diff --git a/docs/source/_tutorials/tutorial16rdmd.html b/docs/source/_tutorials/tutorial16rdmd.html new file mode 100644 index 000000000..bc8c100a8 --- /dev/null +++ b/docs/source/_tutorials/tutorial16rdmd.html @@ -0,0 +1,8104 @@ + + + + + +tutorial-16-rdmd + + + + + + + + + + + + +
+
+ +
+
+ +
+ +
+
+ +
+ +
+
+ +
+ + +
+
+ +
+ + +
+
+ +
+ + +
+
+ +
+ +
+
+ +
+ + +
+
+ +
+ +
+
+ +
+ + +
+
+ +
+
+ +
+ + +
+
+ +
+ +
+
+ + diff --git a/pydmd/bopdmd.py b/pydmd/bopdmd.py index 87971f216..0a22570e5 100644 --- a/pydmd/bopdmd.py +++ b/pydmd/bopdmd.py @@ -477,6 +477,10 @@ def compute_residual(alpha): B, residual, error = compute_residual(alpha) U, S, Vh = self._compute_irank_svd(Phi(alpha, t), tolrank) + # Initialize termination flags. + converged = False + stalled = False + # Initialize storage. all_error = np.zeros(maxiter) djac_matrix = np.zeros((M * IS, IA), dtype="complex") @@ -548,7 +552,7 @@ def step(_lambda, rhs, scales_pvt, ij_pvt): 0.5 * np.linalg.multi_dot( [delta_0.conj().T, djac_matrix.conj().T, rhs_temp] - ).real + )[0].real ) improvement_ratio = actual_improvement / pred_improvement @@ -564,20 +568,21 @@ def step(_lambda, rhs, scales_pvt, ij_pvt): B_0, residual_0, error_0 = compute_residual(alpha_0) if error_0 < error: - alpha, B = alpha_0, B_0 - residual, error = residual_0, error_0 break - # Terminate if no appropriate step length was found. + # Terminate if no appropriate step length was found... if error_0 >= error: if verbose: msg = ( "Failed to find appropriate step length at " "iteration {}. Current error {}." ) - warnings.warn(msg.format(itr, error)) + print(msg.format(itr, error)) return B, alpha + # ...otherwise, update and proceed. + alpha, B, residual, error = alpha_0, B_0, residual_0, error_0 + # Record the current error. all_error[itr] = error @@ -586,23 +591,26 @@ def step(_lambda, rhs, scales_pvt, ij_pvt): update_msg = "Step {} Error {} Lambda {}" print(update_msg.format(itr, error, _lambda)) - # Terminate if the tolerance is met. - if error < tol: + # Update termination status and terminate if converged or stalled. + converged = error < tol + error_reduction = all_error[itr - 1] - all_error[itr] + stalled = (itr > 0) and ( + error_reduction < eps_stall * all_error[itr - 1] + ) + + if converged: + if verbose: + print("Convergence reached!") return B, alpha - # Terminate if a stall is detected. - if ( - itr > 0 - and all_error[itr - 1] - all_error[itr] - < eps_stall * all_error[itr - 1] - ): + if stalled: if verbose: msg = ( "Stall detected: error reduced by less than {} " "times the error at the previous step. " "Iteration {}. Current error {}." ) - warnings.warn(msg.format(eps_stall, itr, error)) + print(msg.format(eps_stall, itr, error)) return B, alpha U, S, Vh = self._compute_irank_svd(Phi(alpha, t), tolrank) @@ -613,7 +621,7 @@ def step(_lambda, rhs, scales_pvt, ij_pvt): "Failed to reach tolerance after maxiter = {} iterations. " "Current error {}." ) - warnings.warn(msg.format(maxiter, error)) + print(msg.format(maxiter, error)) return B, alpha diff --git a/pydmd/rdmd.py b/pydmd/rdmd.py index ebf23f256..ec5cca31c 100644 --- a/pydmd/rdmd.py +++ b/pydmd/rdmd.py @@ -17,10 +17,10 @@ class RDMD(CDMD): """ Randomized Dynamic Mode Decomposition - :param rand_mat: The random test matrix that will be used when executing + :param test_matrix: The random test matrix that will be used when executing the Randomized QB Decomposition. If not provided, the `svd_rank` and `oversampling` parameters will be used to compute the random matrix. - :type rand_mat: numpy.ndarray + :type test_matrix: numpy.ndarray :param oversampling: Number of additional samples (beyond the desired rank) to use when computing the random test matrix. Note that values {5,10} tend to be sufficient. @@ -33,7 +33,7 @@ class RDMD(CDMD): def __init__( self, - rand_mat=None, + test_matrix=None, oversampling=10, power_iters=2, svd_rank=0, @@ -57,7 +57,7 @@ def __init__( self._svd_rank = svd_rank self._oversampling = oversampling self._power_iters = power_iters - self._rand_mat = rand_mat + self._test_matrix = test_matrix def _compress_snapshots(self): """ @@ -69,13 +69,13 @@ def _compress_snapshots(self): :rtype: numpy.ndarray """ # Define the random test matrix if not provided. - if self._rand_mat is None: + if self._test_matrix is None: m = self.snapshots.shape[-1] r = compute_rank(self.snapshots, self._svd_rank) - self._rand_mat = np.random.randn(m, r + self._oversampling) + self._test_matrix = np.random.randn(m, r + self._oversampling) # Compute sampling matrix. - Y = self.snapshots.dot(self._rand_mat) + Y = self.snapshots.dot(self._test_matrix) # Perform power iterations. for _ in range(self._power_iters): diff --git a/tutorials/README.md b/tutorials/README.md index 267ed1831..efdd305ce 100644 --- a/tutorials/README.md +++ b/tutorials/README.md @@ -19,8 +19,9 @@ An additional PDF tutorial ([DSWeb contest winner](https://dsweb.siam.org/The-Ma | Tutorial11 [[.ipynb](tutorial10/tutorial-11-regularization.ipynb), [.py](tutorial11/tutorial-11-regularization.py), [.html](http://pydmd.github.io/PyDMD/tutorial11regularization.html)] | Tikhonov regularization) | `pydmd.DMDBase` | | Tutorial12 [[.ipynb](tutorial12/tutorial-12-cdmd.ipynb), [.py](tutorial12/tutorial-12-cdmd.py)] | cDMD for background modeling | `pydmd.CDMD` | | Tutorial13 [[.ipynb](tutorial13/tutorial-13-subspacedmd.ipynb), [.py](tutorial13/tutorial-13-subspacedmd.py)] | SubspaceDMD for locating eigenvalues of stochastic systems | `pydmd.SubspaceDMD` | -| Tutorial14 [[.ipynb](tutorial14/tutorial-14-bop-dmd.ipynb), [.py](tutorial14/tutorial-14-bop-dmd.py), [.html](http://pydmd.github.io/PyDMD/tutorial14-bop-dmd.html)] | Comparison between Bagging-/ Optimized DMD and exact DMD | `pydmd.bopdmd` | -| Tutorial15 [[.ipynb](tutorial15/tutorial-15-pidmd.ipynb), [.py](tutorial15/tutorial-15-pidmd.py), [.html](http://pydmd.github.io/PyDMD/tutorial15-pidmd.html)] | Physics-informed DMD for manifold enforcement | `pydmd.pidmd` | +| Tutorial14 [[.ipynb](tutorial14/tutorial-14-bop-dmd.ipynb), [.py](tutorial14/tutorial-14-bop-dmd.py), [.html](http://pydmd.github.io/PyDMD/tutorial14-bop-dmd.html)] | Comparison between Bagging-/ Optimized DMD and exact DMD | `pydmd.BOPDMD` | +| Tutorial15 [[.ipynb](tutorial15/tutorial-15-pidmd.ipynb), [.py](tutorial15/tutorial-15-pidmd.py), [.html](http://pydmd.github.io/PyDMD/tutorial15-pidmd.html)] | Physics-informed DMD for manifold enforcement | `pydmd.PiDMD` | +| Tutorial16 [[.ipynb](tutorial16/tutorial-16-rdmd.ipynb), [.py](tutorial16/tutorial-16-rdmd.py), [.html](http://pydmd.github.io/PyDMD/tutorial16-rdmd.html)] | Randomized DMD for greater computation speedup | `pydmd.RDMD` | diff --git a/tutorials/tutorial16/tutorial-16-rdmd.ipynb b/tutorials/tutorial16/tutorial-16-rdmd.ipynb new file mode 100644 index 000000000..7be09197d --- /dev/null +++ b/tutorials/tutorial16/tutorial-16-rdmd.ipynb @@ -0,0 +1,593 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "9344ec59", + "metadata": {}, + "source": [ + "# Tutorial 16: Randomized DMD\n", + "\n", + "In this tutorial, we re-examine the system explored in [Tutorial 4](https://pydmd.github.io/PyDMD/tutorial4cdmd.html) and compare the performance of Compressed DMD (CDMD) and Randomized DMD (RDMD) [1] as means of improving the efficiency of the exact DMD algorithm. We highlight RDMD as an effective alternative to its predecessor CDMD, while also highlighting how one might tune the parameters of RDMD in order to balance accuracy and efficiency.\n", + "\n", + "[1] N. B. Erichson, L. Mathelin, J. N. Kutz, and S. L. Brunton, *Randomized dynamic mode decomposition*, SIAM J. Appl. Dyn. Syst., 18 (2019), pp. 1867-1891. https://doi.org/10.1137/18M1215013" + ] + }, + { + "cell_type": "markdown", + "id": "7e1282b7", + "metadata": {}, + "source": [ + "We begin by importing the `RDMD` class from the PyDMD package, along with the `DMD` and `CDMD` classes for performance comparison. We also import the `time` module for calculating runtime, `numpy` for mathematical computations, and `matplotlib.pyplot` for plotting." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "b494d4e5", + "metadata": {}, + "outputs": [], + "source": [ + "import time\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "\n", + "from pydmd import DMD, CDMD, RDMD" + ] + }, + { + "cell_type": "markdown", + "id": "c87ae347", + "metadata": {}, + "source": [ + "We then define a function for calculating relative error, along with a function for computing the CDMD compression matrix used in Tutorial 4." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "9e94831f", + "metadata": {}, + "outputs": [], + "source": [ + "def compute_error(true, est):\n", + " \"\"\"\n", + " Computes and returns relative error.\n", + " \"\"\"\n", + " return np.linalg.norm(true - est) / np.linalg.norm(true)\n", + "\n", + "\n", + "def build_compression_matrix(snapshots_matrix):\n", + " \"\"\"\n", + " Computes and returns the CDMD compression matrix used in Tutorial 4.\n", + " \"\"\"\n", + " random_matrix = np.random.permutation(\n", + " snapshots_matrix.shape[0] * snapshots_matrix.shape[1]\n", + " )\n", + " random_matrix = random_matrix.reshape(\n", + " snapshots_matrix.shape[1], snapshots_matrix.shape[0]\n", + " )\n", + " compression_matrix = random_matrix / np.linalg.norm(random_matrix)\n", + "\n", + " return compression_matrix" + ] + }, + { + "cell_type": "markdown", + "id": "2773bb37", + "metadata": {}, + "source": [ + "## The Toy Data Set\n", + "\n", + "Now, we re-create the helper function from Tutorial 4 that returns toy data snapshots for a given spatial and temporal resolution. Each data snapshot is the sum of the following three components, with $x \\in [-5, 5]$ and $t \\in [0, 4\\pi]$.\n", + "\n", + "- $f_1(x, t) = e^{\\frac{-x^2}{5}}\\,\\cos(4x)\\,e^{(2.3i)t}$\n", + "- $f_2(x, t) = \\bigg(1-e^{1-\\frac{x^2}{6}}\\bigg)e^{(1.3i)t}$\n", + "- $f_3(x, t) = \\bigg(-\\frac{x^2}{50} + 1\\bigg)1.1i^{-2t}$\n", + "\n", + "Here we produce our toy data set for 256 spatial collocation points across 128 time points. We then add Gaussian noise to our data so that we may compare method performance in the presence of measurement noise. The clean data and the noisy data sets are then plotted." