to return multiple property values. Specify apply_filters to apply the filters specified by the user. Specify include_nodes to include all nodes that are part of the cluster in the response. Specify uri to only return links with the specified URIs. Specify cluster_id to only return the links of specific clusters. Specify min and/or max to only return links with a similarity score within the specified minimum and maximum score. Specify min_size and/or max_size to only return clusters with a size that is within the specified minimum and maximum size. Specify min_count and/or max_count to only return clusters with a links count that is within the specified minimum and maximum count.

Example: /job/d697ea3869422ce3c7cc1889264d03c7/clusters/0

Linksets interaction

URL: /job/<job_id>/validate/<type>/<id>
Method: POST
Form data: source, target, apply_filters, valid, uri, cluster_id, min, max, validation

Validate a link of type (linkset or lens) for the linkset/lens with id of the given job_id.

Specify the uris of the source and target to identify the link to be validated. Or filter the links by specifying apply_filters to apply the filters specified by the user. Specify valid with accepted, rejected, uncertain and/or unchecked to only return from the specified validity types. Specify uri to only return links with the specified URIs. Specify cluster_id to only return the links of specific clusters. Specify min and/or max to only return links with a similarity score within the specified minimum and maximum score.

Provide validation with either accepted, rejected or uncertain to validate the link or use unchecked to reset.


URL: /job/<job_id>/motivate/<type>/<id>
Method: POST
Form data: source, target, apply_filters, valid, uri, cluster_id, min, max, motivation

Motivate using motivation of type (linkset or lens) for the linkset/lens with id of the given job_id.

Specify the uris of the source and target to identify the link to be motivated. Or filter the links by specifying apply_filters to apply the filters specified by the user. Specify valid with accepted, rejected, uncertain and/or unchecked to only return from the specified validity types. Specify uri to only return links with the specified URIs. Specify cluster_id to only return the links of specific clusters. Specify min and/or max to only return links with a similarity score within the specified minimum and maximum score.


URL: /job/<job_id>/cluster/<type>/<id>/<cluster_id>/graph
Method: GET

Get the visualization information for a cluster with cluster_id of type (linkset or lens) for the linkset/lens with id of the given job_id.

Export

URL: /job/<job_id>/csv/<type>/<id>
Method: GET
Parameters: valid

Get a CSV export of type (linkset or lens) for the linkset/lens with id the given job_id.

Specify valid with accepted, rejected, uncertain and/or unchecked to only export from the specified validity types.


URL: /job/<job_id>/rdf/<type>/<id>
Method: GET
Parameters: valid, link_pred_namespace, link_pred_shortname, export_metadata, export_linkset, reification, use_graphs, creator, publisher

Get a RDF export of type (linkset or lens) for the linkset/lens with id the given job_id.

Specify valid with accepted, rejected, uncertain and/or unchecked to only export from the specified validity types.

Specify link_pred_namespace and link_pred_shortname to configure the predicate to use for the links.

Specify export_metadata, export_linkset with boolean values to indicate what to include in the RDF export.

Specify reification with either none, standard, singleton or rdf_star to indicate how the link metadata has to be included in the RDF export.

Specify use_graphs to determine the RDF format to use.

Optionally specify creator to include extra metadata. If authentication is enabled, the creator is obtained from the authentication provider.

Admin tasks

URL: /admin/cleanup_jobs
Method: POST
Parameters: access_token

Cleanup all the jobs.

Specify access_token to show authorization to run this admin task.


URL: /admin/cleanup_downloaded
Method: POST
Parameters: access_token

Cleanup all the downloaded collections.

Specify access_token to show authorization to run this admin task.

WebSocket

Lenticular Lens pushes events using the Socket.IO library using WebSockets.

There is a default namespace on / and a namespace for messages on a specific job on /<job_id>.

Default namespace

Event: timbuctoo_update

Emits download progress on Timbuctoo datasets.

{
  // The GraphQL interface of the Timbuctoo instance
  "graphql_endpoint": "https://repository.goldenagents.org/v5/graphql",
  // The identifier of the dataset
  "dataset_id": "ufab7d657a250e3461361c982ce9b38f3816e0c4b__ecartico_20190805",
  // The identifier of the collection from this dataset
  "collection_id": "foaf_Person",
  // The total number of entities to be downloaded
  "total": 1000,
  // The total number of entities currently downloaded
  "rows_count": 400,
}

Event: timbuctoo_delete

Emits removal of a Timbuctoo dataset collection from the database.

{
  // The GraphQL interface of the Timbuctoo instance
  "graphql_endpoint": "https://repository.goldenagents.org/v5/graphql",
  // The identifier of the dataset
  "dataset_id": "ufab7d657a250e3461361c982ce9b38f3816e0c4b__ecartico_20190805",
  // The identifier of the collection from this dataset
  "collection_id": "foaf_Person",
}

Job namespace

Event: job_update

Emits when the job has been updated.

