This repository has been archived by the owner on Jan 12, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_st.py
executable file
·342 lines (284 loc) · 10.9 KB
/
run_st.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
#!/usr/bin/env python
# Copyright (c) 2021 Kemal Kurniawan
from itertools import chain
from pathlib import Path
import os
from einops import rearrange
from gensim.models.keyedvectors import KeyedVectors
from rnnr import Event, Runner
from rnnr.attachments import EpochTimer, ProgressBar, SumReducer
from sacred import Experiment
from sacred.observers import MongoObserver
from sacred.utils import apply_backspaces_and_linefeeds
from text2array import BucketIterator, ShuffleIterator
import torch
from callbacks import (
batch2tensors,
compute_l2_loss,
compute_total_arc_type_scores,
evaluate_batch,
get_n_items,
log_grads,
log_stats,
predict_batch,
save_state_dict,
set_train_mode,
update_params,
)
from ingredients.corpus import ing as corpus_ing, read_samples
from serialization import dump, load
from utils import extend_word_embedding, print_accs
ex = Experiment("xduft-st-testrun", ingredients=[corpus_ing])
ex.captured_out_filter = apply_backspaces_and_linefeeds
# Setup mongodb observer
mongo_url = os.getenv("SACRED_MONGO_URL")
db_name = os.getenv("SACRED_DB_NAME")
if None not in (mongo_url, db_name):
ex.observers.append(MongoObserver.create(url=mongo_url, db_name=db_name))
@ex.config
def default():
# directory to save finetuning artifacts
artifacts_dir = "ft_artifacts"
# whether to overwrite existing artifacts directory
overwrite = False
# discard train/dev/test samples with length greater than these numbers
max_length = {}
# load training artifacts from this artifacts directory
load_from = "artifacts"
# load trained model parameters from this file under 'load_from' directory
load_params = "model.pth"
# device to run on [cpu, cuda]
device = "cuda" if torch.cuda.is_available() else "cpu"
# path to word embedding in word2vec format
word_emb_path = "wiki.en.vec"
# whether to freeze word and tag embedding
freeze = False
# whether to operate in the space of projective trees
projective = False
# whether to consider multi-root trees (otherwise only single-root trees)
multiroot = False
# batch size
batch_size = 16
# learning rate
lr = 1e-5
# coefficient of L2 regularization against initial parameters
l2_coef = 1.0
# max number of epochs
max_epoch = 5
@ex.named_config
def ahmadetal():
max_length = {"train": 100}
batch_size = 80
corpus = {"normalize_digits": True}
@ex.named_config
def heetal_eval_setup():
max_length = {"dev": 150, "test": 150}
@ex.named_config
def nearby():
max_length = {"train": 60}
lr = 5.6e-4
l2_coef = 3e-4
@ex.named_config
def distant():
max_length = {"train": 60}
lr = 3.7e-4
l2_coef = 2.8e-4
@ex.named_config
def testrun():
seed = 12345
max_epoch = 2
corpus = dict(portion=0.05)
@ex.capture
def run_eval(
model, vocab, samples, device="cpu", projective=False, multiroot=True, batch_size=32,
):
runner = Runner()
runner.on(
Event.BATCH,
[
batch2tensors(device, vocab),
set_train_mode(model, training=False),
compute_total_arc_type_scores(model, vocab),
predict_batch(projective, multiroot),
evaluate_batch(),
get_n_items(),
],
)
n_tokens = sum(len(s["words"]) for s in samples)
ProgressBar(leave=False, total=n_tokens, unit="tok").attach_on(runner)
SumReducer("counts").attach_on(runner)
with torch.no_grad():
runner.run(BucketIterator(samples, lambda s: len(s["words"]), batch_size))
return runner.state
@ex.automain
def finetune(
_log,
_run,
_rnd,
max_length=None,
artifacts_dir="ft_artifacts",
overwrite=False,
load_from="artifacts",
load_params="model.pth",
device="cpu",
word_emb_path="wiki.id.vec",
freeze=False,
projective=False,
multiroot=True,
batch_size=32,
lr=1e-5,
l2_coef=1.0,
max_epoch=5,
):
"""Finetune a trained model with self-training."""