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "5e51d5c4", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAwsAAAEiCAYAAAC2mk5tAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9e7QtWVUe/s31qKr9OOfcR79oaaBBYkQNJD7iExpjIK3ig/jAEaXV4YhGIiEkakDlGUPQoeIrPbRHAtriIxpA1MRABCRBNCo/dSQIQUSkbZp+3HvPOftRj7XW/P0x16qqvc8+59zbfbi3b1PfGOfsvatWVa1atWqtNef85pzEzIwBAwYMGDBgwIABAwYMWIO60hUYMGDAgAEDBgwYMGDAwxODsDBgwIABAwYMGDBgwICNGISFAQMGDBgwYMCAAQMGbMQgLAwYMGDAgAEDBgwYMGAjBmFhwIABAwYMGDBgwIABGzEICwMGDBgwYMCAAQMGDNiIQVgYMGDAgAEDBgwYMGDARgzCwoABAwYMGDBgwIABAzZiEBYGDBgwYMCAAQMGDBiwEYOwMGDAgAEDBgx4WOKWW27BLbfccqWrMWDAJzQGYWHAwwqve93rQETtX1EUuPHGG/HMZz4TP/ETP4H9/f0Hdd7f+73fw8te9jJcuHDhZCs8YMCAAZ/gSON2URT4m7/5mwP7b7nlFnz6p3/6FajZpeMd73jHyhyU5zmuv/563HLLLfh3/+7f4b777nvQ537ve9+Ll73sZfirv/qrk6vwgAGXAYOwMOBhiVe84hW48847cfvtt+O7vuu7AAAveMEL8Bmf8Rn4sz/7s0s+3+/93u/h5S9/+SAsDBgwYMDHCVVV4d//+39/oud8y1vegre85S0nes6LwfOf/3zceeed+Nmf/Vl893d/N86cOYOXvvSl+NRP/VS87W1ve1DnfO9734uXv/zlg7Aw4KqDudIVGDBgE2699VZ81md9Vvv7RS96Ed72trfhy7/8y/EVX/EV+PM//3OMRqMrWMMBAwYMGNDHU57yFNxxxx140YtehBtvvPFEzpll2Ymc51LxRV/0Rfiar/malW1/+qd/imc84xn4x//4H+O9730vHvWoR12Rug0YcLkxWBYGXDX44i/+YvzAD/wAPvzhD+MXfuEXAAB/9md/hm/+5m/G4x//eBRFgRtuuAHf+q3figceeKA97mUvexm++7u/GwBw8803t+blpN157Wtfiy/+4i/GddddhzzP8aQnPQm33377Zb+/AQMGDLia8eIXvxje+4uyLjjn8MpXvhJPeMITkOc5Hve4x+HFL34xqqpaKbfJZ+Enf/In8Wmf9mkYj8c4ffo0PuuzPgu/+Iu/CAB4+9vfDiLCG9/4xgPX/MVf/EUQEd797nc/qPt78pOfjNe85jW4cOECfuqnfqrd/uEPfxjf+Z3fiU/5lE/BaDTC2bNn8bVf+7UrFoTXve51+Nqv/VoAwNOf/vR2HnrHO94BAPj1X/91fNmXfRluvPFG5HmOJzzhCXjlK18J7/2DquuAASeJQVgYcFXhm77pmwCgNUu/9a1vxV/+5V/iW77lW/CTP/mTeM5znoNf/uVfxpd+6ZeCmQEAz372s/EN3/ANAIAf+7Efw5133ok777wT1157LQDg9ttvx2Mf+1i8+MUvxo/8yI/gpptuwnd+53fip3/6p6/AHQ4YMGDA1Ymbb74Zz33uc3HHHXfg7rvvPrLst33bt+ElL3kJ/t7f+3v4sR/7MTztaU/Dq171KjznOc858rg77rgDz3/+8/GkJz0Jr3nNa/Dyl78cT3nKU/AHf/AHAES4uOmmm/D617/+wLGvf/3r8YQnPAGf93mf96Dv8Wu+5mswGo1WqFF/+Id/iN/7vd/Dc57zHPzET/wEvuM7vgO/8zu/g1tuuQWLxQIA8NSnPhXPf/7zAYhQleahT/3UTwUgwsR0OsULX/hC/PiP/zg+8zM/Ey95yUvwb/7Nv3nQdR0w4MTAAwY8jPDa176WAfAf/uEfHlpmZ2eH/+7f/bvMzLxYLA7s/6Vf+iUGwO985zvbbT/8wz/MAPhDH/rQgfKbzvHMZz6TH//4xz+IOxgwYMCATyz0x+0PfvCDbIzh5z//+e3+pz3tafxpn/Zp7e8/+ZM/YQD8bd/2bSvn+df/+l8zAH7b2962cuzTnva09vdXfuVXrpxrE170ohdxnud84cKFdtu9997Lxhh+6UtfeuSxb3/72xkA/+qv/uqhZZ785Cfz6dOn29+b5pB3v/vdDIB//ud/vt32q7/6qwyA3/72tx8ov+kc3/7t387j8ZjLsjyyzgMGfLwxWBYGXHWYTqdtVKS+30JZlrj//vvxuZ/7uQCA97znPRd1vv45dnd3cf/99+NpT3sa/vIv/xK7u7snWPMBAwYMeGTj8Y9/PL7pm74JP/uzP4uPfvSjG8v81//6XwEAL3zhC1e2/6t/9a8AAL/1W7916PlPnTqFu+66C3/4h394aJnnPve5qKoKv/Zrv9Zu+5Vf+RU45/CN3/iNF30vh6E/BwGrc0jTNHjggQfwyZ/8yTh16tSDmof29/dx//3344u+6IuwWCzwvve97yHXecCAh4JBWBhw1WE2m2FrawsAcO7cOfyLf/EvcP3112M0GuHaa6/FzTffDAAXvdB/17vehS/5ki/BZDLBqVOncO211+LFL37xJZ1jwIABAwYIvv/7vx/OuUN9Fz784Q9DKYVP/uRPXtl+ww034NSpU/jwhz986Lm/93u/F9PpFJ/zOZ+DJz7xiXje856Hd73rXStl/vbf/tv47M/+7BUq0utf/3p87ud+7oFrPhj05yAAWC6XeMlLXoKbbroJeZ7jmmuuwbXXXosLFy5c9Bzyf//v/8VXf/VXY2dnB9vb27j22mtbwWaYhwZcaQzCwoCrCnfddRd2d3fbAf/rvu7rcMcdd+A7vuM78IY3vAFvectb8Nu//dsAgBDCsef74Ac/iH/wD/4B7r//fvzoj/4ofuu3fgtvfetb8S//5b+86HMMGDBgwIAOj3/84/GN3/iNR1oXAICILvncn/qpn4r3v//9+OVf/mV84Rd+If7Lf/kv+MIv/EK89KUvXSn33Oc+F7/7u7+Lu+66Cx/84Afx+7//+ydiVWiaBv/v//2/FaHju77ru/CDP/iD+Lqv+zr85//8n/GWt7wFb33rW3H27NmLmkMuXLiApz3tafjTP/1TvOIVr8Bv/MZv4K1vfSte/epXAxjmoQFXHkPo1AFXFe68804AwDOf+UycP38ev/M7v4OXv/zleMlLXtKW+cAHPnDguMMmpd/4jd9AVVV485vfjMc85jHt9re//e0nXPMBAwYM+MTB93//9+MXfuEX2gVvH4997GMRQsAHPvCB1sEXAD72sY/hwoULeOxjH3vkuSeTCb7+678eX//1X4+6rvHsZz8bP/iDP4gXvehFKIoCAPCc5zwHL3zhC/FLv/RLWC6XsNbi67/+6x/yff3ar/0alsslnvnMZ65su+222/AjP/Ij7bayLA/k9TlsHnrHO96BBx54AG94wxvw1Kc+td3+oQ996CHXd8CAk8BgWRhw1eBtb3sbXvnKV+Lmm2/GP/kn/wRaawBoox4lvOY1rzlw7GQyAYADg/emc+zu7uK1r33tCdZ8wIABAz6x8IQnPAHf+I3fiJ/5mZ/BPffcs7LvS7/0SwEcHKt/9Ed/FADwZV/2ZYeetx8WG5A8DE960pPAzGiapt1+zTXX4NZbb8Uv/MIv4PWvfz3+0T/6R7jmmmseyi3hT//0T/GCF7wAp0+fxvOe97x2u9b6wDz0kz/5kwfCnl7KPFTXNf7Df/gPD6m+AwacFAbLwoCHJf7bf/tveN/73gfnHD72sY/hbW97G9761rfisY99LN785jejKAoURYGnPvWp+KEf+iE0TYNP+qRPwlve8paN2pjP/MzPBAB83/d9H57znOfAWotnPetZeMYznoEsy/CsZz0L3/7t347ZbIY77rgD11133ZHm8wEDBgwYcDS+7/u+D3feeSfe//7349M+7dPa7U9+8pNx22234Wd/9mdbCs7//t//Gz/3cz+Hr/qqr8LTn/70Q8/5jGc8AzfccAO+4Au+ANdffz3+/M//HD/1Uz+FL/uyL1vxIwCEipQSq73yla+8pLr/z//5P1GWJbz3eOCBB/Cud70Lb37zm7Gzs4M3vvGNuOGGG9qyX/7lX44777wTOzs7eNKTnoR3v/vd+B//43/g7NmzK+d8ylOeAq01Xv3qV2N3dxd5nuOLv/iL8fmf//k4ffo0brvtNjz/+c8HEeHOO+88IIAMGHDFcCVDMQ0YsI4Ugi/9ZVnGN9xwA//Df/gP+cd//Md5b29vpfxdd93FX/3VX82nTp3inZ0d/tqv/Vq+++67GcCBEHmvfOUr+ZM+6ZNYKbUSRvXNb34z/52/83e4KAp+3OMex69+9av5P/2n/3RoqNUBAwYMGNDhqJDXt912GwM4EO60aRp++ctfzjfffDNba/mmm27iF73oRQfChK6HTv2Zn/kZfupTn8pnz57lPM/5CU94An/3d3837+7uHrh2VVV8+vRp3tnZ4eVyeVH3kkKnpj9rLV977bX81Kc+lX/wB3+Q77333gPHnD9/nr/lW76Fr7nmGp5Op/zMZz6T3/e+9/FjH/tYvu2221bK3nHHHfz4xz+etdYrYVTf9a538ed+7ufyaDTiG2+8kb/ne76H//t//++HhlodMOBygpgH0XXAgAEDBgwY8MiCcw433ngjnvWsZ+E//sf/eKWrM2DAVYvBZ2HAgAEDBgwY8IjDm970Jtx333147nOfe6WrMmDAVY3BsjBgwIABAwYMeMTgD/7gD/Bnf/ZneOUrX4lrrrnmohOjDRgwYDMGy8KAAQMGDBgw4BGD22+/Hf/sn/0zXHfddfj5n//5K12dAQOuegyWhQEDBgwYMGDAgAEDBmzEYFkYMGDAgAEDBgwYMGDARgzCwoABAwYMGDBgwIABAzbiqkzKFkLA3Xffja2trUPTpw8YMGDAYWBm7O/v48Ybb4RSD15nUpYl6rq+qLJZlqEoigd9rQEXh2F+GDBgwEPF5Z4jHu7zw1UpLNx999246aabrnQ1BgwYcJXjIx/5CB796Ec/qGPLssTNj53innv9RZW/4YYb8KEPfehhPSE8EjDMDwMGDDgpXK454uE+P1yVwkJK6f63v+Ul0NlFNuyagonpkO398rS5LPeP2aS4ughl1oHrp3OruI96nwqAAlgDrBisAWhuz8GKAQ1AMVgxSMl3ELfnJer82Jkp3mjcGaRCHD8pfrY5LPv3pRisANJxh2aQCtDWQ5uAzHoUxmFka4xtg6mtMdIVtkyFqa4wMSUK8shUAwAoqIGmAIWAAAXPCiVb1MGiZI25KzDzORY+w8JnmDU5lk66beksKm/QOA3nFXwgcKCucYlBiqEVw+gAazxy7VAYufbIOExthbGuMdb1gfodVjcAB+q373IsfY5Zk2HRWCybDKUzqBsN7xR8o8FBAV7qxj62c6CDbUxSd1bpHuSzIw3Kcz3wTOMuMAFBnicF+Q4fv8dTwRMobiMvfUCee9yfuk/oLtn/pIsJi7CpTG8bHXbOXr878Coddv1LDNPg6xLve+0r2rHkwaCua9xzr8eH/vix2N46WvO0tx9w82d+GHVdP2wng0cK0jP9W9/2ElhdQNcyhroc0E0cYxUwOsdYnCWYSn77XI6nNK+nIVDLd9UAynfHp7LBAroGfCbb2ldRy6fPATsDQm+21bWcM5h4rJV3LZ035IBeAH4EqFh/trFuDLABqAHcWM5dn4mvfc7x2izvb0PwWx5qLpUJpxuwI6iFBhsGxh6oFZgAPW7a+oXKyPihGSg1VKVADvCjAGg5L+vuJaWG2rrLNgZ5Au84sCOQYSjtAQKKcYNJJprW66f7CL0J9Ylb96EJCqftAplqsOfGKFSDM2aGQjX4aH0Kc5/jrJ3jr5ZnAAAXmkl7jvuXYzhWWDYZiBhlbcEMVAsr9VRSZ18aqMyDA8GO4nyQO+xdGGGyVWGc1ciMw6m8hFEBhgKM8rDksGUqjHSDbbNAYAUXH3QT5NNDYektcuUQoPDB2TWY2goXqhH26hyKGOfmE3hPcE18Lk6BgwI3JGNypeIYTAAxgmGoRiGY0M7RYRS6cTBIOdYsxxoG8gAs43Mmhp3WcEtpB8y1lAGkL2iZU/RSIVgGBUBV1Pa3NCek98DnaMdcXQPkpEzq820/1fKpPBA0oNzqu5HK+QLQlfRnVcd3ogB0CbgJoJexnwW5rIrzEgV5h5gAUwLNWK6RruOK+M4ivvu6qzeF7h1kAkwl99FM4ntbl/h/d1yeOeJqmB+uSmEhmZaNKaDNEQ17mICwvu8woaBf7mIEhyOufViZ9TrJArE3IaXvOn2KsMC6WzySZhEeNEMpBpQsktsF5XpdWBaXHI5YYKZtG4UFXhEWlAkw1sNajyJrMMkCJlZh2wI71mPbOmzrGjtmiS1VYksvUdCqsKDB8CA0rFGzwSLkmIcc+4Gx6wh7XmOvYVjHsI3cuGo0lDPxTwSGwNQunIkYinqCgiEUhjG1shqYWsaWYWxbv1K/iaowVhUycrDk27r1hYWSLfb9aK1+BrYBdKOgGgXUBqgtmkYDjUZw68ICHSIscHzuhwh+io98rmDIs43CE3mS68ZrUwAoCQtRaBHBQc5BYfX7gQX+gxUU0vG9/eu/0b+tw8qsfX8wgkMSgk6CpjKZyt9R8EPMucuG9ExzFNC6AI+lT2WAfE/CwIRhLUGxjK1ZBdTbQPGAPKzyNEF5wCyA6jSgFJDtM5qcEEwUEkogXwLlGUA7wM67xQaTXCurAM4ATd04bl1cGBGAHDBeBIPUl7MK4AkAA/AIsEvIomokizUKgJ8AOgeaHVnosAFCWo8EmSPCNsM4Ak8ZbBlkLFQg8DUByhHYMNSWB3sFncvBvjLQRZAxxEVN1ZRFyAgEKIZiJfMPR8FEUVv5EBehsAwKOTAOKHZKNHUBZmByykNTjrPjOXJtcTafI4uru5HW+OT8PP6mOo3CznGt2kfJFqc0w3OGJ2/fj/vcFhYhx2PGJR6op7hG72MWJb1qNsW2rfDX+yMsG4vxiNE4Dc4MvNPQ1qNZGpickRUkQkQmY7oaVTg78RhZRu0KnJ7MkGmLJ07vRYCCIY8ds0BBDjt6gf1Q4HHZx/BX9TUAgDN6hl0/hiKGRsD7lo9CTh5nTQBgwWqEnTFjtxxjOyPUXmO+kHozA8ErhH3bLvJVTQhanrVtCJwBmHqgIXAeoKtu8UmBwNtOnsdY+r8uHMI4SayEgBxqwsDCgE8FmVsAIFcynwdCGBP0Ms4TWRQYWPqxmzDsHoELIF8AfiyHay/91JRAMwJAgJlL/87mccHupJ+rtGCPw66u5Lt1IiAjA4hEjuFC3jkLgKJwYhdAMwWyXTm+3gaMk3OSAqyR6ZLjytZY6aZmKdu8Rbtu0kug2QKyZRQmALhtoKjiu9asjicPBcfNEVfD/HBVCgsDBgwY8HBBACMcI6Ect3/AgAEDBjwycdwccTXMD1e1sNBqQA/siJ+99mfqaSBJ9q1bBYhX91H6fsSpDyh3N1z7qPq1XzvmzEFrRWvNiAekv2hS7ehHnVWBVEdfoTXVKzMJ7SRu52hRgAIIBI4NQCFeLzVetIRQVDYBouVWOkAphtEemRaqz9g0GJsKE1NhWy9xxsywoxfY1iW21BITEjO0JQ+7YllQKNlgoioUYQTrHTS6hxxACNHe7ViJhYSpNUP7sGpZ0IqhdWjrVRipGwBMTI1tW26sX0ENCnIH6tZE++mcM2TkV+rnWco4VnBBodEaTit4r6C0aOraurFok0hxZ8VJz6NPP4pWhfRMU39orQtrz5UY8izRWo3lOn2LAFOvH8VSG5Qn/dMfp90/DIdp/Y+zKBx1vU37NtKijqjfxnHjQaJhj+aYdDUNn+AFB1wUyAs1iAkozjOCJXAjmn+7BJoJQTWAroV24TPpgc1EPlUQq0LIhBahS6AZE5Tr6ENBR+1mKdfyeTd+24Vsa7bkWKZI2WApRyFaChyEqlF19AzlINaBCUB1N9e5kZTxBVrLn1lKfYJB2+dZM0IeKaMKYNu9PLTjAE+wWw6u0mJ9VEEsnwBIB3CtZV5hgKYO2LPgPEAtCWwZIWPoiuAnAWZXw49Dew02oaU50aSBsrIUOntqhnmVoTAOVnnMmwzX5HPsNwVuGp+X+yZGQQ0eV9yPwIRPyT+KC2GMjDzKYHGt2YOigHNuin1f4HO2Poj73Tbub0Rt+4CdYuEsThVLOK9QOYNR1ghVleX8pBmh1qiYoDOxiAMyfo6zCj4oTPMKZ/IFJqbCLNKebDRJPam4C/e4U3h8di/O+Sk+o/gIAOAedwpPLv4aDTTucafwxNHHcN5NoEaMpRfrhWOFWZ1jYhrcs7e92mEZYmmuFFSlxGITLUTcXxeMPdTMIIx9N8ZVClwrqKUCTjWAU+BAGG2VcE6jWVggyP26JoCyAG1DrJNpx1zlFNgCqiSEnKFLsaDBAHY/WqGjxl1V8TNSidxI+mOyfIHl/QhZpAbVaGlHLt66rjr6XrBAfh6oTsn31K+Vj9SkSix4ZtlRBk0plgtTxneylGu5aOGwM3lfgo3MDCPvtHR02a8cy1hRUEtf6tPQTwLHzRFXw/xwVQsLAwYMGHClMVgWBgwYMGDAYXgkWBZOPM/CO9/5TjzrWc/CjTfeCCLCm970pnZf0zT43u/9XnzGZ3wGJpMJbrzxRjz3uc/F3Xff/aCuRbz5Dxv+Nu0/tDxWNbGE7vtRzpj9Oh2JB9EvmLo/ELfOz4f9JauCUqt/RJDPaHmQv+TjkCwTEK2Sjk620am59VVQ4tRMKkBphtKivTc6wGqPTHlkymGkG4xVjbGuMFY1JqpqrQpj1WCsGmwphy3yGFPAFnn5rWpMqJaySo7d0iVGqsZINSh0+nPIjUNmHDLtYc3mv0x7ZEbKFtq1x49Ug1E893r9tlS9sW6p3uv1S/c40g0y5ZApD6s9jA7Qumun1G6IbclqrY316jPoWxX6z6v/LPt/nUP04X/9PtT2qUvukEfvPvAerL9b/XMcZVU44n29lHd+4zhxQghg+GP+robJ4HLgcs4PrMXHoDjPCIailpIxij4JpgTMQiwO3hLcKGod43ui6siFFp9S+KjBpCCWCVZiPQCLr0DrvBn9zRJXO9sVbSiUaDzdSMqpBsj2RRtKLBpY8UdDy1XXFcBWtK8ucr6TFcKNo4UB0WGau7qzTfdA8BPRQHPWMzkuDHwjTrVKB5jcgz3FPwWYsGr2njiQidYDR4Bm+CIAXpye2TCoJvlzCpwH8VnQDF8aVLMcuwup7LnZGI+a7OGm6QVs2RI3ji7grN3HWbuPa+w+TukFbjAX8NjsfgDA37L34oyaYRxV2dtqiVN6gZvz+/DX9TVYhAwPNBM80EywZUtk2mNqaty4tQejA1xQ0DpgNK6Fm24CsmkNWzhsT8vWOm1N9GXLKoxNg5FucF8lzq07ZgGrHLZUiXvdNsaqwim1wN/OPgoNhgbjidnHcI/fQckW1+o9XGv28Jjsfljy2DYljPJQxLhxsof9qoD3CqemC5yaLqBNfDZjDzQKfupk/rUyOOqFAmcsfme1ku2hZyGeeFDmwacaZKMGiD6FPii4WkMXDpR5+FpBj8S3wZ/P4M9n0p+WGqyAMPYIeUDIGKoi+Ezeg5AxfC4a+hB5/6rp/kLf+Z6k71PoLAqIzvshF+2+3ZM/VrFc3VkMsj20fkWq5wDdbMX3j7t3jFW0PtSdVcFHS4ZeyjuFnq9Q8QC375iupW2DJviMoCuZE3XVlTkpHDdHXA3zw4kLC/P5HE9+8pPx0z/90wf2LRYLvOc978EP/MAP4D3veQ/e8IY34P3vfz++4iu+4sFdbG2hnrBxQbCJssCr5TeVPfFn2DdvrQgAx/zG6jF9tJSpRGWKN7NCU0lCRKQlpYVlWlyuCAy6R2OKQgPFP6TFbPytdIhOxB5WBWgKbfQISx5WeXESpgBNMqiq+Nn+Ebq/uC05FlvyKFQDSw6FajDSNXLlkCvXCQzaobCNCA56VUjITdynO0EhHT/S9cq5+9c8qm4r90AMvXavJraBpgCrAoyWSULp0LWjiu0c//pCAsV964JCel4qUpBaJ+defzjw7GPf2NRn+sdddD/s9d2TNNNKJTZ/X3k/1wWOQ8oeSktaUwqcBJLW6Li/AZd5fkC3EKDAiAHYUG8RvBU6EmtIJJcggoVqZOGh6o7W43NIXw/iXJnoFcrLIoZVpBfFSEmmkj/VRHqQBuotWQyRj+8RdwJAsLJNx/3k5XpuHB0yuXN+ZiX73VQECV2ipSUpJ9GQUkQkALKoW4ozMikGGUaoNGirQai70DDN0raHZBNZSBfTCir3otwAxOF55IGp7wQPy20UJN5x4B0HBEBtNYAJCI2CLhzsqIFWAZO8xrXbM9xfTuCCxm4zQhUMdt0Yu26Mm+w5eKh2zkiBMDLyeIJ9QC5JHlt6iYY1Tps5dt0Ip+wSp+wSmXIY6xp10AhMyI3D2fEck7wGMyQAx7hCbh2IGOOsxva4xPa4hPMKhmQ+K4zD+XqMG4td5MqhChbXmn2MlcwZ1+l9XAhjXAgj7IUCe6HAOT/GWT1DQQ3ucTsIrLAf5P4a1jibLXCuGmNsaljtoXVA5QwqZ2C0OBwr42GuXYIUoM9UQOEBzWjOyAI/BTIBMaghqMxDZb6ljhExvFfQuWuDmBCxUGC9grpgESohlHAewLlcN4w9qBIakz2voctIyYlKLDMneS9cnAu09E83lr7K0dmdvAgEaZGf+