{
  // The job identifier
  "job_id": "d697ea3869422ce3c7cc1889264d03c7",
  // The timestamp of the update
  "updated_at": "2021-01-01T12:00:00.01234",
  // Was the title updated?
  "is_title_update": true,
  // Was the description updated?
  "is_description_update": true,
  // Was the link updated?
  "is_link_update": true,
  // Were any entity-type selections updated?
  "is_entity_type_selections_update": false,
  // Were any linkset specifications updated?
  "is_linkset_specs_update": false,
  // Were any lens specifications updated?
  "is_lens_specs_update": false,
  // Were any views updated?
  "is_views_update": false,
}

Event: alignment_update

Emits linkset or lens matching progress.

{
  // The job identifier
  "job_id": "d697ea3869422ce3c7cc1889264d03c7",
  // The specification type: a linkset or a lens
  "spec_type": 'linkset',
  // The specification identifier
  "spec_id": 1,
  // The matching status
  "status": "running",
  // A human-readable status message
  "status_message": "Matching",
  // If links progressing is enabled, the number of links found so far
  "links_progress": 23,
}

Event: alignment_delete

Emits removal of a linkset or lens.

{
  // The job identifier
  "job_id": "d697ea3869422ce3c7cc1889264d03c7",
  // The specification type: a linkset or a lens
  "spec_type": 'linkset',
  // The specification identifier
  "spec_id": 1,
}

Event: clustering_update

Emits clustering progress.

{
  // The job identifier
  "job_id": "d697ea3869422ce3c7cc1889264d03c7",
  // The specification type: a linkset or a lens
  "spec_type": 'linkset',
  // The specification identifier
  "spec_id": 1,
  // The type of clustering performed
  "clustering_type": "default",
  // The matching status
  "status": "running",
  // A human-readable status message
  "status_message": "Clustering",
  // The number of links clustered so far
  "links_count": 452,
  // The number of clusters found so far
  "clusters_count": 5,
}

Event: clustering_delete

Emits removal of a clustering.

{
  // The job identifier
  "job_id": "d697ea3869422ce3c7cc1889264d03c7",
  // The specification type: a linkset or a lens
  "spec_type": 'linkset',
  // The specification identifier
  "spec_id": 1,
  // The type of clustering performed
  "clustering_type": "default",
}

Job configuration with JSON

Entity-type selections

Entity-type selections is a list of JSON objects that contain the configuration of the specific entity-type selections to use for a particular job.

{
  // An integer as identifier  
  "id": 1,
  // The label of the entity-type selection
  "label": "My dataset",
  // A description of this entity-type selection by the user; optional field
  "description": "",
  // The data to use from Timbuctoo
  "dataset": {
    // The identifier of the dataset to use
    "dataset_id": "ufab7d657a250e3461361c982ce9b38f3816e0c4b__ecartico_20190805",
    // The identifier of the collection from this dataset to use
    "collection_id": "foaf_Person",
    // The GraphQL interface of the Timbuctoo instance
    "timbuctoo_graphql": "https://repository.goldenagents.org/v5/graphql",
  },
  // The filter configuration to obtain only a subset of the data from Timbuctoo; optional field
  "filter": {
    // Whether ALL conditions in this group should match ('and') or AT LEAST ONE condition in this group has to match ('or')
    "type": "and",
    // The filter is composed of a logic box
    "conditions": [
      {
        // The property path to which this condition applies
        "property": [
          "foaf_name"
        ],
        // The type of filtering to apply; see table below for allowed values
        "type": 'minimal_date',
        // Depends on type of filtering selected; value to use for filtering
        "value": "1600",
        // Both the types `minimal_date` and `maximum_date` require a date format for parsing
        "format": "YYYY-MM-DD"
      }
    ]
  },
  // Apply a limit on the number of entities to obtain or -1 for no limit; optional field, defaults to '-1'
  "limit": -1,
  // Randomize the entities to obtain or not; optional field, defaults to 'false'
  "random": false,
  // A list of property paths to use for obtaining sample data; optional field
  "properties": [
    [
      "foaf_name"
    ]
  ]
}
Filtering Key Value
Equal to equals Yes
Not equal to not_equals Yes
Has no value empty No
Has a value not_empty No
Contains contains Yes (Use % as a wildcard)
Does not contain not_contains Yes (Use % as a wildcard)
Minimal minimal Yes (An integer)
Maximum maximum Yes (An integer)
Minimal date minimal_date Yes (Use YYYY-MM-DD)
Maximum date maximum_date Yes (Use YYYY-MM-DD)
Minimal appearances minimal_appearances Yes (An integer)
Maximum appearances maximum_appearances Yes (An integer)

Linkset specs

Linkset specs is a list of JSON objects that contain the configuration of the linksets to generate for a particular job.