if max_length is None:
max_length = {}
artifacts_dir = Path(artifacts_dir)
_log.info("Creating artifacts directory %s", artifacts_dir)
artifacts_dir.mkdir(exist_ok=overwrite)
samples = {
wh: list(read_samples(which=wh, max_length=max_length.get(wh)))
for wh in ["train", "dev", "test"]
}
for wh in samples:
n_toks = sum(len(s["words"]) for s in samples[wh])
_log.info("Read %d %s samples and %d tokens", len(samples[wh]), wh, n_toks)
path = Path(load_from) / "vocab.yml"
_log.info("Loading vocabulary from %s", path)
vocab = load(path.read_text(encoding="utf8"))
for name in vocab:
_log.info("Found %d %s", len(vocab[name]), name)
_log.info("Extending vocabulary with target words")
vocab.extend(chain(*samples.values()), ["words"])
_log.info("Found %d words now", len(vocab["words"]))
path = artifacts_dir / "vocab.yml"
_log.info("Saving vocabulary to %s", path)
path.write_text(dump(vocab), encoding="utf8")
samples = {wh: list(vocab.stoi(samples[wh])) for wh in samples}
path = Path(load_from) / "model.yml"
_log.info("Loading model from metadata %s", path)
model = load(path.read_text(encoding="utf8"))
path = Path(load_from) / load_params
_log.info("Loading model parameters from %s", path)
model.load_state_dict(torch.load(path, "cpu"))
_log.info("Creating extended word embedding layer")
kv = KeyedVectors.load_word2vec_format(word_emb_path)
assert model.word_emb.embedding_dim == kv.vector_size
with torch.no_grad():
model.word_emb = torch.nn.Embedding.from_pretrained(
extend_word_embedding(model.word_emb.weight, vocab["words"], kv)
)
path = artifacts_dir / "model.yml"
_log.info("Saving model metadata to %s", path)
path.write_text(dump(model), encoding="utf8")
model.word_emb.requires_grad_(not freeze)
model.tag_emb.requires_grad_(not freeze)
model.to(device)
for wh in ["train"]:
for i, s in enumerate(samples[wh]):
s["_id"] = i
runner = Runner()
runner.state.update({"st_heads": [], "st_types": [], "_ids": []})
runner.on(
Event.BATCH,
[
batch2tensors(device, vocab),
set_train_mode(model, training=False),
compute_total_arc_type_scores(model, vocab),
predict_batch(projective, multiroot),
],
)
@runner.on(Event.BATCH)
def save_st_trees(state):
state["st_heads"].extend(state["pred_heads"].tolist())
state["st_types"].extend(state["pred_types"].tolist())
state["_ids"].extend(state["batch"]["_id"].tolist())
state["n_items"] = state["batch"]["words"].numel()
n_toks = sum(len(s["words"]) for s in samples[wh])
ProgressBar(total=n_toks, unit="tok").attach_on(runner)
_log.info("Computing ST trees for %s set", wh)
with torch.no_grad():
runner.run(BucketIterator(samples[wh], lambda s: len(s["words"]), batch_size))
assert len(runner.state["st_heads"]) == len(samples[wh])
assert len(runner.state["st_types"]) == len(samples[wh])
assert len(runner.state["_ids"]) == len(samples[wh])
for i, st_heads, st_types in zip(
runner.state["_ids"], runner.state["st_heads"], runner.state["st_types"]
):
assert len(samples[wh][i]["words"]) == len(st_heads)
assert len(samples[wh][i]["words"]) == len(st_types)
samples[wh][i]["st_heads"] = st_heads
samples[wh][i]["st_types"] = st_types
_log.info("Creating optimizer")
opt = torch.optim.Adam(model.parameters(), lr=lr)
finetuner = Runner()
origin_params = {name: p.clone().detach() for name, p in model.named_parameters()}
finetuner.on(
Event.BATCH,
[
batch2tensors(device, vocab),
set_train_mode(model),
compute_l2_loss(model, origin_params),
],
)
@finetuner.on(Event.BATCH)
def compute_loss(state):
bat = state["batch"]
words, tags, heads, types = bat["words"], bat["tags"], bat["st_heads"], bat["st_types"]
mask = bat["mask"]
arc_scores, type_scores = model(words, tags, mask, heads)
arc_scores = arc_scores.masked_fill(~mask.unsqueeze(2), -1e9) # mask padding heads
type_scores[..., vocab["types"].index(vocab.PAD_TOKEN)] = -1e9
# remove root
arc_scores, type_scores = arc_scores[:, :, 1:], type_scores[:, 1:]
heads, types, mask = heads[:, 1:], types[:, 1:], mask[:, 1:]
arc_scores = rearrange(arc_scores, "bsz slen1 slen2 -> (bsz slen2) slen1")
heads = heads.reshape(-1)
arc_loss = torch.nn.functional.cross_entropy(arc_scores, heads, reduction="none")
type_scores = rearrange(type_scores, "bsz slen ntypes -> (bsz slen) ntypes")
types = types.reshape(-1)
type_loss = torch.nn.functional.cross_entropy(type_scores, types, reduction="none")
arc_loss = arc_loss.masked_select(mask.reshape(-1)).mean()
type_loss = type_loss.masked_select(mask.reshape(-1)).mean()
loss = arc_loss + type_loss + l2_coef * state["l2_loss"]
state["loss"] = loss
state["stats"] = {
"arc_ppl": arc_loss.exp().item(),
"type_ppl": type_loss.exp().item(),
"l2_loss": state["l2_loss"].item(),
}
state["extra_stats"] = {"arc_loss": arc_loss.item(), "type_loss": type_loss.item()}
finetuner.on(
Event.BATCH,
[get_n_items(), update_params(opt), log_grads(_run, model), log_stats(_run)],
)
@finetuner.on(Event.EPOCH_FINISHED)
def eval_on_dev(state):
_log.info("Evaluating on dev")
eval_state = run_eval(model, vocab, samples["dev"])
accs = eval_state["counts"].accs
print_accs(accs, run=_run, step=state["n_iters"])
state["dev_accs"] = accs
@finetuner.on(Event.EPOCH_FINISHED)
def maybe_eval_on_test(state):
if state["epoch"] != max_epoch:
return
_log.info("Evaluating on test")
eval_state = run_eval(model, vocab, samples["test"])
print_accs(eval_state["counts"].accs, on="test", run=_run, step=state["n_iters"])
finetuner.on(Event.EPOCH_FINISHED, save_state_dict("model", model, under=artifacts_dir))
EpochTimer().attach_on(finetuner)
n_tokens = sum(len(s["words"]) for s in samples["train"])
ProgressBar(stats="stats", total=n_tokens, unit="tok").attach_on(finetuner)
bucket_key = lambda s: (len(s["words"]) - 1) // 10
trn_iter = ShuffleIterator(
BucketIterator(samples["train"], bucket_key, batch_size, shuffle_bucket=True, rng=_rnd),
rng=_rnd,
)
_log.info("Starting finetuning")
try:
finetuner.run(trn_iter, max_epoch)
except KeyboardInterrupt:
_log.info("Interrupt detected, training will abort")
else:
return finetuner.state["dev_accs"]["las_nopunct"]