qtysq0VAly3Tad3DR1drx9AhlUUJhZoo0UmWl6iKyVBxhWdAAMCzJJboUXXgE/BCYxQCpEiImXx3V0yfE6HU9wfJB4J88OJ05BuvfVW3HrrrRv37ezs4K1vfevKtp/6qZ/C53zO5+Cv//qv8ZjHPOakqzNgwIABH1c0zBfhs/DwnwwuB4b5YcCAAZ9oOG6OuBrmhyvus7C7uwsiwqlTpw4tU1UVqqpqf+/t7XU7j9BuHkav2KhlPUFsPB8d/L6uqV3X5K4cd4Qmt3WWjWZoCZ/JnQorui0fOC451EaH1+RAy4zOgTmZtmWPaKeiRQEAVKTZaMXQKloVlGhnEgJLjgLPhJo1LCs0PaOWj9p6D0JgtCFUfe+GFTFU1ODn0d7faIXAEi5VRQ2/16p1dk7bskiN6lsWANFQKVqta7q2pYCGCR7oOTiLAzMANKxQs4ZnCamanK7TdVM7aBVaJ2tObZta0xM43iOhfVRIvByiLgRu/3mtIG4SU/rqZ9rf9o1NWLcW8KqlauXxY+13/8fa+VcCCjxE9J3/jzv/kddNr8MJI5mSjysz4NLxUOYH8oBiBiuCL0SjaGcQjWMJqEZyEVQ7cpwuCVBCQwBEC8kGsDOGG5HEgR8BiI6S5ES7H3aiZr+JRqtEXzCREtGIxjR9V5XEgycfnaBtzKtQA4iJXutTgN0HOBPLhJmJ9tMXHRXE1GLpSNQkn7NQPtDRLqgBOIdYhyHlyIimWeUeoTTCZtGhHf+rCznIMJwR+qSvNMAkNCSnQKZHgcmD/C10FxY6D2BPQCDYcQNrHZzTyKzHJKtQewNlGGNTwVKACxpFNPt4KJzSc9zntmHJo1EG26qCB6FkDQuPv2quQRNjY1bBYqqrNnTqVFdwQSPXDg9UE+TaofEaldMIQSE3NRQxatJQKmB3McI10xkAYJIBmZZ5QoFhlATFUDGAxY5eYBFy3FWflTi8ADJybTjtbVViLxQo2SIjj/1QrNRv4S2uyecovYVWAdujss35c8/uNrTxqBcWwYlzua+MjMEmzgPLmBshQCw6hsFlXMIRQxUOpBihUe24HLzMS8Ep6MyDr/HA3AJEIBeflwLMBQ0/CQgEYMxQJcFNA1STBl/pn4mql+hvgPTltE/V0ucQACS6TyMUIk5UPZbcCUB8HyHvVDCxz7ru3CB5T9L5g5FQrSG2v64iDcl1lKaU90Q1DF/E+TXmY5CABmjHh3T/wUiAgxRgJt9juObkxuzj5oirYX64osJCWZb43u/9XnzDN3wDtre3Dy33qle9Ci9/+csP7tiweD5uoX5RCdY2bTvsOkcJHod8Xzl2TXA4IDBsEBISR7tdeCZaRRzAVxzricAk/PZ+uOAVQZa4FSe66DzpxF1dqaUsySQCQAQELSbjlNcAAALLorsMFrlqYEMGHe16AYSGpOvZGHEoITDFicG2fw3rFQHAKHnLbQjIlEPQIiwYCnC8KiwkSlDyo7AxuU7av1JXttCx8Xyglm6UINGQYkI4NjEPxAiLkKFkgzIcrCtFgcVoL4t4nR5CAJMCB+4lyes/E7Q0I1m4dwXk2dHKb448IWbE6FaxA7U5M7rHuZGm0+tzhNXvmwQG4EC3PFDgQASyuO/QBX1/Md+/cP98vWu051kTWPrv4Mb7PLLylw7Px8fJvhriaD/c8FDnB9UwuKCWDqHr7v0LRhYLZsmwM8CNSJKnzbmNhgQkegOtJGILcSGufaRhBLRx3TnSkwDAmy4iUlpsBSOx6M1CFjDNOEZ0MRJVKQ2FKU498WpiKl12FAvWciyr+Kp4Qiiko6mSgCxGRDJCWUGjhXaiGVwr+EqDcg9lwmp0tZGTRSYDfmlayiSYYpI2Ja/PxAGVlvewEJ8HANBjh1AaqMLBOwWtxWcgjaVEjMCEWVPg0ePzsriPwsKHqmvxKCuL74Ia/E1zGvc0O3hcdh/2AZxSS+z6Mc6YOc41ExlvQRjHFeA9VddPpqYCCqD0BgGE2op/26zKkRuH2muMigrLRlaeI1sjxMh6mXaYNTk+Vm7hiZN7oSjgL6rr8Wh7DmNVYd+PoCngBr2LkuT4B7ysgD9cX4OCGihilGxwxsxwd7UDGxVTC2eRa4faGdx9QSTV3MoKOZs0cLUGkbS9Khz8PCZSm3hJ2mYD4FVHCwYABuzIoZ5lQK2APIB0gG9ESNAqwNcaKKUTcyBQk6JfMdwZB6qU5N1pxEdBL6OgkUm/dDGvQrCx783jpZUIrXoZBWYj/TW/IP0bHIUI7vk2xFcsCRqIfkGsJV9JGttTVDCfdf09Cd1APFdk07VCgxaKYb4bFQaOUW0T7Dx+35GLZ/vymz1g0pztGEyEekrw9clNEsfNEVfD/HDiPgsXi6Zp8HVf93VgZtx+++1Hln3Ri16E3d3d9u8jH/nIZarlgAEDBhyNcJF/Ay4ew/wwYMCARwoeCfPDFbEspIngwx/+MN72trcdqTUCgDzPkef5ge2bnH83lVnBURaF+P2A9aFf5ghhcyN16Ih9BxyX1Ybt7f5Og9B+pu+BogJWLARQUfvco5QwUWdZaM+14UJJo93flCyRKrSRlJKWSOhH8pe2uaDglEIdTIwvPUbQopUvlcW+alrHNUsOmrg19QKIFCQVNfWmtTCEntUAgJiJY4Ma5eGCjnkYOs1+MicbCsi1a60KAKIWSbIyq8CSoTlYFKqBRmjjagNAgIp5FJJlwaIMFouQYxEy7PsCS29RB9PmWUh10IqhmREUg6PlgojAgRECgWPZI2mL3OVoAHF8vtQd11oXsGJV4JiteSVT9PrnKtcsXU7is7NoldqqJW1+7FuttWJjnY+wIqSD4qU5sa161SR0+/vnw+qmlfOtX6tfxwPbTwiOhaJ2XJkBF4eTmh9CJtlmdSUaR/KidUwWqmAJZU4dzWEM1DuEbFc6TDMRR0e97CwHzQSixY2x2vu5Ddqs4L3PNs58LQsCJrRUoeqUlPGM1jEUkYJBiFSKSpyZQaKtTVGTVNPlakga1TbvDkQzTJ4km7Jh0TbbSDUKBLXUCEW09FYauvDtyxMaLWNH1Fzr3MHNbXR2ZrAOMVcPQW/X8KWBynybp8EvjUTfifTLwIRx3iDTHvM6R2EbNF7G6qW3GOkGH1pcCwD4W5N78MHyOgAx54JqcI3ZxweqG9CwaWmiu9UYO3qBsarRqBr31l0fWXrR3JfewlDANbmowD9psou/2juDs+N5pK5a7GRlm3dnbGosXIYLdYFrlMNjxgt4kFCcfI6xrrHrxxirGh9tTmGsatxVn8HfKj4KANj3I3ywvA6n7Rzn3BQzn2OqK9zlziCwwj2V5IAIICydBRFjZ1wCAC7MR+1YV4xqNI1ByLxYADKx/gSvoEcefmElGEaiqSJaFc4VQO6B+Jy0lWfi9zKoaQNlvNB3FmK54Lybc80FE/MRBMn9UZNERGo1+GJd06X0P7MQp3tA+ij5znLARr5Xp8T6kOYLiu8L6S7XgRuLpcDOAAQ5T3LqZ+osZz6X/cnJuonX1k1vzG8phISQAfWUoBsJcmCXEgktZPIdkPPWWwS7YOhKoqIFu8HKfwI4bo64GuaHyy4spIngAx/4AN7+9rfj7Nmzl7sKAwYMGHBi8KAV/5rDygw4HsP8MGDAgEcajpsjrob54cSFhdlshr/4i79of3/oQx/Cn/zJn+DMmTN41KMeha/5mq/Be97zHvzmb/4mvPe45557AABnzpxBlmWXdK0+j3QFx1kYDvm+0aLQL7NulTjGcnBge3/bIfvXfRdWrCeRay4ZN7lzKGu56NSGOiMlmmsosTgc4MCvtwOw4tOAHr+UescqYqjotAtAnJujvwIQrQqkUMaMlZ4JVbQwtCFPY5hSoHMy1muGOA9xGm5Yd39BtxmUAXE8NuQBLZzDoPyK5QHoHKM1SVndUxs0rLHwGRrWqIKN2aSPr086tgwWVTArf6W3KL2VdogWg+S3EHRXNx8IAdERTfkNjsld2QMWh5CeO61YFABq1ZccAAoEShYFT53Gk+UcSePTXi5ZobDmMqC6cskBLPXFVPCAkaK/r6/xX9+2Zl2Q9op1iuXXj23r27M6bDSWrZgo1nCCY/MgLFw8Luf8kEKihhgVNIU2TXx/1qLF1FFbmbLVJr8GirHhmwlg5+LUqSs53mfxXYjDUbBAcJ0DJxBDq1qpR3LcJC/OnnaGNqRjyqegXK+uLNpTTV1fZy1aXO5ZM1wh12m2xblZL6XuIWOoBYEsgKWWcKq1QlAANSTvXxagHsjgtx18qTvzSQrtTAxEzTTlQUKuKobKPbT2YhGNjs+q5yCdb5UoFxms9Wgajcm4wmKZobEaRnsUtoHVHmNd428Wp7CdlVDxhv5iIVaFU3aJ+6oJlt7icWOLj1Xb+OTxvbi32UYTFD5lfA/+srwOTVDIlWvH5ZFu8EA1bS3IyV9h2VhMTY1TxRKBCUYFFNphamucq0RNXQcNowLGpoELGvf7CQIr2ELyJOy6EWa+gEJAgIKyAQuf4b+f/wwAwM2j+2GVx/3NFj4wuw7X5vuY+Rxzl6P0FooYAdTeK8fAHABgjbSVIkaIuS9swXC13Fdw4qPglwaUexSTGstzIyCT+6wXFig8uFagLCDUGrwwEuo2Dwh7scMGEiuB5W4+qBSCFWd/1SjopVgV9CJ+ltRa5ULW9cXUB5MPA9DlVaAg74sfd+9VGxYYnc8B4juQQqfCyLHJr8FbcWzWjZwvDfsmxjPwMZ9ICjjQTKX/6xhO1WedQ7MbEbL9zifJjyTvQrUjc6FZMnxGMYRqV9eTwCAsbMAf/dEf4elPf3r7+4UvfCEA4LbbbsPLXvYyvPnNbwYAPOUpT1k57u1vfztuueWWS7rWpQgLGxf2m/Zt2n6IkHCUc3RfIFjfdlECBK3ub1dXaYGXBAagWyBGEzOpWJbitkhB4hhZZ0V4iPUgYll7EQDiFSGBlETSUCqASJya07FpsOPoGOaDQgmh4tReo9Q2Ohn79jMt3NPx4kjcOcDpNS6Jjw0W2s9o7kZ0bIaHie0U1jqE6jlPK5KoRghxACZCBQMVjr9uYBWjNck2FyMhuaAj7Ui395xoSD4IbSoJAIoYrDoakhfZDiEoMGIsbJZFM8dnvk4xSm3drqRjX0jlknBAnASH/rZ4Y32n57bDYbU/xq8rggHQXqcdtaN5uS8EtNt66LcsrW07ULa3o61Dv1JpN2845rCLriGcZMIdpgNC6qYyAy7v/OBzQKeoblFocCNZCLg8Jngy3bYkPLsU6SUKycoB1emYWI27Bb1P0V4qwKTISLbbrxrZ7mMiKqF5RArRKJbN5LgkUMSgPp0TqOrOpere+TneX0xSpZfUJdGMx7fRbFgiPblpgJ5rSQSZByAAYRRAtZKBKPVRxa0wAQA0dhIFSTF04eEbJYtXxbCFA0hBmwDXyEvFTLCFg9YBedagrC2KvEFhHaz2UGAsmgz3qwn2qgL3LyeYZrL6O5ObdvEOADeM9vEnFx6NM/kC/9/eTS0V9UIzRuktMrVKLdXEyLTDuWqCqa1Q6AYLn+HsaIEbij38xewanMpKZMph5nI4VphaWU0aCi0V6ZNGF/DB2bU4m8+w5wqcqyc4ZZf4y8VpnMnnWLgcf0OSS8HFRv/o4vE4lS9RewMXFB6opqiDxsJZ3Djew73lFIV2+Jv9HShi7Jc5jPaxzYAbT++2Ds+u0tK2DNjCod7PQClRHgPlLP6OiiOyAcoE+EBd1CQC4BTgJFleGMv8HQxLkrfUtyqJ+gVCm4AtCdYpqhbrGNErl/ehTWAY3zO7L3Q55q6Pk0MrWCPmR9AxglcToyGldyYJCeDOmTm/IPlJVB2Hfi9Cdr3dHW+WSUiQ5Icu5izBSD5VfP+SAFNvSVQzoIu+BEjZYKkNQuDG8n6fFI6bI66G+eHEhYVbbrkFfAT5+qh9AwYMGHC1oYZGfUysiPoq0BxdDgzzw4ABAz7RcNwccTXMD1c8z8JDAnXmr8P2r+PAVHQpVohDLAwH9vX28/r3Q6wJK783WS7QGRYoZh1MGusUE59CdwxH6wIRiXaKuNsWP1lRd2LCWkx/tOH0hHrEbShQ1XNmThaGwATnNTwpqNA7runKqV5o1f6nQrev/YvbjPK9/SE6Q6djQ1s+0YuU6gdpXrVCtPWMnSaA4KPVIDAhQCwF6XvSBrR/PctC/7NvPUhlmFc/UxskTacYM8RRkCggBEJIdJ9kKYD8FotDrzP1qEbgmG2yZ0lI29KjRbJEcH8bVq0N6XLUWQpaawVWtfsHrAw9a8MKHWiDhQFdNQ5YGNrjezsOWPr61gTafP6jLAoHQrmeAPrP+KgyAy4vggVUdKYMUXNKMQyjbqJWv+7oCmk+ad8dL93EpxwILBpMO4vUn0l09LSRlhTpFMk6kByPXSzXWhai1tbux3CU6Z3RHT2j2eryJyR6UutsmmhNidIR65YyzwJiTfQxjCqFqBleKJAj+AmDagV93sBPgrxHjsDTzrualhrCWQLYxWVC7iPdKICDgpsb1E4h36okA3Fsd+8VRkWNEJSEAHUKlEkenmVj0SgNFxRKZzCyDZZ1hmUj5phzyzGsCljUFmfGC/zF7jUY2xp/vXsjbtjaR6Y86qBxoS4wNg0CE+qmgIkW26mRPAsuSDbmhctiVuaAmc9w8/QB7DYjbNkSAYSJrjH3Qm8rvcVI17hQj/B/dx+F0htkWtpk1uS4a76DTHv89ew0Sie5EqzyWMTQq1Z73LW3gxu29nF+OUZhG9Sx7f6//a22XxodkBuH3DosK9tuu282bedYO/GoKgNtZY7LpjVIMUzuxcpgg8wL0amcnUIgFityIAmVO3JQ5zKEsXRkPddQSwU/Du0nAPgRw+4p+HGkRO0LFcdnkCzR8V1JoVM5ZmdOuRIQgHqny3WQpio/kT4OgsxVKuZnWDMzJ4tCMB0dz5surHBQMbwwgPJsdIbuvTMuZlFvJkJP8plsM8uO3pRofWC0lgUJaiBWFV11TtQHWB0ngOPmiKthfriqhYWgATpKoXdI+x/5XNb2HUpZ2rSg3yQYACtCwEYBAVjpnAeO7RWmuIJaWSi156B2YScCRKQhQYQHIgYURb8GaqNnkO7Xo0c/WhMUEg0pDWgJIdJhEm2nXTi3v49+GRLlKSVRSwnetAorSdVSvoRkdl7Pm5A+E53IM0GRREkCABe0JFOLI4gLGnWcWOqgUXstyeNC+ksJ1+ii7wHAAUFqvRwQ2QUqalKDkg0hhlCLq/X1nAkpjjlCSkdPreDQXyQcEATWP9Hf191T6lMrC/2e0JCqti44cO96B2hLaYHfk0vXKUsr79x6kx2z8N+4+4hjOP4LJxg0evBZePiClSwcdAM0PXoRE9p8CRKLvUu41iZriutlXaHja0efh+pU5GKbjrPtRvJpetFWyEtEmGC7vu8zKcNazufzeM1en0wUj5R8ipXQInQFINIu0uIsJchSDq2AoBqSOPnppeQYHSmPORfS+9gQTElodjzUhcSfYiAQQh5pL2MJfM+NQlNGSagIIMuwowbeKVkMxfHJWo/ZvECWOSgVYK1HCAr3npOIRcWohtEeZS03t78/AsXFvjYidDinMJ8XyPIG53mMwIS7/CkwSwS+dhxVLInUrEhSf12fwo1bkpTv7sU2Hj25gIXLMWtynM6kUWtvsIsRAhP+ZrGDM7lsH+sauzHMTqY9zlcjLFyGj86227nAxSRnPg4gTaOhY4LSujbI8wZ/fe60UFD9uKVnGSud6vRkift3J/C1RjZuWupWsB7BqzZalTUNjAmwxqNqDJRiNLWByZwk06u10JBSP/dxjiBAL5UkbPMGrBl6T0NXhPqU5NiQfsUwM7kHXUZ/nGWXTyT1V9bc5hlJ0b2IARNpR3LxSDuKQilI+m22F9+/Uey3HAVb2/XzlKgtvafko2BcyXWCEsoeR8FbVTGHwgU5vo6MNVNK3ZpxpPXFKGFpjqinEm1Ml10SxhSBLNuTuiW6VbYv1zjJ9fvgszBgwIABn+BIDvhHlzlBb7kBAwYMGHDV4Lg54mqYH65qYSFFtGh/HyecXYrwdjFWiQ3fk1Vg3WJwmKVh5bxHWSv6BQ+hd6TyohGOTmokG1ih1aixipk4Y9sxxELD6XgSLTr1VLSbHJr7CEySM4BJIv0k594Qt0eNN/cj+fTPnawZClBaomtoJZqVTHtkxiPTDoVxKKJp2CmNQkfbvPJQ3EWX6NfLR3pRilZUR0tD6Q1KZ1B7g9qJZaFxOmqF5I8DVqMOrbVHom6R4pUcFCli1Dptqw9FDM/R4tPX8Ec7bmtViJ+ULAue2uhGbWSjloKEjnqUHu5h2NR/+797FonWUpD+9elJaxaG9th0XO9cGy0NPfCBL4fjYstuaHqc5Nh80paFV73qVXjDG96A973vfRiNRvj8z/98vPrVr8anfMqnPNSqfkLBZxLYhzhSjSINIduLdKJ5Z3VwEyBlke0/Ksn63Gk9VS0UIdOLjpToQ4nOUO90x6foRSk+fLAxUkukdCRHZk4Onr0gbKlObsKwM9HuunHUxsZ6BSPXTvSmNEYEy1AVQTmKGlaCqgFfUNQcc4wSI3Qlsx8jJkEcYM2+AhsSR+i5AcYeZBh64hC8ODB7p9CUBjrzsMZBWTm+dhqntheYL3M4r6EUY7HMoK3HdFThwoUxtA1olgbVLAc7gi5kTG/2M9GclwakGctSA6UGRh41MZSVSD+kA+zIocga7FUF9kksHuOixl37OzhVLNEEjVk0J11TzPCBvWtRaIebJufxQDVF6Q22s7J1UE4R/OqgMWsyjEyDu/Z2UEdP17oxqJa2Hc9CHU3ydYx6VxPmYytsh4ZAE4dmL4caOaFrjRrcd2EKX2kU0xqZdWhKWYKZIkAZj8ZpVKWFUpLlWkWLi3MKzIBrdG8uVUDMwqznGmHigRTpyBHIUbSUEfyIkZ9TYtWaEdgwEmM39dt+f2JK/VbWDymikfLRmrbTWeASfc+NO4uZz3oRkEJnQQjRebkfxMKRXD9RkBIFL2VqTnlJ0vvoR2LZA5JDtmRAVxXabNJ2IUEMALR5TnS0+KV3z8zj+1V0FjzViBUCGCwL67hiGZwHDBgw4JEAz+qi/i4Wv/u7v4vnPe95+P3f/3289a1vRdM0eMYznoH5fP5xvIsBAwYMGPDxwEnOD1cKV7VlIRiAouPaJeMhCnKbnJyPtSZs2LfZ52HNi7P93tu9iX++Alq5BrV+CgBpbuP6p+PZRItCgITWS5r0DZr6lXaI5XxQCCF+ehKtvCdw/GyzCAegjfGf7inWkUmsHU6z8DE1Q9sAbT2s8citQ20b1G3GTXFwC5okk7MCLFZzLTSsUQeDyqccCAYLJxqk0lksG4uqMWJRaDR8o0Q745TU2cszoL6WPD2WmNMCisGaQZpBWnihYh0R3wsVfTD6fg2Hocu3gM5XIUQtUdQaUsqZkKwL/Tblw/rDwb62YkVI6GWB5Z51olUE9f0T1i0JOLiPsVaffh8GLsaAcMjNPIiivWPCCVoWAsT5/bgyF4vf/u3fXvn9ute9Dtdddx3++I//GE996lMfVB0/EUEhWhOiZTVlPW62ZO5I4RebDG0GWlWiTTcQMok8qZfCiW4mMR/DMmpfY54GsxQrQwptmub9pMmkqFFNGs5kaUiWgpRrwWdotb3wnXWgeIAQNOCnDDMnNFtiiUwWjWDRWhbbsJBWQkS6sdwbU9TQRi0wMUXONsPM0vhGsd66s/xVSkKyxrHH71nQuAvlqTMvloNZDh15+cYE7C8KFJmM0/N5AW08tAq4cGGMEH0c2CmQYVCpwAtRA5NmYKGhWRyyQ8bSDgsLn3P06WLwGKgu5KiN1MPm0TLhNOpGHKcVMWYuww2jPdxfTpEpj+2sxNzl4uDM4pMwiw7KPigQMZqgMTLie2B0QLnMJCRopWV89ApYKglP2qh2MCNPUAst2njEvjPT4FLmkjK3YuoyjGpp0TS6HWPLZYZiVKPIG+RZg9lshMmkhFaMpjQoxjUaAL7RMo5F3wPE8LZcKlAZnZ01I9tTbaZvMODjxJPtyjvhjVgLAPEp8CPR2gfLCI34tiD2kWTF0qVo7dO7lZgJPmOohtowpb5g6Ep+c+pvoQsy4DOxUADRGhCtDSDpr/l5eQ/qfn4ULe8fFV0flntFm3ckxCAFUPJehugLJL48gJrF+0gWhjxaBaM1IzvfhSUGUhCSk8Fxc8SlzA9XCle3sGAhSWc24cG0/aV0jvXzr1OMsPZ7XUAgrKyiDjV5Ea/QSlYWhBtoIpuqKImIovNSFBTQS6rCQJeMi2SRyqTAFBCIQMztoLYe2TAJCYFFQPBOYnC3C+5GTOHkKSZloXZibi8eK9vWTwNsFIJhuIzhMw1nPZpMw3mFxur22s6q9kX0THCk29wKkkRNHJpLb7GIwkGKXlE2BmVt4WqN0GhJaFPH+rpefcNqPdPzEhocd5+GEawCmYCgFZQJYENQWqIdJaFhHUlASLQtDmrFqZkS7cjFPhBS3VbrRwdP3V2DsJKMr13j9wTUg878fOArx5MxY6PgsHLOtK//nNt