{
  // An integer as identifier
  "id": 1,
  // The label of the linkset
  "label": "My linkset",
  // A description of this linkset by the user; optional field
  "description": "",
  // Whether we would like to track progress in the GUI at the cost that matching might run longer; optional field, defaults to 'true'
  "use_counter": true,
  // The identifiers of entity-type selections to use as sources
  "sources": [
    1
  ],
  // The identifiers of entity-type selections to use as targets
  "targets": [
    1
  ],
  // The matching configuration for finding links; requires at least one condition
  "methods": {
    // Whether ALL conditions in this group should match ('and') or AT LEAST ONE condition in this group has to match ('or'); T-norms and s-norms are also allowed: see table below for allowed values
    "type": "and",
    // The threshold to apply on the similarity score; optional field, defaults to '0' which means it does not apply
    "threshold": 0.8,
    // The matching configuration is composed of a logic box
    "conditions": [
      {
        // The main matching method to apply
        "method": {
          // The type of matching to apply; see table below for allowed values
          "name": "soundex",
          // Some types of matching methods require extra configuration
          "config": {}
        },
        // The similarity matching to apply; see table below for allowed values; optional field
        "sim_method": {
          // The type of similarity matching to apply; see table below for allowed values
          "name": "soundex",
          // Some types of similarity matching methods require extra configuration
          "config": {},
          // Whether to apply the similarity matching method on the normalized value; optional field, defaults to 'false'
          "normalized": false,
        },
        // Fuzzy matching configuration; optional field
        "fuzzy": {
          // The s-norm to apply on the values of this condition; see table below for allowed values; optional field, defaults to 'MAXIMUM_S_NorM'
          "s_norm": "maximum_s_norm",
          // The threshold to apply on the similarity score; optional field, defaults to '0' which means it does not apply
          "threshold": 0
        },
        // Perform list matching; optional field
        "list_matching": {
          // The minimum number of intersections; optional field, defaults to '0' which means it does not apply
          "threshold": 8,
          // Whether the threshold number should be interpreted as a percentage; optional field, defaults to 'false'
          "is_percentage": false
        },
        // Sources configuration
        "sources": {
          // The source properties to use during matching per entity-type selection 
          "properties": {
            "1": [
              {
                // The property path to which this condition applies
                "property": [
                  "schema_birthDate"
                ],
                // Whether the transformers of this property should be applied before the source transformers; optional field, defaults to 'false'
                "property_transformer_first": false,
                // The transformers to apply to transform the value before matching; see table below for allowed values
                "transformers": [
                  {
                    "name": "parse_date",
                    "parameters": {
                      "format": "YYYY-MM-DD"
                    }
                  }
                ]
              }
            ],
          },
          // The transformers to apply to transform the source value before matching; see table below for allowed values
          "transformers": []
        },
        // Targets configuration
        "targets": {
          // The target properties to use during matching per entity-type selection 
          "properties": {
            "1": [
              {
                "property": [
                  "schema_birthDate"
                ],
                "property_transformer_first": false,
                "transformers": []
              }
            ],
          },
          // The transformers to apply to transform the target value before matching; see table below for allowed values
          "transformers": []
        }
      }
    ]
  }
}
Matching method Key Accepts a similarity method Is a similarity method Values
Exact match exact No No
Intermediate dataset intermediate No No entity_type_selection, intermediate_source, intermediate_target (Property paths)
Levenshtein distance levenshtein_distance No Yes max_distance
Levenshtein normalized levenshtein_normalized No Yes threshold
Soundex soundex Yes No size
Gerrit Bloothooft bloothooft Yes No name_type (First or last name: first_name, family_name)
Word Intersection word_intersection No Yes ordered, approximate, stop_symbols, threshold
Metaphone metaphone Yes No max
Double Metaphone dmetaphone Yes No
Trigram trigram No Yes threshold
Numbers Delta numbers_delta No No type (Irrelevant, Source < Target, Target < Source: <>, <, >), start, end
Time Delta time_delta No No type (Irrelevant, Source < Target, Target < Source: <>, <, >), years, months, days, format
Same Year/Month same_year_month No No date_part (Year, month, or both: year, month, year_month)
Jaro jaro No Yes threshold
Jaro-Winkler jaro_winkler No Yes threshold, prefix_weight
Transformer Key Values
Transform 'last name first' format transform_last_name_format infix
Prefix prefix prefix
Suffix suffix suffix
Replace replace from, to
Unaccent unaccent
Regular expression replace regexp_replace pattern, replacement, flags

Lens specs

Lens specs is a list of JSON objects that contain the configuration of the lenses to apply on a combination of linksets.

