-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathisim_sigma_size.py
105 lines (82 loc) · 3.78 KB
/
isim_sigma_size.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
from isim_utils import pairwise_average, npy_to_rdkit, rdkit_pairwise_sim
import numpy as np
from isim_sigma import get_stdev_tanimoto_fast, get_stdev_russell_fast, get_stdev_sokal_fast, random_sigma, stratified_sigma
import pandas as pd
import time
# Load the fingerprints
fps = np.load('chembl_33.npy', mmap_mode = 'r')
data = []
times = []
for n_ary in ['JT', 'RR', 'SM']:
for i in range(50):
entry = []
time_entry = []
entry.append(n_ary)
time_entry.append(n_ary)
n_subset = (i+1)*1000
n_subset_2 = int(n_subset/2)
entry.append(n_subset)
time_entry.append(n_subset)
# Choose two chunks of fingperprints from the dataset
chunk_1 = np.random.choice(len(fps), 1, replace = False)[0]
while chunk_1 + n_subset/2 > len(fps):
chunk_1 = np.random.choice(len(fps), 1, replace = False)[0]
chunk_2 = np.random.choice(len(fps), 1, replace = False)[0]
while chunk_2 + n_subset/2 > len(fps) or (chunk_2 > chunk_1 and chunk_2 < chunk_1 + n_subset/2):
chunk_2 = np.random.choice(len(fps), 1, replace = False)[0]
fps_subset = fps[chunk_1:chunk_1+n_subset_2]
fps_subset = np.concatenate((fps_subset, fps[chunk_2:chunk_2+n_subset_2]))
# Do stratisfied sampling with multiple samples
for n_strat in [10, 25, 50]:
start = time.time()
# Calculate the pairwise average of the sampled indexes
std = stratified_sigma(fps_subset, n_strat, n_ary = n_ary)
time_entry.append(time.time() - start)
entry.append(std)
# Do random sampling three times
for i in range(3):
start = time.time()
std = random_sigma(fps_subset, 50, n_ary = n_ary)
time_entry.append(time.time() - start)
entry.append(std)
# Do the pairwise average
if n_ary == 'JT':
fps_rdkit = npy_to_rdkit(fps_subset)
# Calculate the pairwise similarity of the sampled indexes
start = time.time()
average_rdkit, std_rdkit = rdkit_pairwise_sim(fps_rdkit)
time_entry.append(time.time() - start)
entry.append(std_rdkit)
else:
start = time.time()
average, std = pairwise_average(fps_subset, n_ary = n_ary)
time_entry.append(time.time() - start)
entry.append(std)
# Do the fast exact method
if n_ary == 'JT':
start = time.time()
stdev_tanimoto = get_stdev_tanimoto_fast(fps_subset)
time_entry.append(time.time() - start)
entry.append(stdev_tanimoto)
elif n_ary == 'RR':
start = time.time()
stdev_russell = get_stdev_russell_fast(fps_subset)
time_entry.append(time.time() - start)
entry.append(stdev_russell)
elif n_ary == 'SM':
start = time.time()
stdev_sokal = get_stdev_sokal_fast(fps_subset)
time_entry.append(time.time() - start)
entry.append(stdev_sokal)
data.append(entry)
times.append(time_entry)
# Create a dataframe with the results
df = pd.DataFrame(data, columns = ['n_ary', 'n_subset', 'strat_10', 'strat_25', 'strat_50', 'random_1', 'random_2', 'random_3', 'rdkit', 'fast_exact'])
# Create a dataframe with the times
df_times = pd.DataFrame(times, columns = ['n_ary', 'n_subset', 'strat_10', 'strat_25', 'strat_50', 'random_1', 'random_2', 'random_3', 'pairwise', 'fast_exact'])
# Save the dataframe
df.to_csv('std_stat_size.csv', index = False)
# Save the times
df_times.to_csv('std_stat_size_times.csv', index = False)
# Reset chunks for the next iteration
chunk_1, chunk_2 = None, None