7PryuB/BxeJfDEW11qWjYoD7WZ+HBTwa7u7sAJDHZgIuHLySegxsD1Aj9INEbdBkpESrGbt+J1KJpjIwEWdCYuSw6muSUHB2Sm2mMhFQAiDSJYLuILoAswCjIgihRMnyBNjcDhc4xtJky7Jza6C1ujDa1TrBAsyWOyc2U48JIFmRAjLQU8zikbqaqbvGkvFyn2Y6CTS77ocSpNTmHJt0ma6DZCjAz1VKWAiCL47jIt5OmTRhW5A0WKWIbJBoSAOzvjWBzB6UDXK3RsBGhY2EQjDhc63OqjcYjjZiEGfmpFwTrRDAysX1YA7xQYCvlw+kGdaQQVXs5JmcWOD8fQ6uAucmwX+ewKtJZlcPC5RjFTF1GhZVodbU38EHh7vkYBFnE+0oDlQLVCqwYeqnisxMhLtvtnreqSRzWGbD7Rp5jpJpRExV0NiCUGjTqtDDaepSlRQlJFKCtx2KZYVQ0UJqFmqQDTCZ5LhAgVK2UmHXqhfpUKahGwU0YZkGts3LKM+Cm0hd0SV1OD+7odsqJ4KhqavOFpPHX53GRzyIQJKEIyUk59j/ykfoWnZXtLFKUFt271c8HkuhJaQ5jBSyv7fpiqkP/PtpkiPEeVB3fGd29M6rp3lcKQH2qCxyQzpmEfl12NEWQCBQnmZTtuDniocwPlwtXtbAwYMCAAVcaAUqycR9ZRlYFe3t7K9vzPEee54cfFwJe8IIX4Au+4Avw6Z/+6Q+9sgMGDBgw4LLiuDkiXJKm+srgqhYWWhPU+vaLENIOo2o8pPocRzWK1oRNDs4rx/frl6gcLV+n275O6ThgcUjX7FNForMumNGmPY5makK6BIGJxapABA8F5i6rcz+MaNKGey8WBXYK7AjUKKhGtOEqxmpOWoS+I1+rDW8tC0l7JKnmQwOEmuBzQnBCcWrD1zGhSaFPtW41R8mZODChDkYySXuDRZOhdKaNbV3XBq4yYlGoFHSjxBGxpq6uHiuWhZZamELMGYrx0wnBMtgx2BLYhtaxWxmC1gGBGSFl3Fxry1VncIgGrm9V8CRhUSG0htZCE7r6bXr2qa8dCDN6TJ9c74srx6YU07E/rdDZ+vXYREM6ITzUd5zd4fsuFZ6pDRt8VBkAuOmmm1a2v/SlL8XLXvayQ4973vOeh//zf/4P/tf/+l8PuZ6fcGDRNiYrQqIhpQzKFLr48To6IoeepTplSw5GYtGTF61rCi+ZHDH7ORxUI9uBaImgjibEOmpbY+bY9N7K9YU26qOTsa5kQCYXQ0cqtMEUdEXwGXdWiCnLmOCoDSWuSzm/3e/uJ2WKTlmfqYqhMD0Qihi/HuJYnZ1TYBOzQNcEVSqEcUAKUlHvZSDN8J5QKtGGcxrTteSPsbmDq3UXIGJpABtDpO5ryS4NID9HHXWr6urPCuBeGE1Anp+E4iSxGAXAKYtQxGzTAVjsFcjGDdhI/oJZleNUscTSWdxfTnHfYooLhTg+F9q1fPHGx/DZQaEsLfzCAqXQjahS0CVBVUraLs5j+aKj1KR2tXPJMpztIWrEZU5TMeEyN2Jx92Sgcjm4n6HZ5g713GK8XaJqDLTxqPZycTwvGnGsXmiQ7Q1wif6khaoWWi0/YKI2HgSY2F91GUMFQyh2KcdACmOa5ulgorNyxq2zc8r3ETK5PpNYxtq5PM0HniQiuO1CDFPMt5Cclt1UrHepHHmgOtO9V4lipBoA6X3MujpQtGj4PM7NBFDdzd3QnUUPiNTD3jsCRkcLNPI+sAZ4KlStk8Jxc8Rx88fDAVe1sBAyANlDO8fGBcUmSs86jWLTs91ERVpbiK0LFIehn5SLQicwMNGBCDNtud4ibSXm/aZrEYSPH7+zp/gJEAmlSCHAQ0Exg3uxrdPgD0AoSL6jHiEOhKpRoAbQNYFcjGrQdINQa+Lr03tI4iqnSTs4QmgAn4uQwJ7gWGg6QKQhZQqN11gah1w7GBVg4qjlWMEFhcob1M6gcjrSjqTb+1oDpYKqFFRNwrOM0RdSunrVizK08ox1Eha6QU45klT1gYTmEsT3wwdq6Ugp70WK/pTasxUUor8H4ncK1PkmxDZL35OgQGt17AdXartJ//mv9NOuf6bBFmvlD7wOK4JAX3CQkybaUUtdeojv07HlHgROkobkoeCPsSz42Iof+chHsL293W4/yqrwz//5P8dv/uZv4p3vfCce/ehHn0xlP4EQrNCQfBHfUQdAGBwtBUPVQHVtgN1VknytlAVqe44MbT6GFC0mjcmJ+pCiHJGLi/CUp4Fk4d3SkvJuEcMm+txFHzEKErEmdSM/6vwTVENgzUAjkW64JinHDDcJUJUcFHKhngBSV6GLANkFoU0l37QkPCU6KEcqTZt0S8V79IDZVwiWAQ2ohUIogiRs23IiFNQazdJIAs/Io/dOuCAchIrpSiuL24YQlNxPSzOq0OaiSNe2iyjURB8Qn3flKIgQVm918wlrUU4B8uy81Wg0wzuNpjEyRwXCVlHhI3uncO1kht1yBK0C7ncTlHVKjOaxWOZwlQbPLDD24gtWEnQpii+zFIpKsBJFKy0yAfnNKlJ64hSpYr2VBlgRPAMhCL0Llep48UxQuYdfGDiStlzOcigb4CuD4lSJ8kKBZj8DOQWOC/V2HlUM1aiYqDP6vijAzCL9bBH9cSLdjIL4BgCxj8ZcC6oB6h2Grrt+JHlDCH4SoEoFNxLBoM3pUYlCsDnlkZ3XCDEaU6L/yFwpk1IzFVp1iIpKCtGHyIpw5SZok8Alfxy9RDsX+KKjPLXveBQskr9PS1VL/Zg7YUl5yVeSjuUY5cxvS1lTJiUBI+gNE9eDxHFzhD84yz7scFULCwMGDBhwpdGwuYg8CzLbbW9vrwgLm8DM+K7v+i688Y1vxDve8Q7cfPPNJ1bXAQMGDBhweXHcHDH4LHycETIGskuXyFaCDfV3rJ9q7ffGeO2bNPbxc6MVYZMj6VH1jJpaYoBDZyVgoHNYPaQJDkScSRI2IA7IrW1XYv2zBwgk1guIgzC1VoX+CTuTc+uQG6lHlKhHNbWxxZOmXrnu7wANCdH8qTstgXcAZWLO9J5aDZFPscQdwTuF2npYY2CNhyZeoSF5JjRO8ic0jYavNThmzUQVrQqVRA4RCpJoiMit0ZB6dQQgGsroxJX+QgYgWRVYgQNL+1hxomMvmjUAQhfot2c073OMGtU5NqONfNS2WT8K0po16UisW75SH1Xd56X2z5WISdGkkCxcycKwfsz65kPfocN+H3bcJSCcYKiLgOPNyJdiyHje856HX/zFX8Sv//qvY2trC/fccw8AYGdnB6PR6MFX9BMMyULJNvbpXJxkhbLQabjNvkKzLVGB/KhnlmOJwc7RGTfRFHQtWlVW8h4miwEU4HrafTeR67ix1MHsR4voSOhEqhKqpR8HgFR0Uo7WRstgJZl4AXnnWQN6rlorIBNg9zT8OEjkoGj1ANBSpZJjJxjQi87ZO7WPqiHOsjnaWPPJcZsCYjx+gtccaR1Sd1QKnAFoZOBgCgjzbjlBMYKSj3MHGwbbAD0zncU5Ol73x1gdY+VrB5BnmEibUk7GW7GAELL9SPkaAxijc/TVLDkHGPCG4TVDWY9lmWGxzKA04x6/DecVlGKUpUWeS4OEGKxD2oah9gxURe3z7Mfqz/dkjmADUKTUkI/PThNGDzBcQbBLoBmJc32ITtpcivNwc9qDyjgXGQbfn4PygJDmJ8XwMadEdd84RjSUgZVqGbxbJ+N472KFknYKVvqg3Y/POEv1jBaxlLA7Rkxq6cpxXkia+Xqbke3Jc/aTIM9nrmBm1PZnn4mFy40YuqSWoiQO/mIJq3dk30qUUEJLp6tOJVoTCf2tIegltZYPoSAx/LjLPs2a4QzAGYP2FepT4pif+otEGZN30hfcBhgAgBCjLOmlWO7MnCQLe6T7nWSAouPmiBM0dH/c8PAP7jpgwIABD2Mk57Xj/i4Wt99+O3Z3d3HLLbfgUY96VPv3K7/yKx/HuxgwYMCAAR8PnOT8AEjizs/+7M/G1tYWrrvuOnzVV30V3v/+93+cai+4qi0Loq24dA3hJo3nOmiD6vOirpR46IdoRxNP/OgKUudUmhxhA0X+uYj/iYOXzpm46UcZG1YSBTNah1lJcZrukUHJoVkzmFksEP374d4NBgJSqFHXc2iO1gTdtyq0GvvOGWol3CfFEH6OWmco33fgDQTyCiGGEOWM4JyCNxq1DdA6CHe2X83kfN2I8zVqCYEHIFo/pK7JsqCTb0UjmqIUKq69ddX7DF0W5TYPQ1uWhI/KEEcMz5IRtfVZOKRN160KrXNz73n16nNYSo5Dw/XGfaJ55NZRG4pXLGEX00+ZJazuep2SJexgpY55hy4mlHBb9pj9x4DdCfJRLyKpzqUk3eFLiis74DD4MUMVjGCj5j1nhOgI6QuxgDUFECYeVCtxgiS0FtcQNZIUIFz9qNV3kzjGx/OkyBB+JNrQ5CTtRwF6KXkKVCnhLFstLiIvOovZk1sOehzbKDpi9/MIBbknsQQEqFrCjuqFghvHdzlaDVK9ARlz3ZTbQBOJz+1zGZ+TI3UqnzSyqgKUFcdrMyc0OwFqoeG3hBxOcw1Mo+NDqdvXl2oFnnhQQ4CBhPOMoah1SSshY6kRTnzSLrdhXBsZe5WTmPnp3CEj2DmjGVObUTg/1/mgBEvij+G0PBvFCBMgOCUhrB3gnZhllA4IjcKykYN5YcSiMNcwVfRhq+UaQQPZPmBnDJ8TzJLhY13S8/SZ3JNdBgQt+xbXE8xCtOI23pubSHvrefQHAdocCaglX4IfB0AxqJHMzWwDqM39Ey0dTfeM9bKbM8kD1Wlp1xQqOMRwwWYenYqjXwgQLU/UOZWnZ5RyDqhGfPGSVYEcIRTcWsEoiL+Mnon2HlrC/PotLxa0mW63hUz8GVKfrrcDdBn9F5xkliaWHBsUALcVYPbl3SQnczY7wE1C2wYyx8ZrGwlh7kYcc4uIRdBNZHvrTAJpJz8OYEXQC9X6B4WcW0veSeG4OeJSk7KlxJ2f/dmfDeccXvziF+MZz3gG3vve92IymTzU6m7E1S0s5EHS0R9Z6Kh9ayuO/oJnnZ90gKK0YbWyvriiQz43le+fj7lLeMWRfqIZoPiSxYUmRx4SEaTMJkpKT4I4EP8+vTRJ8IjnayPaBNnWd8pNdWoX+TFhmAz8SVjoLbgTncd1goKKtJ22CThNvgTFcbHURm1C66Dke3kaACA4yY3AluFMgI+L3hVpIUYXIqdW6gegExRqrNRZNYDy3HMiTvffo19puUAAgSj6G5I4VPafKQe5PUlQJ5OX3Gv3HNvBK1AnxPUEhBXKUdtm3TOl/rNZoxr1nZc7ChV3v5PQsF6ndTPsxr7Kq4J377O37L+0d2XT76PemwPnPXxXH3yCHs4Na5hjfRYGAeByI2gGRj4mFhOqQss+ywKclYWtOW/gdjy8WR3nycsCJC3gm+20+pZY+8HKAp28CAaqIlnkITnbMjwkmpA75UCVgo9x4Ns4806EDHlHe2NXWvywjDUhD1AqJtrUiAuuuCgbSTQkRMdpQKghKkZU8tMYcz9FYYqLcB0dXtkAXHROxvWOjInNVlTyhEi/KmUhrudahuc8ADMt9Zk24H2RkpgA1CJYUaXiwqsb09P4mxanUOioIRrId+Uh2EWQcW9M0BXD7yioWsZls2Q0mtoY+Wnhm5LwpQWpHzP0/ZLQjRmiYDSirHKRXoYUZa4mqEVUIEVhxs5FkMn3uoW4WXJ0ZGboUoQHQIQKXTGCIZiS4UYEuy+CjJ13UX7MHGh2ALsnFJv0vKEYbhoHcSVCizgDMygLkYoar1UTwsRDzWPOoeRsvJT9ZiltaSN9R5eiEEuRtcBRSEBPSOwl90v9PmTy6ScBTCKUpBwL1CSlHQOFh2cAmkWZp+WeVB0pSTEZHZSsE5KDtioV/Ja8o6TlOaZ7CYZBNaE+49scQ6oRGpNeygvkTjvofUlU57c84OJ7QwxoCA2tEvoUAgAjAm/bZmktpBkhDwgTBhoVqcOXb4641PnhSiTuvKqFhQEDBgy40ri4aEgD43PAgAEDPhFxfDSkhzY/XI7EnVe3sJCFNt35RWGT8LZOk+iX4cPL0TGS4OZQkEccw2tFWquCmNMoUOtozH0LA4CUnbnVPve00BvrFTXOXWhLuQ7FAsTimAuimPl3Vavc12yvZBN21FoRWmfmuE8lLX3v2Hjx7p5DpxpXK2ryeE8hmoSjliHE/AaSRVkB+qBzLjFingLRFIrVQPapRszgK87XG6wKnVMut9aXvsVD+agYSqFHqbt2mzdBR+tCcnDeRPXptS1Fq0ibkyLti8+wzbiNzX2t77icQqK2FqJ16lFfq9m3LvTPvcrL23CxDe1+WPlNh/QP6O2jo8ptKH/R8CenNQoxT8ZxZQZcZmw1AOfgHSfvHgNBxRfHk4wXWUBTBFClZC6xoe2c7Ag0dgh7VjSitdAkMPbwFOkZ4yDaacXwmqI1IlkgRGPpJyzUHMvR0zFq2gOBx761CqqlXrPyxSlg5IXqEUi0swFyrGGoNJDH8SFploEuPKqqJe5+yBl2X8YUJoCz7jpAF4teVxKDPz8nYTeDFS2s3Y+Wz2hp8V7qwMSg+3KpG2R/UsqqKjncqtbqwQqwe3G/BxCE4pP2URDncQCop5LXYHmtgllwm+FXuS5ztaoZ9U7SuMewm06cqH2pxbE4jv8hi9YaBSDSw1qQWGP8iKHmBDtDmzdBuTju9qhapharQjaTjT6LfSuGxa2nhGyfETKx6th9mQeaabweR+ff9vqSzwIE2PusUGQIULUC7s9aq4hyYsq257rlG2uxHiUKXAqLm+g7FMSpuZ9HJIUaTXNAGzI0Y5i5amlciXrEGaM5IxaykKGjIXkCFlqef61g5gpuR7T8rNruKf90kOPqzkEZPpZzgD/rJBN1HXNRjEPX10sl7xYBIfZVeIKfeiAPwFI09xQAttGCMfFiATTRujHXCKO4AMgDuFHwudCXAQjdu3BAJeuJk8Jxc0Tad6lJOwFctsSdV7WwoKyHspeWk5s3rqy6r7ReZqW/HLb9II5cGmwUWlL90AoKxNyuBjk5MYQ4OUTOPABZZMcFdcqB0PJVefX8GyvGiBQYbqlHaTEri7XVBfJKVKVEk0kCge+EhZWEZv177lNcokAi3Cfq6hxESEnp5ylEc3iMrgTEBbgGgqa4AI6TfG+xDqBdcLf1SxSoVOeeUEOBO6Em1a8vJLT1Xnt23JmpVdzGcVuI/Mdkcgf6iwE6cK71fBl9nuV6G/Lac20DubSCC/eEhVj2GCGhFWKou+2jF+mXPqiuCgGHCQpr593Qdw+UOfbC8dNd2rhxFMJFWBYu1YFtwEmAgLEDnAJ0AFUayL3Erp9b6eITBywMaKcGx/wmKpdVVDDRz4kBjByYdKSwENRODb804v80dSJ8WKxSieZGXqbcy9hEkGhpE98tuhs5nhuFsNOA9uOUnAWJjKaj7xgIFBfjqqGoBJDoOJzFxRATVIzIkygiwQJ2n+CmHCkkaEOv6BrtuGTmaKlAfiTjYbMt4xlrocwEG6kscTFOAaCKQE78QVK0J279ziL3O75qxf1CyfExKo9dym9ioafKwTKOBwM0YyW0HgsUDzCaqbRhqhNIfBt80Y2PZtndU8qFIQtkmUd8LtRTuVf5HtqcG3LdbE9yA+mmExBYybmaKcEsGHaRokOhzRngc2qjVCW/DFd0/g0hA6iWtvZRYEuULI70NDuT+dSNpD4UZKEulDfJ+aAaQigC3IRh96TNyVObjyL5TrRyZKSeuVFP2Mm6yE4hF6GLPKCj36HPpR8HDfBY/E8o5mJSjeoELgBh7GX9UCuhUk0C4AjYcuBKAbkH5gZcSPZX0gxOFTFBFuiVQjglAgaCLPJZJaGCAUcIkXZOlsHJ77BwCLUWZWoWQDYgVBpkJCkqGELhYkhekDFaKjCYoCcNQhWFDBNkrCCGPVUhZNUx48vF47g5Is0Pl5q0E7h8iTuvamFhwIABA640GtbQg8/CgAEDBgzYgOPmiDQ/XErSTuDyJu68qoUFbT10dvEawk1WhU1z+KplgTaXXWdiHGOxOHje9IW6DUmTnH72tfiHWRgQtRKBoiabO602d5YGYLNyuN3OsS59zS5wwDLRav1729tMwq12vmdVSGVbTXY8LCnqWytAr53TtpAagqA9wA4xE2avXKTUpOof0D6nNsRafbBWT+6sCuncyXIK0KrGHr17iddcyYOB6PAc6UeUMsCq7ob7NKG2sXv33j6DTc+MVsutnIM6q0G/ji0FCb3f6xYF1bMmtI203qa97el0D8YCsHJ8fzv3th+8+QO0pEPKHQkC/ElaFlghHBPN4rj9A04epILkj9EBk50Sy0UGHTWO47MLlIsM7BXys0u4RguVw3q4GOc+GzVwtQad8eAg1AdK43AQTT/FGP0pYzK86vqwYmDkwY0C5UFoTUQwkwZ+YUGFQyg1tPUIlQwGyfFTb9dwMyvWhBT73waQZnhDXdSkLQeaGYn6EpWwcvPd92aL20zNPudWMx9y0V6LFnk1/j05tOOHrqIGnDqNfjCAXlBLMTFLai2+UEAzEW13CiChy86ioMtYZiznsiVQRRrR5GMskZEoWgRItOvlaaH7UADqLSU5DeLYnu2JMzEgTscUqM3iSz7WtZGcGarqMkMHHaPfRQpUPyIT+ejwG7ebJWCXjNqIlVg1jGAJFBj1VK6d7wY0UxUtMIxmEuuQgn0EOQ4qWst9R0lKWYnJdfQxEyMcMUVKFRgm0sx0KVSg1sLP8mylrmIZcdsx2zfkWetanmfIRFNf73TjpnIS7aqd/1TMP6AAta8RigC2Ep0pbDvQTHcaesjcQYqBiZN8EE4JNSmPNKI8QGUe3GjokYOvu0mcbIAqnOQZUirmGoLkoJhE/lcGqMwjNAp25NAgOtM7JQFGCrmurzTIBmSTGvV+DjOp4SoDZQJUpEAlGrMdNXCNxpnr9nHuY9vgRsNOa/gUgeoE9TvHzRFp38Uk7QRwRRJ3XtXCwoABAwZcaXgA/hjHiZMTTQYMGDBgwNWE4+aIS50frkTizhMXFt75znfih3/4h/HHf/zH+OhHP4o3vvGN+Kqv+qp2PzPjpS99Ke644w5cuHABX/AFX4Dbb78dT3ziEy/5WtYG6EN8Fo6SCjdaAda2rx++ySqwfh5e375mlSAkrX/a352M+6p2BkApE27PmsA9zVbM5JjOkziaifsIpmiZ6GXUXePAr1gH+paDTft62/thPPuWhfY7r35vNd0aYCLJXtxe76BFpY/V0KWr+9a18sfiMAvLugUoaeV75+4cw9NzWrUOtA7jPV8RJghfl/qWha7Oid/aWgHo4PUO/F7Zx5uP7+9Dui6vXHvVn2HNorDSrmnfqmUCiNvWLET9Bqb2c7V923MdYZ2gTeXXcJRFYZMFog9lTtLBebAsXCwu5/ygrYfKPPLcoWk0glPIcoci91iWFqQY2ahCZmQOqeYZkHmYOKc0lUE+auC9gs4CqoWFzjx8raFsgBk3qGZCE7CjBr5R0COHZinTqpo2IAWw9fBLg8nZBZbzHG5uoTLxW9Cj6GWaB3GqjL/9hRxq0iCUBpQFCR0ZfRwoC0ATOdpLsYj4sYyjKvoq+EzCqrLqAjAAosEONvLzoyO2WSZtuZRxIwYRtVmpmZOlAEAQLXvSvPfnncSy0BWQ1+Jcm+2J9pw8wHn0KSDRntv9bt5I4VKbMUl+m5iB1+UEUzFMxainCvl+AOuUm0G0+80Y0E0cawKQ7cu41kwIdiHadl0D+e5qzgZdAy5HG/q02BOH5fF9HvWWgt5lVDviN5H8DsgBrAhurGCWkqU5+SzMH6VhlmKdnj1ax3ClclzK8l2PSPIfqOhPEsPVBiNzhRuL83efsSKWBZl7VC1+HmwAOxM/BEDaMlgSn4UCkl2b0fqNgOUayVGbbRe4I4W2tRcU3HYQh/CZgttaXVuxDZIPwonfDTXRXyI67nMeYHLR/qMSq0K2VaHay0EmQBlGILHSKSt9T0KKK1kbMAGKkU9qNKVBdrqEq41Y9WqNYlSjogzNLEO2Lf4EvtEInmAyj3ovh8odSAGkGNvXzDBf5MhGDabjCvvzAsp6BC/vZ5E3mDuN2SJHthXP5xVM5pFnDj64I0aXS8PFWhYuFrfffjsA4JZbblnZ/trXvhbf/M3ffKnVuyicuLAwn8/x5Cc/Gd/6rd+KZz/72Qf2/9AP/RB+4id+Aj/3cz+Hm2++GT/wAz+AZz7zmXjve9+Loig2nPFw5NZB2+6tOi7iyLGUo0O2h7VF/6Yy6Tv3t/cEA07fmUDo8iik/RQXZd3507m5ExA4LgDXF709YeAAfSntj84+ElmH25j+7XnWF/lrAsDKZ39RnM6P7nj0tqVCiSpEarUNKdGkekIJMa9ca4Um1LtGW8fYwIetHWURHZ9DWrSnehFa58P+4l2+04FF+Ep36f/uHpdMqhQ3rZVpq7h2rfXPvnDBFNttRdDglWP6SdU25ks4LMJRX0hAr/y6kLAmIPQdn4m4o5OtCBBdgrz+wn71e9ec6hgK0mHbjxUMNhzj7clNBI41mmN8FtwJxuy+mnE55wdlArLMQRFDKRZakVNCTQqyKKgXFmYrILcONAHGRQ3nZYDQOsAHFfs3w47kXNZ6OKehVYAdNSBiuEZDmYBRITQGADCZUJpCrZFt1ygXGZQJMJmXxGAAQqOFShvf51aI3a5BBOjtCq4yIkwQS8SXpQKMOD6DIBGaEBftLr18cQwpPIIXB9IUz75NUGck+o8bM3TV0ZB01eXRcSOhvrT+qAuphs8AM5NFK2sRCkJvvaNCpBtBFrJAlyQsWCDbRSsQhAzwaXzWQrlxsf52IQvyZirH11Mlc1WQ4BemCvCWWmGBKUZCqgKUU8j3AoIRAQQEeEsIlpDteQRLyM8xQh6fhZHzKMcgL3/FOQ9fKARLkkehDvCZ0FLL06qlLgEAORF2TBkjGMaEnm7UJZ4zC8ljkea0JKARAO27iHxu1CUKTbSv/HwUsuYiMLiii2hUnRWhoNlm6JKgmxgpMD4T1QD1qQCaKUmolgdJlgYgjEObAE1VIv01Z51EN6wJYctLAj5P4EKchc3YwUfHYHaRkkcMXxrpIIX06XqRAYFgCid0IB0QvGrHcWZCNqlBSt4hDoR6YZFP61ZQMJlHMAHLeQ4iRr5Ttu+PzRwYgNEBYVLDmAClAprGSBLUQGBFuLA7hrEeRIzplnTMqjHQ1sM3GqRkrCjyBlVjoFQAq5Mbs4+bIy51frgSiTtPXFi49dZbceutt27cx8x4zWteg+///u/HV37lVwIAfv7nfx7XX3893vSmN+E5z3nOSVdnwIABAz6uOOkMzo9kDPPDgAEDPtFw0hmcrwQuq8/Chz70Idxzzz34ki/5knbbzs4O/v7f//t497vffcmTgVUeRvsHZVEAgHAEf2Xd4hB6FoJ+mXULRJ+KxCxhN5mjIxjLhMhMEPtCtCgA4Kh2JuL4ndFmbOZYIloYEC0TbVXi/pUcCAyJdZ2sCiTWBEZPG987PmnwWyflNs/AIVaGTRaEhHVtel8zf6Ch+xaFqB0LBAXuHJIDWtM0ee7CAzpu9xFz5/S2XhdNYCL5VABHs3HQsi0YjmXQOkx34Vh7FoBW637wHoCeFQRrVpa1+gCbrQorf7r7S1SAA/elUn2TlSFq9TeFQe1dG1i1DLT72v0HrQqr37FiUeisDWJJSJrYdJ11i8Emy8K69v8oipHa2LCXZmFw6iQdnIc8CyeBk54fJkWD0YixbAy0JowLh9kyh3MaO9sLNE5jOqowLzMUmVgIqsa0/cREy4JSYplgZjinkOcOo6Ju+78iRpE3qBuD/b1Rq7lcllasA4XH1qSUa1caPhAonpMUC63JBIQcYi0A4GvR5JKRQTNpb1HEAZgJ3CgoF3M/kMwXKjq0urEHOS0DQCbO1Yi5etyWjzlnJLO1HwWw6RYrKRuyWZBYHGLXDVbGI1UCWRmHjhKwsxi+1HbHp2zG9ZTaMNqJttPPGBx0HDPj5U0JIDqTg4RKJMfGsUzL/uU1CqMHGMszCpN7PEImlcxmYklgTcj3glgnZg567uC2LMyMQTHHClsFagKCjxl9cwUKBJ8R7DyAtZxTVyzzAQtlSRyTJWdPMGIBkBuPVpJAsDEUbTXt8uMoJxYBXcsx7dwih8LOevMQd5YXUKSSKbEwq1r2m0hbAgAzI3FiXsiaweeAmwTYfQWfMfwIIEdotoPUp5FQpO0zZzqY9ycP4KkH5lZyPGgWJ2Um+N0MHKlEZCRPATPFPssgFRBqDTtuwAXgKoNslMwosm4DgKYxAAHVfo7JKYnlqlXAYplhPJaGrWqD8aiGzxXKZYbMeFSx4ZpGoygaMAPb0xJVY2C0h9EBSjFs7pAZ6R9GS90bp9vrTIsa5/fHmIwrWOXRBI0z0wVqr0H6JKmqF5dn4eGMyyosJCeM66+/fmX79ddf3+7bhKqqUFVdzNuUuMJoD60CjiIAHPYQmAn6kEXHpuPSYq0vYPBaB1DcCQmhJxhwPC6JBwDHb7S6CGwFg/YKsrFflbQIW696T4hoaT0KMkEQR9Iqg9KKvXUmQCsEbMqR0E+o1i7cVySVru592g6p1cFwhXZz8NCVOqjYtol2RIGhGoZuGBTNxACgai8mY+dFUAhBPvvNoglQSgZhoxEMIWQprjKBrVQ4EEBKnhArERRCWrCnBf1h9ZYH3D6XlahLfHR7dQv+1etxkPQZa4+3dxG0gkJKsIb42Q76a3Shg5Xf9PvococJCqrd1i2g+r8T0vb2Nzqhoo9N1KHVemzef9HH6ZMTFoYMzieDk54fRrbGsimgFaNuCMvKwhqPIpOFfRIOdsYlmAHnNXLr2sUEABRZA6MDlpVFkTfY3ilxYTGSBVNQMNpjscxxemshAgVksQgA2gRo5cAs1/ZOQdsAax2qyqKZZdDjBls7S5SVRXAKIdIrlAnwVQqFEySCzNJA5R68MFAzjXC6AU86qh8z4CPPnDwJVckTaGkiHYUlwReEy86GQQowexpu28PsdfetGrT0JFXLHACW2Pxs0OYeoCD0nWyfu2hHMdZ/8kVQXhKUsRI+fZsLATIshawbdXSIEYLiuOrzrj6mRBstSOg6DLuQMT7blfv2uYJyDLPw0EsPNzEwuzVCoZHfvQcuMoAZbBS4UdDzGn4sFc/ub8BaI4wM3EjDTTR8RtCVKKp8RghaBL0UZYmC1AdAm8+AFVBvQ4QeC5gKbWSmRBsiB9iKu1wFWuYdOw9wBbVzbpozfUbgXNpBx8hUqumuHTIpayr5Hixg9xTcJC7yG4l6pRzBTx3IqdarlkJMLmgDQtCAEsECWQDOZ8COA0ola4mlkZweikFJWCBGKI1ENCKh/pgYuSjRr5UJrWLV1wped9GQtPLYOTuD8xplaWGt+BkpFVDVIoGmd20yKVE3BmemCwDAvMqEBugVNAmdMDChqg22RiX0KECBUfuub1+/Lby4B+YT7C9zoQ56hZFtMCtzhEAwuqvvSeDjncH5cuDhX0MAr3rVq7Czs9P+rSeuGDBgwIArBcf6ov4GfHwwzA8DBgx4OOORMD9cVsvCDTfcAAD42Mc+hkc96lHt9o997GN4ylOecuhxL3rRi/DCF76w/b23t4ebbroJihj6CCeUwAS9QdPIbeiaiz+udUTm9BtRw0rt/tAzDSig/c1MPXpR/5zrFcNKXoRV3sha2fXfvGpx4ACkBNCtyaK9b9Gmt8ySqBlPmo9kRu6+c2d56FGG2ku3lBpuaTQhWUQYXcSgnsNuv/5tlKZk7oY4yCVtemvdaBi6CtBV1J7VHqp2QONBzgM+/qWGJQJpDWgNNhqwGpSZ1jLhcw0PBaViltFotWfqafmTpn+tzsl6k5zGiWLF4++2zfoUrgNtJlaANuOoJrCJTn/RUBB6lhq0fY+6ExJWrQopV0KKgd1aFnCRSH0l2aH44LOi1eId5WizVaFvTVi3JKjesev4eFkX1Ir3/0OHZ4I/Rgt13P4BJz8/nJuNcd31FWZVjlHeIDcOtdfItIcmhmeChceszJBZj62iwn6Zt/0nMMHqgNw4EDH2ZiNoJRpHazycV6gbg1FRY15lMFqCI/ro6VtkDbRiNE6LM+WatrLYKRGYUDsNIpZISwvRpFLuQLmEMVImIJRG3kkvdJEw9UCpu3czC12WXQBh5EFOotxgx4NriaIUFItmuFRybCCEUZAoSsnQbBgBkilYl6Kl9kY02X4sGYiThlzVgF0EuBG1dBxTijWhH1hCOYYpuwAVicbDHPMpRLVldUoceN0oTh3xOsHG5Lq+y5PgRoRsTwbfkMXIPAzYfSdWkFkF8gGqaqD3lwjjDLSoQXszwFqEM1MwEfRcKk7zEu66HehFA59r5OcaNFuyRNIxu7NdMhbXEuwMAAEuavEB0fhTEMtLS1Gq43xiAGixjijHrSU5DVV2yfBWyhMzXC6RnOqpfJpSyjcTyQTNWq6dnpleJmuQ5FvQpVCOzFzBTVlyKwAIeQCVWjIhJ+W+9UIjalQ3j02lDXnLtX2HFIBSST6hIDQ46as+5klQwFwDYw9XaZBiBKeEWsfd3EGasTUVqt5imaEpDbbGJZZVhq1pibKyQi8PCpNRhboxQt0jIARCCIT9UkxON2zv4SPnTmNc1KicwfaoxLnZGEXMf+K8QggqvnsyZ5ROHlhhG5AYmmB0gFahHSf2lgV8c4LW52PmiKthfrisloWbb74ZN9xwA37nd36n3ba3t4c/+IM/wOd93ucdelye522yiotNWjFgwIABlwOJj3rc34CjMcwPAwYMeCTikTA/nLhlYTab4S/+4i/a3x/60IfwJ3/yJzhz5gwe85jH4AUveAH+7b/9t3jiE5/Yhsa78cYbV2JtXywUeKOzY/IrWNcwpgeyrpFc56ZtOq7TjHbXYO40pYEOWhMOoK8ZjhaEA2FWGehUPJvve6OWuK9BZtEscxAtFPXV9hvqs56BWXnRUignWpDkWLxiXUinaK0KaB2Ig07cdqyEKe078h7Q0vfCvLYZq4Ge47X4KqjGg2qR+FVZgyoH1DXQOKBpwN53ZH8VLQvWgqwBsgwqBAQI0VOlOhtx/m7va62uR9W5X9f1tky809R2m6wLreVCi2NY6FmWQrQoiO9Jry03gbqcC5QcnY8bfw7tX6n/cWtdSMxoSs6ViP3qkK61blXov6d9p+cV/4UTtiQc5gh91LkeDPgi8izwVRDt4nLgcs4PO+MStRvh7HiOC+Wo5Tf3rcZ19FnItcNeVeDsdI6yEc3j2NbYr3NUzsAoCYsKANOigvMKngh55iSEaiKAR3+IdG5rPJQKKLIGZW2Fh11m4pOkCVoH1LVBljk0lQHFHA+hFqsBNwqhFBU0WQZKLUO8YVCtREOsZWDhPICjvwQ5BdYMyn2rAUa0SsBTO6aEUYDZ1fAFA1baxSzS4Bu15izzQbbX04ZHi29yIqbo0AyIf0Jx3qPe0mJ1KAhZzAMAxDE9WgxYAfl5Rr0dLSJacjogntNNIFmXG9mXfMnMXD7rbQU7Fx8FuW+GqjxU5UDzEmQ1aHcGNA509xy0sy3zRVlBzedAnneWaOdg7mEgt7BGwU2lH+gywI0UdM1YXKckX8IW2jZK4U/TeJ40/3oh47+uJb8DlPhgBEOt9SW0uSkYqma4sUK256EayQRtF5L7wcds0SBxhKaCUO90c4J2YmkgD6iGxFdBAX7EbWhdMNpQqNF4LLdQatC0aeOkgCFmHABoxPeFAwGOQEzi+Ku7FGM8N3LzhQftNO3YGpySYCUkfdSYgKbREjAglhmPaizQrX2qWsKWhqBa6501HnBajomOy0Umjf7AYiJ+CrHf75c5zkwXMBRw1wOncHprAW0dSmcwsg6Zcbh/fwIAGOUNtrMS98+myODgG4tJJoELJnkN71JK8oeO4+aIq2F+OHFh4Y/+6I/w9Kc/vf2dzMO33XYbXve61+F7vud7MJ/P8U//6T/FhQsX8IVf+IX47d/+7UuOoX0Y1iMcHeXgfOy5Djg504Ht6XrJ2Tk59PS/MyALdxYTGpgiTYjawb0VEtIbfDFrmQcjjMaX8kBitV4EJOVWBQVxIhZqzfqCtz1lcso1AJEMbBzT2vNa2ZVoSf37iGbKNkIEA5ITgqOwEKCaINQjQASFqgKqGlzV4LoGfJCKAAApsFagLAPlYm8kAEqlEZbAJkgc8pDujQ7UcyU3Q6/KTKuPoJ1EA/cEnJ6gtaHd4GNUJk6r7vgZr0tehAXW3fOiSDFb9Xq+BBzXx1oBIPVtdDeqAAQGKUIIInAJbywJyEJhoN73RKeSwzuKh6KOope2AYcv/vvvbH+xvxJkoL8ddKjAcJLOaw0T6JjBvrkKNEeXA5dzfuBI8VnWW1AqwHmFSV7Daom3fn4+xiQX+sIDexOMihoXFiNMclkk3Debosga+EBYlAWs8ci0x7zKkBuHTHuUjUVZyaJye1yiYYKLDtKTcYXZPIfSQpc9M11gv8wRdACZFGGJwJ5QLjKwV1AxQRxlHmE/A2yQRb5hSYjFAMYeVCvZl1DqVXpgHpNmlRrQDFU4hErLGFR4OWcg0FIjZAyzIPiRvCu+AMyc5LOOzsVLcVpWTqhHumK4scwlyiEmTpP62CXQjBTsQn6bsqcsCYgOvOIk7PMuqRkQnZ+NLMazfYAWMQoToU3+huQkHOcqMNpzKBbFi2jyFNTeEgiMcO4CyBqEc+el3GgETCZwf/VhmOuvixeX5RBbDWo8zAxAANxUiyOzJeQXGMtrqM0XQaGjIbGK0ZwaAGmdyVFAiPvsgluFm1lKzgZA2sTOA+xMohXpKogCy4uTObHkmGAt98pGclWkaEhguX4S7gDAzBVCxlBL+YRmhJyBSuhGKZoRGwb2LZQnsGVxfK4iTY0YVCmhJe1ZYOKAOjo7Z8nBWSqgrEe4kIHHkmNB55LAcDSuUdcG5W4Bsh565LC7JxXPixogYH9egBQjzxz2ZwVObYsDs/MGZa0wKWo0TqN2Gtduz3BuJseHoDAuavhAGGcN5lWGvaW8q9vTEp4VQhDhZBmF+CwK5FYFNEFDqYAzowXunU0xqzKMrORTCSeoUDpujrga5ocTFxZuueWWIxNGEBFe8YpX4BWveMVJX3rAgAEDLjuGDM4Xj2F+GDBgwCcaTjqD85XAZXVwPmkEiFPxpVgPjs/JcPQx/RCqm3IshKBWvq9bFThmTk7b+uFL0WqLu+usg1rlc9+O2L+B9EmdFSBRW9b+Wgfnfj6FNr9C1ID4zqrQ0mnQHcuEyM0Sbfh6boY2lOuDQVv/aAkJDMQQqQDEmdl5cNOIVcE5hMatWBaUNXL5REkyvnc8i5Y8rF7rwdY11XPz36p1IVklWHX0NYoO86QiLSpaFdpzpGM3PEtxWOdVi0PfIpDq2H6/iH4GIMVvbw9raVeyPaCzLgQllhmlYnx6YjEpR+sCAPhIa1IQB9Mud0hnFeg7ex1KFzrECuF7lgpg1dK4bnU4KaRx6LgyAy4vSmeQjwJKrzHNGnjj4YLCslFYRmtA5TSMDtiKIRkz69pxXcd+HIJCZl3br6zx8KxQNQbeK+QxvCoAzGYFHnXNLgBgb1lgPKoxnxegjLG3zFEuM4TSINuq0DQaxvqWgpGsCgDgSwMaO6DSYBNEE5wHCYU6MyAf4+TrIFQRxfJOpMAGcwMeeXEorZUETFhohFEALTVgo8bYBtE0ewmRCkA09ZlYENJ8AIimX5x2GcEQpnd7uCJlRA7dVGYIug5QjYx5bqwkjGlhQC46/Sqg3pIcDCGGWZVjo1VhTyhIiA7DiQqVxsJgAVaSwVnXoQ1aQZ6hFw2o8UJNBcAL0VKHMnpgc0DwAZjNobe2ABfb3Rjw3h6IA/jMloQBNQS778DbBsEosBXnZp8LzdSN0GZxNnPJqswxd4SqYgjTOUBGLCxtDgdF8Dm1FCZdSyMHBVAl+RZ0GeDGWqz0kDnYLMU5XC+xElrWCbMGdl8sQ1im/BsQqpQjBBtAldDTwNTmxQAAFAFcKcARoNNxDFUq6TO7VpYRgaAXGmHiW2f6dExwGupUjeAlRLBfWHAAFvs5lI0TGAGu0jB5DHUbFIInGBPgnLyXSjGWlUUICkXeQMUQx1tFBaUMzs/H6MN5yYXywN4EpBhGBzSlju+s1NloCQtbOrOSZ6H2Go3TuG8+hVYMTQE+ECpn4JsTzLNwzBxxNcwPV7Ww4IMCxcX5Og5Lqnaw3NHXWM+r0D9XohmlfQdpSDHdOAMcYszhnsDQLuIh37tFYG+xxCs/JWcCgFWbc/ezvR8GKJDwP2L0gpb/H6iL0oPVxWgbGemQha7s7xqNlJwfBDB33H/56/kCxOhGxOhFaerqekAw6P9mubF0zrXMeN3XfmKC3jZaL9tGjuKVc6/XIUVp4lSntYV3v2zbtm09031wb1/XdgQAKj7/IIvilefSa++VqErt86KVkEkc/VJETOgW+Af6Rb/NgUP7GqcNRG1uhXRCJunjKeJSYAKpIHxWxeAoKDABgfWKSTcJRB5x8c6dQOB5E21ocz9PSMuri0nqxr1tKWLNSWCIhvTwRMqF4LxC7TXqRvjQyzJrFxW58ai9RgjU0hxyK4tMpVjir2cN9hZCbbjvwhSjokEW8zGM8hpaMWbLHEYHnNpZtBQJpRjLWY581EiuhXkOIka2VcFFQaGpYpSjoGT8it2ENAu1KAtgT8IXT8k1HSEUAZzJ4g8AKFFImjgfjTzUQseFIUAFgy2DaoKqZcEolBOJoBQyhs974/oCbd6cEERwCEaoSHYhOQKCkcV+fj7xguRDuYBmIvH6faTq+ELqKTkaWHI35ATlGM2U2mN1BdhIp6Gm2xZM9KWL9SBA8u54ofO4kZx/dPcSITdAbmCiPxvlsqJWRQH30Y+1yiR96hTCbA7KYrICItCpHfAoA9u4oFw6uImsqpuJRHzyudCJmqlEi0LKdZDHujFEwRbHcV/I75SzoRkrFOdl5NKNtDlT9GVYBkBRS0FNkZOUZwRHsmKLwpLPu2HZzHrXT/MxAXpJcNMAvSSwUuAiyODuIUn+AGCuoOYaYezFpwEkORZqhVAEoTEVAWqhhTZmY+6GhbQRbzlgZkCVgh8pUCb0I7Li18CNbhO6Ba+gsgAffSLyvJHQofH3pKgxW+SwxmOxFGE8sEQfK52B8xreK2yNJJrS/rIQYVyJQD3KaoyzBvee32qjlo2yBvvLHHnm4L3CtdMZAOD8cgSiKPx7BRvzLHiv2qSLJ4VHQjSkq1pYGDBgwIArDccaKnkqHlFmwIABAwZ84uG4OeJqmB+uamHBeQ32eqN1YN2sc5hD41G0pPXz9q0I6dhOWU2dM3PfosBr1KMQ7YIBnTUB6FFJcEDr29awH9VoxdrQHUL98/WtCgGApxWrQRuBKDk796+drkGI2uTOpEmqZ21JZdYbrkd9arN9Ro1Gnx6TrA2rGaI768LKaQkSNagN0q8ArduIR2BxvE0WBlIk+61t8y1AqVY9zZpw4PGvWQqYRHmfci3027e1FvTr2/6tVT42x3rbtUy0qMU7QBtKf73n1VK84jNNmcE5tjuttW9bBV47d78iXTUPWhF6VKQU5QoKkpuCEZ2bldCnGCAisIp5FgAE6vIs9CMh9a0NK011hJLlMOfn9XNscmzun9f7kxuc+SJoSHzM/gEfH1jlYUces1I0/3VjwEzIjUNVGyzJYllaiUbUaIxHNaroCMlMGOU1dhcFFDFqp5FlokUvaytjOhP2ZnlbHgCqUjTRedFA24C6sjDxuNGkxnKeteWDU1A6gGcabLvY91CivYWL/SYQ9FzBbYvzKAJASx212EJZZC8WBwDQe0aOJ9mP/e43UtZ3T9ClOMuSFy00IK+/LuXdT8EuOEby0VV0KiZx+CXPaKYapgxoplJ5OwsxKAZDR5oRK4KuGfVUQTcMX0SrhZGBUYuiWByY4/imWDTlrCQzMWIADbNESzsCxGph56KpZ6uEtqMVONOgWQNYAyyW4PkCKsugTm3D3/+AUFe1ArLkocxSlghqXqH8pO2YL4fBSsEshUZEQXI8pPZJFCCgiyKIOAUSAXaf0WzJXK9reQaJguRyafNsz4FyJc7ZAMwiwI1VbB+Gt4RqRyGbBVA81vfpW9EJXDVoqaHBAMEwVEVwkwAz0+CGQI7gTjtgFsdAywjR2hJMtFY7mew4ZnOmWiFYoSWBAZoLpQ2Q79hy4EpJbo/UiTMClpK8KBjp55TocnG8XuyNYIoGxgR4r3D+/ATaelS1xXhUYe/CGPm4QVUZWOtjvipgUces29ZJ8KZGYzop4b3C3rKANgGZdciNw/5SLHqLpVgU7z6/I7dtPUIQ60PtdBvCtMgbLMsMvjw5GtJxc8TVMD9c1cLCgAEDBlxpXEyc7KshjvaAAQMGDDh5HDdHXA3zw1UtLNRBQ69pCA+zBhz2u4/Nvg8Hj20/188XNU1teNRoTUjbW2176PwTqB86dd3Z+QAOWhU2/OxppKnTfvvoMBs/+w7OB05G6OUXINFOoNN8r0QzidpnOYZiPgLCuoa85fwriHVh7VbWufm09iBZkXA5tWr5pPDcliOlQMaAve+OTRmcTbQ85BnYmvZ41iryQ1dbsPW1CJ1bAXitnZOhJVlpDlhkRLsu/YDBFMPIrrdd28Zd+7U5Hdafc2vFEk0gRW/3NtNyslSF7vgjh6BDKZm0enyvLpIhOlovVLSWsVgOOETnbAIQJDQkrTlIJ2tD+t7/jE1yAH1rwnpOzYNWieOtFIoY/gSjTwzRkB6eqBoN7UzrANk43WZyLSsLY7zEddcM5zSKQkjyiU/tay3fmZBFR8tymUkmWUewhcNimUGbLr/BfLeAMqKR9EHB1RrsFEhJmbK0CD6ZKQGUGjxmcSqFWAcAgKLTMYjFp2DioyZf/AvIdebkYBmkAVURTC11d9sB9ryGm3baUVUqsI1Z40ceeib5Feyegh+JBhpAl9xciZZcLzsra5obvCVk8yA8+yYgWIKJoVKbiZLQqoWSLMv7kuHZLKPl0YsmnAJHnj63oU9DCs/qOydiQBx/FaQugPD/s1