{
  // An integer as identifier
  "id": 1,
  // The label of the lens
  "label": "My lens",
  // A description of this lens by the user; optional field
  "description": "",
  // The lens configuration; requires groups consisting of two elements
  "specs": {
    // Lens type to apply; see table below for allowed values
    "type": "union",
    // The s-norm to apply on the values of this element; see table below for allowed values; optional field, defaults to 'MAXIMUM_S_NorM'
    "s_norm": "",
    // The threshold to apply on the similarity score; optional field, defaults to '0' which means it does not apply
    "threshold": 0.8,
    // The lens configuration is composed of a logic box
    "elements": [
      {
        // The identifier of the linkset/lens to use
        "id": 0,
        // The type (linkset or lens)
        "type": "linkset"
      }
    ]
  }
}
Lens type Description
union Union (A ∪ B)
intersection Intersection (A ∩ B)
difference Difference (A - B)
sym_difference Symmetric difference (A ∆ B)
in_set_and Source and target resources match
in_set_or Source or target resources match
in_set_source Source resources match
in_set_target Target resources match

Views

Views is a list of JSON objects that contain the properties and filters to examine a linkset or lens for a particular job.

{
  // The id of the specification (linkset or lens) to which the view applies
  "id": 1,
  // The type of the specification (linkset or lens) to which the view applies
  "type": "linkset",
  // The property paths to use for obtaining data; optional field
  "properties": [
    {
      // The identifier of the dataset of the properties
      "dataset_id": "ufab7d657a250e3461361c982ce9b38f3816e0c4b__ecartico_20190805",
      // The identifier of the collection of the properties for this dataset
      "collection_id": "foaf_Person",
      // The GraphQL interface of the Timbuctoo instance
      "timbuctoo_graphql": "https://repository.goldenagents.org/v5/graphql",
      // A list of property paths to use for this dataset
      "properties": [
        [
          "foaf_name"
        ]
      ]
    }
  ]
}

Logic boxes

The entity-type selections (using the filter), the linkset specs (using the matching methods) and the lens specs (using the elements) all apply a logic box to allow the user the express complex conditions.

{
  // The type that combines these elements (usually and/or, but can be of any type)
  "type": "and",
  // The list of elements; may contain other logic boxes (can have any JSON key)
  "elements": []
}

As logic boxes may contain other logic boxes, complex conditions can be expressed.

{
  "type": "and",
  "conditions": [
    {
      "type": "or",
      "conditions": [
        {},
        {},
        {}
      ]
    },
    {
      "type": "or",
      "conditions": [
        {
          "type": "and",
          "conditions": [
            {}
          ]
        },
        {}
      ]
    }
  ]
}

Property paths

A property path is a list of values that expresses the path in the linked data from the entity to a specific property. The list has at least one value: the property to select on the entity. If the property is a reference to another entity, you have to specify another value in the list with the id of the entity it points to. Then you can select the specific property on the referenced entity. If this is again a reference to another entity, the cycle repeats itself until you reach the required property.

[
  "property",
  "entity",
  "property",
  "entity",
  "property"
]

If you want the reference as a value, rather then selecting a property on the referenced entity, there is a special value __value__ that you can use.

[
  // Get the name of a person: select the property 'foaf_name'
  [
    "foaf_name"
  ],
  // Get the name of a parent of a person: follow the property 'schema_parent' to the parent entity and select the property 'foaf_name' 
  [
    "schema_parent",
    "foaf_Person",
    "foaf_name"
  ],
  // Get the name of a grandparent of a person: follow the property 'schema_parent' to the parent entity, then follow that property again and then select the property 'foaf_name'
  [
    "schema_parent",
    "foaf_Person",
    "schema_parent",
    "foaf_Person",
    "foaf_name"
  ],
  // Get the reference of the parent of a person (the uri of this parent): follow the property 'schema_parent' and use the special value '__value__'
  [
    "schema_parent",
    "__value__"
  ]
]

Fuzzy logic

The configuration mentions both t-norms (conjuction / and) and s-norms (disjunction / or) that can be used to configure how the similarity score is computed:

T-norm Key
Minimum t-norm (⊤min) minimum_t_norm
Product t-norm (⊤prod) product_t_norm
Łukasiewicz t-norm (⊤Luk) lukasiewicz_t_norm
Drastic t-norm (⊤D) drastic_t_norm
Nilpotent minimum (⊤nM) nilpotent_minimum
Hamacher product (⊤H0) hamacher_product
S-norm Key
Maximum s-norm (⊥max) maximum_s_norm
Probabilistic sum (⊥sum) probabilistic_sum
Bounded sum (⊥Luk) bounded_sum
Drastic s-norm (⊥D) drastic_s_norm
Nilpotent maximum (⊥nM) nilpotent_maximum
Einstein sum (⊥H2) einstein_sum