mQ8bdheBt9IiYW2X0LqBBAlQOf2Qbdew40nci4lWfgqoY+e0by7zgHns3lvm+8vrOgeobdb8BGIWRKrC01okWlsyCwAuxe117BiPWlGUtuiGyP0Uzi3OuSNQaQrNNAth8dfUe6bSOfEcrTGsUFD1NKeNVmrKAcozolbesNwS46C0u1TZJrYSqO1awl3wJrIDmjuamHLhXcjuRZaB2UU59rxPwfcgY8QTkCqsgKCGhze4RCHO1VGdvcMrDU0r+UTAxsWNY5KWzv0sArsT77mqBH0c9lqeGIQeTgGwWbO1jrUUbr3PapBZZlZ4kDgOAVykbm8PGohncKed5gUWaSz2QhzhyN0pjPC5jMITcey3mOYlzDZNLmtZP32wfJB5HmlrK2sNaLU/YJYYiGdIXROI3gLk1YOGwbcHDtdKAcr27vOzjLhk4ISBEuWtrRmpDQ0kVWhIXedR6EpLlCQUq/o7AiUS3o8Mg/SZaJMf0lOVhazEVaSYzQA9CKoNFOIrq34E2LzT6NJtatn0uhrWcSFjxaWlS7OFYAG0KwaqWdFBFglCRccxIZicLaclJFYcFosJW/kEm3D5lGsApsqM2j0K8vpVMdV+e+83evHVMDBKLe/VDXZkCXlE3JwB40JO9C2t4XGnrPtXO67gkMJIIOpxVyusaDUVok2hmwIvxRPB/HCYiiAMgpTFfP/O7DmnM00CZrS9/79eyXWfl9WBU3SLsXLSy4k6MhOVbH5llwV8Fk8EiD0RJFJXgFrUPrLEkEkGLUlUXwhGzUQCnGYj+Hjk6YAGBHDt4p7GwvcGF3jCx3yHIH5xRIK7i4YFGKUS8sSLMshkoZX0gByogzZ/AKXGlxZIxjYSiNLK4WsbxmYBH7ydSD9kwc+xhqrsEZg5okMATohZJxJjqqcsat0KKWCs1WkMSQ0enZj+MxRiIjIRDMsqMt6qrXeCQLc6Y1QUHLQl01jGZEsAtGvS0L2HS8KUUgMWVA4lURS1QkVpJTwGcd/SlkXZvopSRlSxRuVUvEIbOM0ZBYhIh8VwSP8rRCrgAbF93KBXBhELQCJkIPM/MJwAEwBuG6U1D7pXhtx+hIdOP10n5GaK1sFMJY6Kr1KQtVx2ANRhy2Tcmop+LczVF4AGKOiOjUbSq5t/IswcTkbMqzJGEjEYLsPKDekhtNglYwMvbnewHeiiJLeY5RlUSQ8FbmE59Bcl3IKYWWhDinaMnDEDKg2QLsvjyHYBl6piLtl7pnMwlC88oAtYiL/agQks5D0DUhFDIvsJX8DQBEcI20OSbpb6omhJxg9xTcKemzGMlESSrALyPVzwSQU3CVRqg0lAmY74nAvbxQoDQZ4BXstEZdGigTwEGEbwCYz3KAgKrMQCpgscwwnS5RNwbL/QI6d3C1ET2lloAFy70ivm8BWztLoRw5BSKGazSUDliUOcLiUG3aJeO4OeJqmB+uamFhwIABA640BhrSgAEDBgw4DAMN6QrDeQL7TiI7zBKwsukALWnzuQ+eq7Mm9M+9iYaEpEHuWREOWBSS9WDFmtBdZ91KcBy68t11V5xve2E527KrRhHJFIzIYiEIRccjhk492irRXjpSaDhqm9vm6deld8wBh+FeHdP5gk7tpEQD35qsxTRLPoBcjHXq1xpMi5qbjWRzDobA0WQdjEKwkkE06M4i0jpY9+tOnVZ9vd5tX6DYcJpFacPRmmN6ZXtt1jfrr1sXknYIqrtm/3nRirUm5lhIqZKTNSJq9fv1PhatoSu2+br2PlBLLTpgYaDY/wkxfCs20pD611nJ59CvxqGOzOu/N5S7iDKJanISGISFhyeaWgNKQpR6r0TD3wgVwhauMwUCKBeZWBWckn0AXG0QPOHcA1MQMcpZLnTOzPfmHUYd+5K2EjLSTiVhgVtYoRcFgl8YmGkDv29BpRIrQU1iFWAAGlAXLPxUNOTmftvSjdp4+QEt/Ug1JHSROMa041CsVrI8xCpKxt8HhHYEBvRcAYrFSXWpUNzXWVdZi0aflWjzmylgZ3EfSS4BZQnZnjgsKy/hQF0h75mKDJMURlQ5QjMiZHOGrhkuhkw1M0YzJnHqTeNBEK08RyuG8kL/0ZU8KleIVQEkmvv8ggyCbhKppYbgMwWz9ICS0KfNTWdAnqEqByaCPz0GuYBw3Tb0vG4tzVCAH1moyqM+K1YJlyuo6BgeTFfPfDeANQnFKI7DKWcCINYQGHHc5mRNKMWh2S4ZwQCLa7Q4PEMsJACQ1wG6lN8caWBByxzlz4hl3xXSLqxX5yPl4rNq5Jk30zRPdM7YsNKH/DiAXKq3OD2raIGiAKhSvrvtALVQ7XxIQSwPCACnPA1pDnDo6HRx/nPXN0Jzyr1Y0MYOodZt2NaUBwGBQDbAnS+Awgul1YZIb2W4SoODBAQAE3TML5HWW6ZwcNEysb83ilQ/iNP/zIK3pHxTGaiYwTk4jbK2QhUMJJnVCQjRynCSoVMHYeEKIzgFbg6hExzjfyAbDjl0TQA4evvatt6indd+HyokoNt+mJCwIgxsqjvjwAKW0jnTIn+NW98ONElIiIMBEUAaEm0nRVPizedYf58OLGypd53eArxttbR2jItfofN0C0rWhABJUsNaYjwnriUF3SWK6+VKWG24bhEvFKv+pEg9fwGsTlrMHYWLe/ew3q16ggKp9Ghp9b42tU+qWxKu0vckOMTJsvVhUDjYpfvCV+pTvahVyeEg0YLW26VfwRWhrrc7ihoHb6InCLRCA9L27gTcozDJ+dYugLSYX+8YhwsMB4WBTWUOEzZkexiEhUc8XK1hCuE4N3MLDgQV+crVXg4yAaQZ5flC3sFaA4pRR3oGOyHKm6JBs59J37ahfR2U9Qi1lqgyo4BmL4cqHFzkW2OhgakDFIOcgt+3QBZAS4WgGTwJoFrJAssLvzst8P0oyCKukcSHwhEniXqjZQzUpQgMrFj45I5g5mlwk09Vi48Da4abAmZOCNFnzMwJmAl33hWAkdxlbQx/VcsYRCy5AsxCjhNfJWBxvUTlMUsZU30h7ZZ494nrrpycx+VAs6WE3mRk8Z0oPF2+AYrUJOH7+ywKR14Ei3wvvr8aaE4r5HsBuuT2dW+mCtk+sNg2MFUAbckFdB3QTA106dFsW9h9B19ohFwjGNU2WXnWINsPII55D0rJ4dCnHYElmlEwBFUzTByQQkrX4EVw0HUsWwBmkQSpJCBJO9XbcqwuZc6ptxTqLWojPi3PEEwV6akxZ4VQ00QYa/1WIn3YLLpEbemeUn8BRFBgK34qzXaMZlSSJGgjyVuha4KbMPSCYM+J30tQEi2LCZKvw0uSNwBQjeTtUJXkAvGR0kSOEFxUJC0NqCHwwsicZWPFXczL5Ht5HnTsw7XkpoJlhNKATAAaBdiOxgQl+RvqeQYQI1RGEhUmpVUgIAvynrZt0s0N3inkowblfg7faCjNMjcEQjhsbfkg8EgQFh7+RKkBAwYMeBjDM8GxOvLvUpPuvPOd78SznvUs3HjjjSAivOlNb/r4VH7AgAEDBnxccdwcMSRl+zjDNxrKrsk7GxSKGx2aNyoe6egy/d/rtKT+/sOoRJuiHV2EpStZCNaP3USFacu2lgX0LBrdMX1tc9BRK572h4PHrOQRwKplgNbuZ6Ojda+eK0rf9eM4aqMVt9p6aGod2zZZX7rfh2miqb3nfuX7zsMtJaj9jG0I0aLR2rGbztcmBd5w/v65+7edLAArzsyprDpYr/51iaMxIVlsON5rex5ug65g/fhWmR/7KvhoqtJh7wv3LAMr9aPuwaxYC3qVT6c+wC1av+SGi2+o66ol4qCloo/LqTVKZS4F8/kcT37yk/Gt3/qtePazn/1QqvcJi1Br+EojxKhk5Ak8t8DYCZ1Hk0QfStxDHYBKg6NWnnV0xoxayfaYmQUXHr62YmmYemCuAcvgme36bx5AC9M6f5ICUGqETJxDwzhGUHBSh+Qg2ta/CCASyhJ7hiIFVZJk6rUstJcAKC/5e1TdHUtBrAqqAfxYIiWxAUImFlPyUTMdqUZJmw/IWGTmaMfclDW53ola8xoIU7QBIGoDJFoQIA7QbgSAgXxPMh1LZmGhqrARK4OyogkPFqh25MazfTmHcqLZ94U49kqmZqEwmYqFouQYrEjOn15nAlhpoa9aoZ0KRYcRNEE5g2AI1Y6GKwjZTHfBLYK0Rb0l9NQ+JVVHak+iWLlCLCfFhXj/6MZhCSYi7ZjyQoCAekrQtVgasj2GK6hrsxyd1ZuAelueqx9Fp+MYiYm1nFOt1ccXQMgBcl09dClOz7omoQ3F56RqYRvYvRg5a8JQdbRwNJE+5mOUrUBQVbRgWbTRG1UDCRWImMvBEfwoyP4YdZEtQ+8a6XNGrF+JlocYtUs5cdaXzNJxLtIs71OKqBR6i5bCgxvJ5wAAsNF6EGJ9lgoYxTk7CL2YCGBHoBi1rJ1uAuBLI+83Adwo+D0NTBzYKbEsnhAeCZaFq1pYGDBgwIArjY+HsHDrrbfi1ltvfSjVGjBgwIABDwMMwsIVBvuLkP4O09xfqk/DWvkDStMDxx5hpbgIa8JGbLAUtHXp+UEcsChsumbUUmysUu/HQevI6nlXLBFr2ZfTd+5vCwfPt3KdVkvf0wxv0v6j9739fcgLd1Td1y0h6/VBp8FfQapTz6F73ULQfl//3Fj33j2uXeNY9Ou8Yp2gnlWh01q2zsiXep0N12wrTd02WqnM5msctCbwoWVp03Pd4JPAPevGkSCAw+XTGqUyALC3t7eyPc9z5Hm+6ZABDxHkCNwowDBophEmXrppo0B5kOyyeQBVCsgC0IgVoM2arCAa/12xILBm0FIDYw9aij8DLY3EmYeMbf38B2DV+hLAMFCp1qLHvVj1IRc/CPLU5joAiSaYGtGcsmYJbVlw1DKLr4GO/gKqgmh/43tBLvkRiLNqCjuatOVuxDCN1JWVaKDNEu21Qwa4cS+zsor5BZxoniWOf9RyOwl3aqNVoJnG03igiu9usPF8lTj/6kpCjIq1uBe2ldHmAVKeRSueqhXnjxReGgQsrpV62Lnct7cEn8d61eIbQB5tUAxW4nvQjAAVAFaq5fibUurO8XvS2kO6AULWWU+Uk2zM3nZzmm7E8pF8C0BANmNUOwQ7l+dRx7ZpJhTD0MbzR6dyX0ibu0nnZM5KflPMPxEMUJ+KFqHkpJzyOGTSlqylvSnmyWi25eGnZ5auCQBmRlAeqM4E6AsKsGLJkTlN2lU10erR9m2SfguAagmtrioV/VtiobQusCFas6Ifp+ocqP3USzjgUknG7iIApQI0JJiAI7EYeJL3Usu5ODpSK+vBCyP1ciTn3tcSKKBWoLEHmmhNaBQo63yO0Cg5ZuRlLAgEHnkQumAwJ4VBWLjCYEdgd0QjH/EADg2icoSAsHGR/2AX/ptAjJSy6kBdNhePdaCVhfBRQsKhC9S1RfgBx9f+NfuCSV9QSH++M8W231U30K4IDf16oVcP6gbK9k93n0C3PTkFH7i/niBArbN2d+2VOobVP15vx7YBetemXr2i8NWv4yYH5Tac8toCfqV9040cJdT0P9e+HxAa4gUJm5/pAaz0hSM64ZEC8CEXoQ17aW3LEYJDe7nDBMP14w8BNyc3OPugQMcIHz7uv+mmm1a2v/SlL8XLXvayE6vLgFVQrQDP4B0HfcEItUcxaM9IJCBP0C462nrIoqTv7T/X0p1qJa+TJ3BaOAUG5+J0SQGgSgl1I723McoMU8xrEAUCEBBsgGpUt/isJepRSAstBsxcwU2D0Dc8wVSE5oyDqnVcWDL8KI2rcnwSNnQl9BJqSGhQhuByhp2l/ULPCRrIz0ss/ja3QYPWMZlYFp2A7G8KloWjYYRMFlVpCq7OxvuOdB6OAk+KitRsSV3tfozU46XJVS+nTb0D2LmMk3ougoUrCNZz69jLnGhNHSVn9mipRFrgqxqoTksdzEKOc6NuLA1ZjFS0080H1RmhX7GWoHpujNZJO0U1SnQtCiIslKdUG9HIW3m2ZsnwhVCj6qks0Kud6PCM6EA+lnq4UddmiNdrtmSfVkCzFdtbyyfqrn2DBThFoKqFhka+i17lRgB0EkCE8pQiTFHoEtxxDPChqtSvhUL0/7P3b7G2bVlZOP613vsYY17Wbe9zThVQFELkTxTwD0Yk/8ALJCY8iJEXLwkPJSbEhBDUikbKBBAJlISEFCEGwoPogxJNDImJwRceNEYjgmJ+PigYBQt+VefUuex1mZcxeu+t/R9a632MOddce+19zqp9zj41W7L2npdx6XOMPnrvrX1f+5p4AFZ4zg0EXrD+vhuHeJFVUQtGbRMAXuUrXK/F/1xR7lp5K+pWnsnR0XAbV51Y7kQLBZ7k6ihIK6DejYXhNkGflTLfR1X1on5UGKNEWpekM8eD9RnQHRzcxlu79fe4K6u7ZEXnMNg4EB8uoHTfHJEfMHj1xbKX2lk42tGOdrT32xgEvgfSKN9/9rOfxdnZWf38iCoc7WhHO9qH2+6bI+6bPz4I9lI7C5Qc6BAN6Vmj/Xdtt//5e4GI9qOc+4e6dWiL/oIquqAsjwmt43nRjH0kodJiJpHmGgGXvaRaGaPU03OX6o8VWSgl7RXSLIiCSwqFUgaIDPqdJAzX6P20bZM/DmN0Sgz+rjBqEIveawIhjAq0k8VdUI9MtQJ1SY5ypV1pbKdLt1GG+rsnQceCFhTJOvGTdtp79mMby3WtyEKJdEyvq6E2ek1kvK4FFZlc+0r3mt6Td9Mv9hGO6X2ftu8u+6I8K4fgh+l29zXrnv2Bw+PGu7TnoSGdnZ3tOAtH++KZ6x3IWfLv1mmEf+uAlVeEQQBk0gTNjddxpBEES/zkbMmbJj8KQGlBndEyPHbllb0oLcjkQClp9L88p0VyEgy4wWlSKelnlAESq6kAAEKIZ3mkKrWMeMrwV1orwVmV3Lxg/U1eUYQyNlLQaDIHlUhNc6B7RxEU3+s4VCLt/WOLvtsjkVtA2qLxb6jAmSh1hPQ3SSNwvVWF3jj9/6bIvkqtNp14jB7nTuB7UgrNYEmyLcBxrFEQ1taupFH5ghyk+fjbig1nShcaJuhAnim1ibKeDw6IZ9rOguxIp9csnqEmIgMaPR8u9Nx+SybfqhSv4QJon4znJAb6U4ewFaS5oTVbQe4IVU7a6/zArf2GRYmgQ9GNMKI5ea7zrFZO1j6VTrRvxJlW4i70HgkCNzhLNif73Zrs7Qdtf5rv3lNAr0uzAoZzPW6J9EMU9QhCNo+pbKp4Qw1I6W9+SwCTVnuWCRJldC/x2td5rtKpENLke2dzYJn3nSBc6855YRQlCDDYfJ0IblB6nr9xtY+ls4xw5ZFnispBD6kVoyPB3TgMH43AyiPcONUNcIZwwNphUrJ6w/RaC1mtCQIEmtSt64mHo408NA3p3/27f4ef+ZmfwW/91m/hc5/7HH71V38V3/M93/MeW/l0e7mdhUig8AAe2UNSiaZGqJ1R38vOwrhuM20HjW8OOgwyqjRMVXGe2oYptcce1kqPARQ+dPpgwR56OAE5W4CbLBCRjMpS9r8wwMZHRFIIkLOqXpQJlfy4MEfCzsJ3Skeacvyrk9Doa25UnUHsDwCkYVBguMBwXuC9UgymJkzI2WlxFlM4IBtoyHTMXVSo2CVA4ug07ORgTNpYf74bB/ypU8ONmGNjChChqKGU6znetHpNxW6WXc/C8UQeC+JJrS8hqm5Bk/oXz9CHp+PRtE8edBSe1kf3XxcVi3frtBw80fN//VxnekAakggdVlzb2+ZoL9bYCxqjDHHHtegUoAEDGkxdqBVdGLcEd6OqLgBATAgrcwpsbCaBLlxOsy7SMeHxt2PwAgCIrO4BCcCmKGM5DMQ2PjSTRXhXFjaoTkTlZpt6jLTjghGiiyqQjlHcSW1TXfDZotX3QP9IEFakFKAytiVdRMYlKhWo1lZoATgtIMYta62IE+UdyTxDGgdpGKnVehHyFZrgIDeNtc/G3fNcx9k80zbkmZ6nuTJaTqg/W8fYAIgFbnI35jTkThe2aab/x+XI0wf0c56zqiORjbfLpAviVn+0ZEJ4JSNuAnyXdbwFwMmBNwHUZeSrBi4RhnPNC+FG+4A4ZafkRp0GbgnNjd6TovpU5wjLGSFWSpQfLEeDgHimOSt5qRfdbR1kmZXT1TCw9ar8M2g+DW+8Opul1kDUPpVO2M4loOTRv8LwK7dTM8MlvZfNjV0/yxeotGDSdk6ptSD9XvunGwNzRnWTrDWPAKiSohuVjVyvz1VeMNKSzdnWBb/OkwLwSJ8q99XF0fnV4J2DeKB92yN3gnDpa4G7Msc0V87WBepwUa/PQzplqymhfZw7dV79xtXnG4ngeqeBg7WDzwA3Ohe7QfMoHsrumyOed354P9TyXmpn4WhHO9rR3m97npyFZ7Wbmxv8r//1v+r7//N//g9++7d/G48fP8ZXfdVXvat2Hu1oRzva0V68PXTOwvuhlvdSOwtUoq/3bjgJdT6LB/duIqM7kVgZtewnX0kJTR3a5+B7sSrQFokiHNT7LxmtBZiQW99PkIUCCRqaABiSYFFwsgi481rd1BnC4PZC11yRBQJbGXbJTis2msqAhBKpJ40SWSXPklBsF6VapfbsROkVCuWWFdpus0aIAIQ2oQ0ZbZPQ+ozGZ3ji2lYWQhaHmD2G7DHEgCF5JBPGzoMDDx48UKUFOFP34Cm6ME3GntKl9hAFCVIREAQx5ENAnuED12sJ4OD1LNdSMmm5enuNpP9TGU8MZaAslQYxVXI6dN930AIa/3ZoVfvbHLJJv9YdD1cdr4nwuP3dM9uzBFue99kuu/HDIgv3wcjPGzn6zd/8TXznd35nff/JT34SAPCJT3wC//gf/+PnbuOXooW1AxYAnNE2kkZKC73PbzQy6wZ9necajSyRV4hGT92gSdAAan9zvRvpRYac+q0mJJc5iRutreAGo4cwjQnJohHe5MZoOskkuk+kCko2ZfAia6JoGtFE7qRq5pcaCTyzRrFGw8UD2aFWWnYRQB7HVrLEUWJU1LMgJZVy5LUd6VFSxJN0noDPCF0GZ4JbJvigjU8nQOi0qq4LWecGAvJNACXC8AprnYmgv1P8mPwbnVUhtiRiIW1Pmo30nWS1B1JBnVupSdiV1nI+QJiwPN9is2rx0Vev8GQ1RxMylt0AR4LtIqD1GZfrmd0vh9xmpMFDGkaeCbh3SEugfeK1lkEwhSin4lmUsVOF2RkFyCXU6w+7xkUlKi+4okZuphnZwlp5uD2LSINHc9ZXVBxCSJPq4+IAOhuQbppxHBMgLy2aHgRpoWhVaUfYaPS+oDBprpSwqZV6ErEB4jkr+mrPALcCl20NkmmHolOoc5QIPjmlS7Wweh1O9x006dlvnNb+mEt5xAAHhLWiMn7jKr2pVCgvdLKK8MBVFagiChCMruQGB4qoc4e3NaLfFNRkFAEIG4e0UEqUi9q/9H8BbSe1HB7A7psjXgbk+eV2FmwB+vSN6j9323uhIR2kdphUV1EUmmwqZbVVFl2H6B47q/6dnUfHgCab0+gqFEdhSlMqTkLJS5DiKNhDLl7hTfICF3Rh673+BZ/hncATV0dFZEzIyeyQs0PK9n/04KB0Hw4OEkh5voWWFO5wFmzhWvn+U9pRx0DHCG1G20XMOyW4zpuIRTNgESIWYUDrMjqX4OzgLA49BwzssU4t1qnBOrbYRCUVb/oGQ98gDx7cCyQ48ISWxCX3QnbbCYzOgrZVoXqpNCmlR/mGEZps19GuqTMVCMjO9czikJmQske2a5mT09LzjlQiuDh3SSdsECmcyxidBty+99V5HddAowMx7Xf7/XDaH7H3ujixk2tzS8lp//P9Yz2vHXyM9z58luMLdEJ5IBPgznqA022ex77jO74Dct9Bj/ZUE9KCVMKWOwCVJnXG7aeMunBQnnuR2rRAiDOeNml/UYqRLvxhdA1KpMozC12YNdcOyRZC3ZsO3Oq5uUh3eqMXNUAyilGe64I8XPlRDYmMO42RMqpqNAK38kYTIeSl0k4oAsQO6VwXlP5aKT9+o/+7TeGjW8AmAdJZ0a2ki8dCgWKvVJ5w45CCtdcJ/CyBBw8/10nXhxK0EZzM+7rg2fgGmR26kx5dk5DZIUaPITmgzerIOK/X4i2lLJVz54UuaIWMQhNH6o6QSogWWlWeiW7rBHJiv3sR4QNjMRsQk8fprMfFYoOzbosvW17bPJEwcMCTfo51avDqK6vaZ76wPsGT1Rynj6/x5GaBuA3ATcBwYfkjA2kBMnNwijwpAJBRkMRoVTUfodXrKx7gi2SBHl1wu0IzO4tYLHqdR0l39J4x6yK2Q4Pu8YB+28J5hkjW2psNA72dpGNVhzQqmrTqDBSq0FicDoAAzbVSwayrmXKV6HOQCGFQZ4Y7ARxVupC0Uul0NTUsqnoSd3qucGOOwXY8v14I3SEtpdLr/Hp0up05y84W+2kh9Tlzls+galrjmJ87wG3VAXMbp1SvdpyzNb9D6WIgpQeX/Ji0HB2HtFSlMA6oyo2VpvUAdt8cUb76IEtrv3C9ppwzfuRHfgRf8zVfg/l8jj/6R/8ofuInfuI4MR7taEd7Ka0oXdz3d7T77Tg/HO1oR/uw2bPODx//+Mdxfn5e/z796U+/zy0f7YUjCz/90z+NX/iFX8A/+Sf/BN/wDd+A3/zN38T3fd/34fz8HD/0Qz/0XMdykeD8OAk/Fcl53rn6rrnpAFWonLuCGJX+YVEpjLSkg+hC2e8AjaQ0piQ7V/yAaNzVmddaFHRgsNYkojzWIzCv3gNikSEKUhOFfVA0oQkZrc8Inm/Re4CRhlRoPik7DNkjBo/UeKTBg4PXiEZwkEk0T5WJrO0FYaAR9eBGIwLSCNBluFbh7nk3YNFGnHWaSHfW9DhptjjxA5ahx8xFdC7C25XJIPTcYMsNVqnDTW5xE2e4iuqpX4UZ1k3Cpm+Rggc3HtJ7bWuyQkalreW6TpLXxI9JXxVRaAQ+ZIQ2I4TD1xHArWs5Xses1zF5kPPIThRdINTaAgQHqclpNKIEYv+VDHhMUYS70YaDqlfY64/7rw+hChNEoX53CHXA3rEO2UM9r9NzT+0BIebMJot13zZHu9cecn7wG4KbAakD2ieu0n+4qBXZc+0HjYA2VyX6r9+Lo6qWU6gcRZHH9VTpRyUZtCTAlkTqqqhmY0laqIoRJapqQPHMnkPTtndGx8lzgFgqyuE2Gq1VuESURrUlFG4id6IqPqZ9L422ScdSIJ5YgTPR30CktKQ0lxq5T6Z9L0FR6CFMQquzDBGC6zJy79EuI+bdgCEGLGYDGsdog4bYH83XuNrOQARkITTI8I4xnw24fOsErs3gOUBbb9RNqfUGuBP4tYPv9drF0/FelXoNeS5IJ5P6A69t4YwWw9mBSLBsB6AFHs/WOGl6zHzEa+0NTnyPLwyn6Inx5edX6CjiD7aP9BoTY2CPZdvjnc0Ci3mPjRNwlyDskC9boCfEE1P9aVXII5c6FEH7QLnvcWlI0iS5HZGAIHDLCHIqygFAa3+Q4GK5QZ73EAGCZ3Q+Yds2iOwwaxO2QwCzQxyCjsGG8kh2VUgD0RS0gt7z3Or9TK2uD7wpIZW5jL1G1ZMpZ+WZRup5znA33ora6W8ptRNKjY5ibutG5LqgGa3eo0L3K89BUUkCgNyKKiaRPksual+lRAhFkcmowXmudKjmakQj/Faft3g2RaEUSdM+rX3b93pe8aaSBUtiFmuDUaTzQseB3I7X5yHsvjmizA8fZGntF+4s/If/8B/w5//8n8ef/bN/FgDw1V/91fiVX/kV/MZv/MaLbsrRjna0o71nE3kGGtIxMP5Mdpwfjna0o33Y7L45onz3QZbWfuHOwrd927fhl37pl/A7v/M7+Lqv+zr8t//23/Dv//2/x8/+7M8+97EoKk+wvt/58q6dnvs0t2wnQluJe5PPplFasghVieba10WL+c5S0k/rWARMC9hOUx/GwO3IR5/WTxAvo5RnSUzyI6rQTKLhbUhonEXGiRHcNNNXLbFDCg59CmjZY/AevQ8YnCAlRvYWPQqWMJRJI2aTxKyxnVLbh0ZATYZvM9o2YdkNWLYDzrstzhpFFi6aDc7CBidhi1O3VWSBIrxd0yyEXhRZuA4z3KQZrvyAmdcw1swnXPoZWp+x8i2GEJADQ+KILpT6DLdzFizvoySGN3YNm4wQGG2T0AVNwG5cRhfS06+hOHhiROcVLNi7x6o0Z1FDMGiKLBnqUCpP3+o8FT3Ye3/I7kK6JsjAXYhCRWBk9/O63d6xnkXu9V676xh3fF6Rt4fMWThKpz6YPeT8wB0QGAg3Y12SUgk2bACwVbYVwLFKrJa6K2V/P1jSqkWP/WBymFkr4MZTqdWQS/0CbwH5tDDEwZ69whMnsURKr+gHnCIFmCQqN1eu1jMAMAp52LMrLUMsD4JnVmNhxhVZqHx16/C+tzoF5VxUkpeN122IBwBkk8vk86hDjldUOW8D/Cxhcbat/fliuYEIITOh83rhWAjzNqLzCZvUoPMJV9sZvBPczBKaJmNAALcE/kjS8TbpRC5BNEnZEXJHY6KwGznxxASZsVao9oI8eCwvVCt01iScdls4Erw6W4HF4TT0eK29xsIPuExzXDRrLHyPhRvwueECXzl7BwCw5hZYAAMHZHboc8D5fIvV0OJm0wEXgswdSu2bdK66/xVtNnlVwNCkBAwXJVEYwDLDGercNBkxeQTrLLM24aTr8WQ9x+PFGl0Yr2XjM/7gnQt82fkViGZwELyTFoBz6BY6kG2vuppozHNWpMki5yU/prkhxFNBuFFEqyQ4Z2/RfNHaDgU5Rtb8Ht9rPyc2xJq1b/n1iGpxM6kn4u33W/2FNBetQL6yOh9FQtbuJdi6paEdJZ+DA9nzowhbczNOXCP6p/+HNRmqZ8ckreXRFKEVA+DdgDE/xupxNCtFiECWV0mWcD/cGlLetT20dOr7oZb3wp2FH/7hH8bV1RX+2B/7Y/DeI+eMn/zJn8T3fu/33rlP3/fo+76+L0kgpST9jh245nfeh3c5f9P0mGUML4tIwoQaooOc5STrgo6gC3eMTsNOO0sthr3G31pYlYOWzQ79nkkb6v+leMqk6IgLUpNvg9fFbWP/tz6jdRnBMcIeFQkAknNI7BAMwvUuwDtVUYreI3rRRN2gaknIBGbcUqMp9R/Iq3qQaxhNk9G1EYs24qTtcdb2OGs2OAvqLDxq1jj3G5z6DRZuwIwGzFyEh45aGQ5bbrB1LWYcMSN1fkoCdLDf1RhNaB0a9KFBjAyOpu6UCaUI2k57nSqdwKty1L6zNQsJbUjofBqvn13DqbEQHAkcjycQTxqJ8FZzwesFylKcO3MQRRMgUQZxGmlAt2zHWdjdQLscYeyUk2MI3b3QnxSkqk7C3me3lJIewlG4xxG4d1vBwyavHZ2FB7OHnB+aa4DmqEmNbIIEzhyAkuAJ6FzSXu19lkeFFPEAGTWm9B1ugPZSKQt+axSkNH5Pdl6XAbAe20VUVR1nidJ+5WyxRaBaT8D07Ak1mXRKcSoLMV5ovQcqgY2SnB1Ue54GdUg08VaqmpI4o0WZM1MKvJVj87z8SECyhwRGd9YjBE2ubZsylgpmzYDguFJTHQk6nxCzr++JgOAzzk83ADR5N3cO/aYBtRn8io2LNwFynpDOAfRuFG7IRr+aZUhUyo3vEmaLASKEWaMLgWXb1zkqEONji7dxHtY2P0SceJ07Tt0WW2nwtbPXcZ3n9Z6zvILGMV5tb/B7q1ewTg2ueIaTeY8hBKzOzUGLHsiEdJ7GAo9JKUZwAgxO6yVEBzmL8C1DGAhtrop4p4vR6Zo3ETF7fOz8Eiykc6pd05lPeHyyNhEMB+cyTpY98iwiZav10ZlSEhPkstFxO2kBtXDt4YySFsxh8D2N/dTGSL81+k0wSltWhaF0LlpYLwLSUHUui/MmLSO8EyCNKheVwoSlXgOcOp/EI82ofWLXsdP6D1y2F1XDomzUvaW2uTgY1aEvbbf2l8h8pSf1Y6Kz3+qGhZLXXNu99uNzTqIsIdcDcDZGjEPKe7aHdhbeD7W8F+4s/It/8S/wT//pP8U/+2f/DN/wDd+A3/7t38bf+Bt/A1/xFV+BT3ziEwf3+fSnP40f//Eff8EtPdrRjna0+y1bEb17tznavXacH452tKN92Oy+OeJ554f3Qy3vhTsLf/tv/2388A//MP7yX/7LAIA/8Sf+BH7/938fn/70p++cDD71qU9VzwnQyNHHP/5xjdpMc0b2rndx1nY+vueePBMKQXvowvR7i+CSIWbEVKPmNbrLBROb7m/fPwPccRtlwC5tZBJBrkmsXjTB2VtEfKL5D7JaCk4mFBhDHW79vxsZDwDcXh0GlQUVNC5j8B4paAI0Z6d1BKa0nslvKAlf3muEvgsJ8zZi2Qw4CQNOmi3OwhaPGoWcT/wWC6dw8tL1mNGAhvJOgrN3DC+FluSQD1xfB6kIw8Zn9E1ATKOE6dPa66wmRTCZ2ZLM3PmExlCZQuNyJLeuH4u/dY2JxvvgnIBF6j0CNIpCosl9BILQKG+4U99gvz9Mmy/YrQVSf9/tjW/VTCgVuKfoAdMumnAXsoDDnz0XWjC1A9/f2ufANg9LQ7o/MnTMWXg2e8j5IaygSCpB5YUDanX23AIQoDHVzBKxLK8BRQRoA4CA2RvA8EipR2GtWvq19g3rcdFotLIkKTc343lKRLMkUvpe0YVwAwxnSo2YUgULZcNFAkoirz3zfu00YdYL/JWvEs5CACxJmZJKVlPWCtUQQw86UTR065S6QYDLhPhK2q1YG11Fo5vTAWnbIG4DgkmUlgRcAIjssRrGRMx5o9H+ZTPg7e0CMXssmgFJHOZNrNLVi9kAFkLwGdu18q/kPNZK9RqlZ60vIAA5IPceNE9oFxGzVh/iLmR87PRSdyHGo3YNBmHpezwOK2QQoniwOCxcj8fhBn8wvIKPNpf4QjqtY3LPDc7CFje5wyp3mPmEk0bDyzdDh5g8unlEjN7qSDRaaXmKwlg9BIkNwoXum6OWxO7mCU3IyOwgAnxkeYPB0BcWQnAMB0HrM17fnmLZ9mAhrFODRTPgjZsTiBC2uanXuiR2Fy6yMAFzBiKB4Wp9g0IFIqsLlDGpFg6ruWEVmwulVJzKoOaZVOSJokrHlkR0AMCG4DIQF5ZAvSVgsGcho1JkuTFq0M0ocFLQNZAiAGz1NQoS0D7R14UypKIjIw2pChYYIlHQjDIcu16PGVYARZO7NSApbLWCeDzRfVwqkryocsUPZffNES/D/PDCnYX1eg3ndu+C9x7Mt7ncxe7Smt13FvbvBe3fmwP36tY+d207eV+dEMIth6F+NnEoiFDzFup3e9r3U+rSzvkOrZbu6nQFk5tsUvIVUP+X6rjQZHEKlA6tf9moRYlV39+xOQTlIbd9poVGpnx8IkF0HsEzUs61jgCz0wJk08Uj6fGc00V3UdbofMIiRMx8wmmzxdL3OPE9OhNKnlE052CkHTmRikWqc2AcXjAayphRRHQ60px4Hcw96W9rXUbnE/ocMKSAyFo/4r42lzoUwahcjdGOCv2omF4rt3PdkuixkyidS/m/budelOtZ7xOR3sOyKMeEjsTaBypL7VBfKdS2g6voPUdjuvjfeU+7dCOefLe/376jcMtB2d3m4Pvp/rfa/PT3Bx+h++qzPIcdaUgPZw85P4gH2pUtzJtxgQ4A3SUQF0YfsoVJPNFFBTeTg1hRrbLAF2+5BlvUImqULNeAdcFSzlEKQaWFLpq4taJYW6NFNbqACZtxYRJP7BkPqDkV6UwXaaUoVSnGVmomaD6CBgy4aOeb9n1xEgDoNqILSsqo+RN5xqCtq9r3EAJOI7AOoIaRBw8XMkDAdt2inSWIAN18g3kTcdXPkJnweKFBnFVs0biMVWwxCzpWb2ILIsGiGXRucYwnqznOFxtcb2Y4PVN6Uj80SMkhDx5nj6+xHRoQgK6N6IcG52drbIeAk9mALIRZSDhpe9xEdTa+bH6NKA4DB1w0G6y5xUcapaW9Fq6w5QZvpxOc+zWu8wynbqu5CgCieDSUceJ7rFKHR+0Kf7i+wEfmN2hdxqvzFT57dYGL5QZD9lg7Rl445GQL/kxwTiBMOP3Ka6xuOrSzhK5L8E6Lcs5CwpA9upDwZDvHxUx/90kY8P+uznCZPV5b3OCjy2u0LuMqdgjEYOj13aYG79ws4D2DmRBj4dJo3Yu8CaAgENa+BadOQin6h6z8/rQQcJn/M+miOog5j6jBp7wYC725rVHdzCFI1lcpaa0hv6Wd+cMPpsLVU1Wz4makHQE6b+RurH1QCvKVbaZBrUI/4hZ1feR6wBs1sCiWDae68O+emA/F43GKKmTZt3+kz2PYqtNeHBpQXUY8iD00Den9sBfuLPy5P/fn8JM/+ZP4qq/6KnzDN3wD/ut//a/42Z/9WfzVv/pXX3RTjna0ox3tPdueP3TnNke7347zw9GOdrQPm903R7wM88MLdxZ+/ud/Hj/yIz+CH/iBH8Abb7yBr/iKr8Bf+2t/DT/6oz/63MdyCXD+KWyLe5CFkiF/3zb7302TmWnv+4okVARhhKrr8faRBpRtZWeb6cn2E6pvv5Zb2+3Sn0RpKoTbv9G8XhGN/Mf6fQCDkJiRnKswqSO5legMjNHy4JRyE5wiE+Kt8Mgd3jXZ8bypBZWofOsyZj5i7iPmfkDnNKlupBk5MAhbaQAGBvLw4B01pAwHFoetNGDo+7J/4zI6CzE7CFrXoHUZA3sMjVeVInbI4u5te6Feld++j7wMFTcdrxUL2fUdz1NqVkT2YEMaDkYlKmJVUASyxHnayZGv6MF0/xr9p9tR/n1k4NB2z4Ak3KIk4dBx9/6ftmO/rXiObe5CJaabPCSyUKh192xztPvtIeeHZg3wmSICBV2AaFJlLrQLr59JA3TvoKq1ABapXE2UW6KBdROUoVTELdtyN4pu5Jl+BqfRV4i+zh2QnWm/W1JlnhtaYf2kJKGKB9p3NBSa5loTItsDnheM5okHW8Jpnstu0moG0omJOdw4axPD9Q55yarDv3FWuVoghcLkoHUfWoZvMzg7pVo2GV2TMERdNmxTgySu0orKWLce2lrrwEOwiW2lJq1ji1fmK1wOM3zFxSXeWi3hPaM1VaDz8y3evF6iXfboh6CUziYhMxmFR/8/7baY+YTWa12aL18qehBIk67PwhZZCA5SkeffH17Fqdvi7bzEa+Eal3mBE7/FVzTvAADeTKf4mu4L+F/bjyK4jE1u8P89/0P8wfYRHAmSOHz56RU2sUHjMx7P13j9+hSzE0UHhqzU1XkbcbWewTdaSRoA+hiQGXhteYNNaiBCeHW+wjbrtRzYa/IyCQb2WKdG6Ug3pzjpFAFP2WPVt2ibhG2vx8iDzisiBI5O5/feqQLTaQJfB6Bh+LXec0eE7CaUIygtKBVEKkOTom98pbYRtK4IZat14I0OZP1cGgFtndYh8RMUr1UBAJBuW9ADSiMDmxKqQhl39mwNqEICVcEs23MkJiKQxvaW5OiwMTTxWp+ltLBnjBQ54KCvxZ5vP1jtFFMgC2vdTituA/yQIhj3zBEvw/zwwp2F09NTfOYzn8FnPvOZF33qox3taEd7eHsGGtLTK0Yerdhxfjja0Y72obP75oiXYH544c7CQ1rhi96LKBz4bAdVOETrLl8diOQ/S84Cle0nKENFIiafTdtT8hZkf5ua/Lx3zP0fWEKudV/bz8nh31i466J8S0Aj2SwEdoTIgpSdcvIda+ScuEbQgQMJ0JCKPoCA1h12z6f71T+IypkSI7iMpv6fFVWwsFlJUo7icZ3naChhRZ2hCrtEw5K3wEKIEpBBO0nODeUa5gguY+4jojgk9pZH4CsqUv6A3VyNp1kSp5HHvf1KfkKSMU8hMxmiYO+ztpszPX2wKffYJFRLte9DCALs8/18goN5CPtIwR37H9p+PCZ2zn0wZ+FA7sLBX/qcCMTT8h4eNmcBx6JsH0CbPi4laTL0AHqr6nytkcjcArM3lescthM+taEBJaeAS9RTtDqvt2glwZKZO0UJymkFds41xtyFNCIQYa086dLWkvcAaIJzqdtQ2hhW4w8TD3Rf8JpATVYtdxif87xgiwaT1S5QKdZw7cGtWDSXkC4SaFCJUre2KPVJhiSNTrP3kEzIAkgmDJsGLjCIHN5OXn+foQKXTjNHPXGts9DngOC1+jOb4MSTfo4heTRdj7P5Fidtr7lxAFZDh49dXOLzV2f42lffxOdvTnEx18j9IkSsU4Oboauowk1s8ZH5DS4HPfdrs2uwEF5pV3grLtFzwP/pX8Mqdbho1mCvyPIfDI9xmeb4SEt408pEN5Tx/6w/jreGBV5pNf+iF+0MZ61Krl4NM8ybkofR4LWTG1x0+t06NdimgIXlaXzs9BKfX53i1bneuM9eXWi9Chv7L/sZVoOGtedtRGSH1mckdtjEFpdbj8ZlvHl1UlkHwbMiO6RzdpkTmllCXDVa90egNZRWHjKzOdPB6j2o3Gt4J9TnYzgbayRQIk1cJq0fVPuQ01yZcKOvw3ZMFEZP8BtDxzZjvREX7RlptI8WNJpbi/jDov8bG89Zj1vyK/JsfE6codkVabB+7nsgyfi51lkYa6Hk1pKsLfG5uRHkR2Uhp7+hvbaH1aRZXTIZ5Qets/D0OeBlmB9eamfB76sh7dsBB2Hnq6d9v0f72aEL4W5nYuooTKlI9RgHHIh6nKlDUbZ3qPUZRgrTLp3oYNZ+cRQOOSd7izTOBBIHEU16YiYkZ5AoeauboIm8RAJP6jwAutj3Rk/yE/pRcRgqLcccgfJ6qq7UEMOZWpCHjK9J4LDrlGRxWBsvoDgGbm9V6CcJzlNjuwD7nzsSdC6hQwJ7h1wdA1VPKq+jKKUJQKUQqSa2n7x2O/QiNkeAYf/bDc+s5ykFjdicheKsCZMqR9nrHUWm6QL8gHOqvIrby+3qR1Uq0QHnoCgdATvf3aIhHXIkDlCPDtGQSlN33r8HatIzOQ572x4TnD/8RhmAUY38IOBE8L2AG9Vtr0mRui5E2I6UJUAXEi5rwmNa6PcuAS4KckvwU3UV0kVHminFCUAtkkhZj1MoSaXOA/F47pLoWc4tzlRZyBZTFhgrNSOk6MkPAK1JKRwTBZdw5ZDnurjjhlT9jtWpQFFUmjHCk4D8OAG906RqQOsFeAGWDKw93GkEOVGaixPkJx0wT2jmaXQEhJAnY9vqusXjkzXevllAhDDvIlgIrc9YNAOoEWRxaH3CF1YntQjZ0hyHr7x4grN2C3cq2OaA1mV8dKYC+T0HvN0vcNGu8Uq3qnQjANjkBiwO/3P1UXxs9gS9NLhJLTqXcJVmmLmIyzQHQwNBv795BRfNph73SZzjxA+I7PD69gwzH7H0A55s1aE4a7doXQKLw3w54J1hiYFHRaOTZsDMJ3z87Am2KeDV+QrBMa6GDh8/e4I3N0t4xxiSUnyLGlLuHdbbFpj3yIWWyoTIDZxjpaQCWN10dQHC2UEGveFD34EaW40Lwc0TeNOqGqPTQVmsxpJfeeQl15ocLqpD6deEdGr1PYKguXLwW6B/rP3Ir7SoIHuA46SvkonNWPHCsEYtcsatLrzTTJ0J4okDAXsWsh6TxBb/1pfrIt7mN3YWFyu1S8q5jeKUO3vmvKkfmTPgogVEBUgzwuxt7SvxhNQpmAPtlQCOzGERxJPbtZXeix0TnI92tKMd7UvcjjkLRzva0Y52tLvsmLPwPhtl3K7gbHbIUTtEKZpuS3vf3UIT9t4fPMYkADxFJ/YRhx06UjnWHuJATiNINH3v7GRORkRBDrSl/h1wjw0fHzuoyr2RoRFs/xMB5LjWXSCrp+DcBFmw140bZUMB1GrFhVLUOqsIbXSighSU1x5jdeh9ZIAtUbloZRfbRwDKtlOrx9xDLOr3dt5pm+46v1KZxihSFI+BAyJ7DOwVYaBRBjVmj2iJa5G1+ibzGH1jHlEEjTwAYrKpEIs2TP4fOyZwMHpOUjud0N6tn0b7GbUugr6+A124h1p0J4IwRQ/2kQMc2O6e99Ofd+sYB7a7te0Be8gKznfej/1tjvZCzUdB80SQGyDPita7Jmo6GzObG6njLbdk8os2DmzHasdhY7UVBEjBkAmTTCUD8ihpNLQkRFftektmpmCRU4u+9hfaBjcoSi40VpAm05MPPWrf8T3QP7bkUYya8/FM0Yfc6RwBAHBWuTloFDZ1AExKFZmQHiX4a69zyEZ3KgnOAJR6AoA6pZ1y7yHJqhInnVxycshR9yUvuDbdVq0NQ3j9nTOk3uPsYl3H5T55zBpFWYNPcCT42Okl1klDza/O1tjmgOAYSz8gscdXLd5BzwGXcY4/sngLN7nDWdhWiuqTuKjUoMQeG/a4iR0+h3Msg8qg/uFwgcfdGn+weYQn/QxfubzE2/0CH1s8weu9ogbr1KF1CV2bcJNanDUb/JH52/iD7SN8bPEE13GGgQOWfoBzqdbN+cq5Ih5vxwWWlh1/GedwJHjcrbFOrdbacVp/Zx1bTYY2pAWA1dRhxORx3TdI0YOTIjmSHLrTHsOmgWSC7zLyVauJywtdAOVN0M+3HtQIePBapyISiLSac0UkOgENBGkN3R8AyVQFAMjkVYsmx+xN0loEvcmM2pxR1l6FAcHBaEjbkQYUVvq5y4C/MqRsUBofoKICaWnHmqzl3DAmRHOj0f7+zOb4VlECQJ8jPwjCFohMSHOguRaIJxCLyQrrZyBgOCFwq8dpVoI0J3TvCNKC4KKAPcFHAW8BDA8JLeDpc8BLMD+85M6CgPLhq3yrxgKUzrO70d7/e5/v0IH23+9/N90PB76frPP2nYjp6+pEmGNA9hpWCr0oasgkR4FE4e67fkfdCAaLwxafdUVlC0zzgmRnf5ULoVKbwY0F3ADAWW2BaIXU2Bu0OclJaJ3mHBRFo2n+QeNSXchPi6kVByByQIRHZF2c9xyQDPbtOYx5Bcb/P+QslIJoJR+is1EuWLsaZDROHYZnaQ+A2paeMjZQ3umUohSz13oN2SMmVTjKrIXpANTidIVepI7bpJMUO9S97TdWnmNZrZR7doCWs7OYZ6r8z6pqdMfr+5wCmpyjfv+U33CL4vS0fe9yFm59fpdDfLfdNW68GzvSkD6Y5hLACxi9QXShPiO0K0ZuCS4Bw3IsEEVZFyW50Xul+uwC7gg56OIit+P2hRI0f5Ox+nKnj6EfF1FuGB2GYtkoFiCgLXkORZ2lV6cBsMfZqFJ5ptu7BMzesoWWjDkPVTXGjwssMVpHDoJSjFN/IyGfaZ5CnjFcIrjBafDJxlVZZp0negd4AQ8tpNFaD0IEzDJo7cELAXqvuVLzhFwLTAgkOoRlxPykx9XlAt1caUgfe/QEkbUQ5Tq2mDURrd9WKs82BzzuVnWeCC7jolnjrbjE1y7fQBSPR2ENR4K34hLXPMPlMK/7nzQ9kgVv3tie4KIN2OaANzdLXA4zNC5jmxr8zpPX0PgMlkd1rroeOpx3W1zFGQb2OAkD/tvwlfjK+RPMzXFZhh6vtTfwxPh8f4aPzS/rvT3HBgsf8STOsQg9Zj7i7X6Bm9ji1dkaX9gs8WimtSk+d32GZTvgcqMO1nrTIa4aNMuIZApHYIJsPcQJ+usOMMpRvm4gHes9KHmHg0OOLbBIwDronBIEPjrkkwQEAhKhfccjnTBooFpQOJ4zXCT4NUGsv8YTQbC6HnXhbmsRF6EF6Nykr2VTE9po/2yvNF+ArJ+mmdVPKHVIbPhNpdaJKS/lDnAMdFeCNFOHJWwF7bVAiKpykrPxmwOBPSF1UimFLgNIUuudtNeC3FEd810s/wPeAbkjhI0piXV63rAVIL64OeJlmB9eamfhaEc72tE+EPYSRIaOdrSjHe1o75O95HPES+0s1AjorS9wN01jfzvgNgyxhyBQidoXuHkaxX9KNL9Sjyaf34lWlNcFSWBMaEd2bo+q6jGFtW4FVktys523Oq3W7ro97zUWd9M3mKBJcgTAi2p9A3CBkT0jB67esSOBZwa78p5rpGjhByzcUJGFzsUdFaOiXqSR+wYRI+VnkxtscjuJQjUYskaRYvZVWYgn7SgKTo1XKlTrtXYDoEpN7AnwQCNaodRD0LmxMvR+u3pSuDyKh6cRUYgTVCGx1kkYsscQA4bkkZOiCpxKOIa0sqagUoIO2Yg8TcPz0w3G7Srtp9LPaGe7cgiy1xVJyNhFGnj3+2dCEA6hB3ufH9rv0HHuRRDuOua+PWVwftDqnMechQ+kpY7Q2n3OrdIMSBQ5CBuNPDpLxNTnoCi9SN0HMiIKgH4nThEKQKOg2wuH9lIwnNH4zABo14Lo9dku55oKWBBbYmarx5FSjwGAtEBzbVQlq8WQjNrhN4r3cmPtz1aDYTsiC8O5Rnn9lsCt0q7cQOBW0LwVkBailKLowMus7ep1bHJXQesuOFHq0pbgVl4j1TcB3LFWkI4NJGh9BhIC3ehyQrwAnVZ+Xr/TgU4ihm0AZ4fP5keYzyLmbcT5bFPpqo+7db1vnUu4aDZYuAE9B2y4xce6JyaGkfHGcIbIijC8FZdYhAGvBc22/T83r+DL5ld4Y7PELCT8wc05WAh9Csjs8CTOkdnhYrHB5WaGd1aLOl98xfklXl+d4mOnl0jsMLDHzCd0PuF3bz6Cr1q8DUAR7c4lvNbeoKE8Ec4gnPgt5m7AW3GJV5oVLpo1nsQFtrlBFxLWSeesxmW8fnlaxwURwM8y4rqBRAdqM3ATtK4Aa7+R2YQmlqz/XRst9jxBMoE2viaoU69J7JQckAguEvovi3BrD7Eq4ABqQrMEWLVmrQpe6EUg7ZeUtCJ66Xc2DcOtx4TltCjtA0LWCslC2m8bU/Nqr1RkQPvKOO/EE1UVE6d0IZD25zTXJP2w0WeXZKRgl/lRPMENMOqRYDh1IBZ7dvVz8YYgyDgm+F5qG9KM0N4w4lLP95DR/mPOwtGOdrSjfcnbhEL21G2OdrSjHe1oX3p23xzxwZ8fPpzOwkFUYTcCKRP0gSY7SMlQtu3lwDF297371DspAXvnpvL5lGpe8hYElpewd3xCrTiqf1PIYHKuWw040ECh3QhuSaKdHHtn9xKtdlB+q3FgmQnid73wIqOaZCTrlqhQ5yI6FzEjDYE1lNFQgifRhGVyNYk4ksnKmcxdzwHr1NZkuG0O2KYGQ/I79QlKAJoIKufqRJOrQ8YsRAxej7sIsUq3ZtPgLe1syRKxrSJ0Fq3TUBK7t9JYDoNHPwlTJzFUIY2oQooeHB0kO4hFhChTzR3Yv9ZSrnWJQk7/pt8fsqflL9QwzPj5FFGoqMI0f0FwGynYRwWm3x1ozl3b7Euu3voMEzThrn2fcu4XZpP2P3Wbo71Qc0nQbhn9mUOzVi6yMy5zQQpcBiAaVQy9wEWNQALQ569EdQkmlar8Z29RTBdVgjGDauVn3+vNjkvlXFv5E7BHbQfxGIVtVoAEO4/NyN0TlTpt1oRmJRhOdZYqtR7Ytg+bUdYVPKlGux2lJAGLGHs7foZCDdlkNTPBpTEXg4MYFAFg67RyLhMowuRWtVaDy4BkArYOEsYO7jcOnAjSOKBjuIZ1O6DmuvVJ0eAnmzlOzgeUYjenzRavtTeKGLQDHjUrsDi8nZb4mu4LeDOdVjGKm9xhk1uN0m+1YMVJGPD5zRkWIeKN1QnWQ4sYPc6XG1xvOgx9g9l8wNs3C2zXLVxgNI3OU7//1mPMuwGfX52q7OlihUUY8LntGS7aNVa5w5d3l7hKM5yHDRwxzv2m1ml4FNa4yR1OfI+Fj3i9P8MmN3AkeDLMsIra1svt3OrnOGRDmksys94sAV02oEzgRusdQLQOhpSaSdEi8xZhd5dj3QRiAntR+VtnCFFQbr6/8aBEyDNGLnN4S3ADIawn8qMlNyCOUr/c6Pqj5AZYPnutujyVFRavx6pV0S3pubkRbB8TgqrVor0SxIXOf60lQKvUqfb/NNd1CSUgN5p8XHKKyjMuTtEGPwBxrtWoSx7FcEq1XeW5rLKtyeSErQL0DmIxkSF+ELtvjngJ5ofncha+4zu+A9/8zd/8clTXfIqjtoMu7TBxaOezfaWiW5/ddcxbJ9w9X9V6n343cSCkLNAEVRln51h3dKwyqU0XlwcXlmVxWj4uGv48SfabOhDl55JOLuJUaUD3FUij6hyZBIkE0Xu0nGvScbFSR8GDxwRnSmgpW0KxQ4bs1EFgkCYSc8A2N9jmUJ2FTWyxTQFD9DV5mJnGm2HKTc4zBucROet2zUhTCq7R4m+cMSsYPtThKVSk0rapRfGWCD1e25JgnY2GlGwy4OhUSSS6qm2NXJKM6Xb/IKl9Ucw5U7kMqfdimuBefmstxrZz7+94FO7oVzTpe7Xr7G37NJrRrdOMt6L+vrLfLUrf/meiz2R1GCbOzy21p6d57V9sOzoL1T5Ic4QfBP25q9feRYGPSucBxgVRbnXh0Nww+nOHpqghDag00EJTmCrQuTguNJpeKm2pv9DOGFaoFL9SmIoD1X3A6oBwY9u0qA5H7mx8yErJqIpKtmADLFm0GRNIy/bFSg0i8TKOB6KOQ6GxSGMLygbgRgd/2ngr5sY6Tg0EnmdQ7+DWlgwdRB2IVBZm4zjGjb3IBLrxyJ6BrQctkxZ1c4ImAH0OeLxY4yp2eHWmHJWLZoPP9ec4DVssfA8Wh4ZydRQAHbezAK80K3x+e46b1OEmqpd00gx4sp1jyB7X6xnI5oC3L0/AicC9x6ov2d8O4gS5iE5khxQ8rjYznC82mPmEP1yd42PLS8x9xCp1qrzkhzpH3eQZXm1UDen/9q+gcwkzF8EgXMUZLpoNojjMfMIqtlpzool448kpmGlkQGcCnjRAI/Abp3U4ko75fu31mpI5fUYNAkZnUAiqfkQAd6z3J5Pes0iQRqrjy51+J3afKCo9LZ4UB2F0fHfGfwsiNdeoxcsAo9c5fY5yOyqFlWcLZIn9HugfEZrVWNAtChlNSB0JDrq2IIbRgdSZLo6Krj1Q1x/i7XpkQupUAc0PSnMKPeok4SMqvalZSx0P0lyLH/pBjPpE1UmScTnw3u1LzVk42tGOdrSj7doxZ+FoRzva0Y52l30YchaeGWj5K3/lr+Df/tt/i5/7uZ9T3V4i/N7v/d4XsWn3W4GKnv+P7vjb3Q72d/AYtLdtieYe2HY/0l8RANz+7qDtIyH1r4SCJ9vU97JDZzlImauNwSinKRYlyho1KpVDxz+DrEt0KhMkOYhF9kv9gFKFstRB4AOypocsy1gZOYrSixJrcvM2N1inBtv6F9APATEGxD4g9R65D8i9tz/9LPa6TT8EbFOo+6+THnOTGyTWc2ktB21Dfob27v++xLvXgLNeG0nOrintXcPJtbVrjUwaFbKIZkV+5EAn2esPu/dc9raRu/vDHT91H6na6Tb7KNZT+v7Tnp37n7dne16f68/fe2uf3eQZ/z7k9kGbI+LSgQPV/lcqxfphlDBNncqB+gikhcqf5pYqTSkuSOsUWCQ0zckSLg1BMIQhN2SUiMkt95q0OZyrxGmaAf05qkhFoSYBRtXojfYRx88B1EhnmumBy3e5NToSADitRMvtSEWitNvXKduxO4vKziwCPTiIt0i0IZ7iRRNlheB6gtvqUkEaAZgQVhqxJlYKi4tAWBHCSt/7jdMk6I7hnjQa8d4EuMDwXms3ZHZoXcYiRLQuoXUJfQ64HOZYuAFvDGdYc4tzv8ZlXuCr2jdxnWfoOWDhBnxhOMWjdjXW8yHGFzbLKlO5mA1I0WO7apG3Xq+5F9BVAF02wODAvUfcNIibBiLAdqsVkzexweurU5w2Pf5wdY63+pMq/32VZmBQpdS2lNBSwld1b2FhZY233GBpSdel5sJp21eK6ulyq9dgE5A3QReTrVLCuFMp07xU2EC8Rtpdb3NG6WCkKA43Am6l3kM4AXkBBCqDa1Qm9gAv8lhPw2in3LAeu7BpRftQMole7kZ6Um60L+dO+x6HsWaC78fPkn1GohSk8n1Ya5/sngi6J6JtQHkGrEJ0IKUPZaXZidfnL2wMOWnGqcxX6qCiDULAcOrgB0HqjJ4HfXbSjFSCdTKvqEwsIS4UiWA/0ggf1D4E88MzIws/93M/h9/5nd/BN37jN+Lv//2/DwB47bXXvmgNexbjQKDwHB7Z/qaTxc+dn93x/nnyUe7qB/vnlXLcA47InU4Kymu55ZhMVZGIMKnFIE/xTPTrSkWRnY91IgFGNzOTci2zLeBskZwnDkMSrVFQVI6iBETLZ/DEGARKQbK8gEECttKg5wa9NOg5YGDVyy61CwAo/WhC9cGkbkG5pnAOYpAlkWCIvuYdeBewzaqS1HNALw0a1kI/TgTODlTaxpjkU0hAFI8M/W2lENv0twuTcnVtAsYEqi+Q7s41ntBw7h07nnZviXb6UT3w5Dz1r9AsZOxP5dLJ9DpOGrTfJ55md35f6ETFnym/efK+bFebIXv71ofznkYcMH7ISM4hJ+7QNh9y+6DNEeJ0YZFb2s0VmAHdpS4wQi+Ic1Ie9RqjAgxscZ2VDtGslSIxdWwpAWlhFKEBSI2+bkzYJ3cARBcs3IzUjOFUi7epYzK2NZ6MijHEwHCCSisqNIpCWSoKS2muCzBK2uzqfLR2fhJ1GoIu9F1PqpAzkBbsClLpKPW5KgpH0QEiyAuB3zrwgtE88eAgGigyR0m55XvjQlDdeuqdXq/BgUyaKmUHR4Ihe7zTz7FsBqzTOQDgKxaX+MrFO8hw+KruLXxuuMD/HV7Bwg34XHyETW7wSrPCTe7w+e0ZZj7iJrbYZl3K3PQdPKmK3c16jnTTgErOxLoBgkBmrPScnoA+gOfaLhYATnAjcywWPVwTcTnM8KjbYJ0apZmCMHcR/+/2Ah/trvDR5hIr7mx/7TgNZVwlLeA2dxEsDldDBxbCamix6RvE3rw8u2jkAFpTVSNKC4HbOl1o29BRipulGRCudbtSxA8QhJXmkiA6iM+geQbWXu9vIqDlcSwnaH0N6GvuBH6t51P+PtBeTpyE2V4eDI2UOQzav7IVHcydUeaKEpk52tkciWalC/TyjLRX+puGU20bh3H9ERe6fXutjnqp95Dmtn87Otl5Nqobpc6CBFELtrFXR10DBbqvlLzAZHlHUc8pgeC3goes23nvHPESzA/P7Cycn5+jbVssFgt82Zd92RezTUc72tGO9tLYrSTwO7b5sNtxjjja0Y52tNt23xzxMswPL3XOAjeAyd4/u+05cAeTne9CF+44xp2f7ez09H2qUM0h6obHTkRrB0kALAEW2FErKhWXJ3QUS3+FlAh2palYOLuGqlGjD5Pgx27Tp8Eoy5wTITDrXxZFFJI4DDlg8AGb3NSE4QI/ZrhazyCLRu630mCdO6xzi7XRhAarW5CyJg4DALNDzk6jRqJRfNpDFsQC7ZIJ2Tk4J3X/5KwWgleaU3CqflQQBSZCQ762LcOhNymFrQSsc2ttCxhyqL83i6vXoapE3VPHom5yCLnaoxXt1+gAWf0LUcUUcSXmPrkATiZt0Q4wRTCYLIo5RSRkRJJ2oobP2Kd3f9zdn1Xg4g6U4c7k6ruO+wzG73K/wwej3Zold21ztBdqYSuQTmkU4kypZUaA00hiWAtyo1HRsNJovJApJEEjnS7q+IsZ1RoGxBqpJIyR/TQbo6EmzINmPSIA4gBprWrsoApG0yRRYlM5Ktr12aKg7ahEU6PK2xGRcEkjtzKhZwAWmY6qrR/PxpUKdwJ/43ROOU3AxgMzhrvxI1LdMWhw9mBSTYwN1w7JqDG+p4pM5hbwAymSAdTE3HTKcBuHfJpBQaPaedXAeUYvhIUfsIkNztstzlrlizTEeBLn8KRCGK82N7jMc0TxWOcWjWP0HHCTOzxq11jlFsExnD3QLIRNr1H8nDwoiFJsHbROAasikCabiyYFl7ksEagByDHW6w7nr24wpIDUKsX0rN0iC6HzWln6PKzxu5uP4mPdEwDAmltcpjk+1r2DL2uv8N+uvhK9hd9bn5HYYd5EDNGjO9ni5mZWVaJocJCW4QYP2to8Rpqo66LeTz8Q0olShtKZ3hQ2FSoSIJ0wpGVgxqCVh4BB3uhJpGpKJfkZospWAECRNMl5xpAwSX4now15jf7H5djHGagVkpsVwIaucTMmI2erC+IS6nNGWft9tnVbWI8Rfz8Y1c4Q9+1jpTBxOyJzcTk+M2V/boHsDF3oLOE5KJ0oLrWfii/Pz7g+yB1VtEa8HqOgKrkl5P4Bx+z75oiXYH54qZ2Fox3taEd7361Quu7b5mhHO9rRjvalZ/fNES/B/PBczkLbtsj5QZlc78k43IMs3OGsydO2uQtVOBjxfYZGHjzp7X2nyaLl9cGcBQ+rrgnVUcaINFRUwfavqEI91wRJKNx2TM7roFx6pzKclcs+jdQbp3e8HrfxNRFCZkLKFrl3HqvU1oh9hkN0GnHZSoCfXJwoHltuavRolboqmRrZIzOB2ZAF4wHKlI9/x7UX25Zl3D+z1knY5oBAvCODGsWjt0rOxbSugj4ya25rRelVaneQjzxFFIrZfSiSqOTGiP2t60vjfbyVhzI51k4Cs/1QAtVcaHJiaIPCRKWeSJFdZaJbaMJ+jYUi3XtvRP/dPgsTNOFp7w/te+cpn2Hg5Qes4Hx0Fkb7IM0R2wtCaFGrIvcXtFOjIM0JYOVDD6caYcwtRvlRi5y7Ig9q8qaULFpqkfRcoqHQ6GlJ6MwNLHHaEovDKHEqTqvVltwCypaYbP1Eq9FaJNaP462z4xXuOCVrc3leCzJhcpilveIsgdYJslfZUwAahb7xkLMEWAVnEkBa1unBEWRwcAyTfbYxxNpEbNdtJhPZVkI6ZYRLj7xk+JUHzwhoGX4RwdnBuayosGi9HAxKvmdxCC6jdQlRPF6PZ5i5iMs0x8IPeKtf4kpm6FzCigOe9HNcDjPkMicw4WTW43ozQ46KOlfBDoEiCU7Apxl044GBIOfacCIbL9khtAnvrBYQAVZ9i1dONJG6cwmvb0+trYTOJbxt2by/v36M/9/F/8Yf9o/wheEETmP7WKcGm9igzwE32w4ihM221bbZHI55hnun0ftsNQIghDzTeTqsrRJ3qazMit64WrdHk52p198sjdEHGk1gxzwjW65JIRH41Zi0zq0iURA9lh+AuBSQIUvJkueJAb/WPm+53IoG6CWu+QwQkwu2egthbWhEB2QZk/CztWU4137arBQ9EMtvKHlDHACea/Xygq4BY9Xn3OlzQTxWl85nY9I223OcF2NO0XAyQSkYtVo1W94RlZyMh7AvNWfhq7/6q/Gf/tN/wu/93u/h5OQEjx8/hitizu+D5RZA+wwbHlpVTD67lVtyl6Nw337vxfYchXr8HRUXGd/70Qm45Sg4ue0oTNpKTjT5dqLbD1tA1oGIxBaLuz+y7FOKspX2VEqTUWGYHSI79DnsLcIdeg7YOPXyGsdwNtOyJRKXAmy7CkgBQxodBj3X7kJbF+Ay3hgSUFlsY1z4lv0je/gk8DShHtn5O6dQsyfZaV+0SWla+6EUiutzQGQHZjehZ2k7xNHYvmIOt+FHkomzKHUAq9Sy+lv37q2U32kOg91jLfQzOgzlHDqyizkIVJ0E4d2F+qE6C+/V7qrTcMtB2DvnvfUdnqON+SEH5y+Ss/AP/+E/xM/8zM/g85//PL7pm74JP//zP49v/dZvfTctfGH2QZojxOuigWfAcKaOQv/IEoInNQmGMwAEJHMUStKoS1q/rCyWmpvRMZBm3L8UoNIky3ERBRi1qSQdW+JmoW8MF3rs6b6hJEfP9TjxVBVhcjsumojVmZCgiyWXAYpAPBGlBwHIXZkrNFnZbTzgBdKwJR0LYCpI8KIL12j36SRpQmwQ/R+6oEydVAqWeEFaMiirWhK3miAL6KI1XHmki6yUpwAdS5pcg1ghZGQmtI0Gaa6jel7r1ODxTCt2/eH2Aqdhi00+11o3JIjsMfcDPr89w01qdcHuE9a2+gye8fblCfLWo1lGRASdGIL9zkTguTpIICj9piy4G4FrMkCCnFSgwnvGvBuwGRrcpA6/f/0Ij2aa8FzmtaLyx+Lwm5dfjW1uwCCcNRt8fnOGIXushhbb2CAzYd5FPNlYlNOuubvxqli0zHBrj9Qx/MahuVHlrXQyGUAEmkCeqBbDq0nBZtTmcW4RANcBtExAAyCSBhxNHKaoY2HQ9+mEIWsHaQUcLaBUnOUGkBProxifkxJoqtQjp/+nk7Ef55kt9ueT56PRzwvFLy1s2WIJ0uLVechG98tWyDBN5r7+Qv8vTn3u1GFPC+2rYaPtyzN1AgajCbphFBXgZnTEww2wfQTkyXP8nu1D4Cw81yj+t/7W34L3Hl//9V+P1157Df/3//7fL1a7jna0ox3tpTB1tu7/ex775//8n+OTn/wkfuzHfgz/5b/8F3zTN30Tvuu7vgtvvPHGF+lXPIwd54ijHe1oR9u1h54f3g97LmTh677u6/Af/+N//GK15bmNO4C6258/NeJ/F4pwaN8Dx7kThXi3dgip2KEiSaWI3KKnlEizQ40S12TXQ6jCJAJdKCqARbsrhGiIw4SCstteO25JhrOS8pigCyqfSkjZoUeAWP2BgT1a16J1GcGyCKf0n1LfILG3xGiPgT36FGrUPmdXaUTQ5ipSYpSBwrDaaSsJqKAtwEhDyoLoHCg12kZxWiHat6rb7TIcZKd9pSJ1Ym3bwF5RjxwwJKvaPCnAQoYqaNXTAuVDZdsEO3Klu21GbXu9r25vmzvubUUXCqJhlDMpoSe2jQ3ZEJGRemQJ4jS59/dG9J/HnoYWHNjmXvrTU9rztGTyh2QhfTGQhZ/92Z/F93//9+P7vu/7AAC/+Iu/iH/9r/81/tE/+kf44R/+4XfVzBdhH6Q5IrcA5uNYyqLRyXgKpRINFvm3BGQ3ADJXmgVgVB8xdMKqLruogeo0H5GFkrS5PxewRdSbGyCe6XaFApW7UXqyvKc8UpvEaXQ0zwW5U1RERM/re223GwCeM/ylQ1oIwpqQloYWC5CD0lSk6DEzLJHWtvH6GeaGNsxHOo7bBLBoUjItMjgSYNWDXXRabXrtkJesDI6ekE2CVIKAZ4DbOlAi5LOk0trsQC7DBaU4ORJ4EtwMHTqvfJAhB3z26gL/n0dfwNv9Aok9ngwznDU9/uDmHGfdFixUx+QvrE7Q+lyj+63PaLuIXoC4bhDmEUkCJDq4VdBxuLMk4K0DXySQ1ZCgLoOTvm4XEUSCeReRskPrMz57dYFFozctscOTYa4Uo6QowSuzNbZZJb6v+hneDnNE9rjpO/RDqPPjzbrT8xCATq85JxplrBNBZoJ8whCvfNVCE/Ibrb8gBEWMIo3X3Coz02D3PDqVS2XdFmyUrKg1Mvi88PMc4EUlZLMmxfOcLWlewCeC9onVIGkEPms/ozR2eJcA12ufjaf6frhApcmVZ6PUbKj7Re33w5lJqC70eajJ/XmC4Dndt7nW7fTDCU0pWyJ0HqV8p1XWiRVZnKIYYa3ogu/H5zyd6PYPKoLxIUAWXuoE59wCOOAs7Ngdi/mDDsVdFKNbDsLhO/vctKQ7HI/dYldy24mo6kf2ec1TkDt/7+Hz26ThdMEok4X2uFjcX91hPBd04lSnZTw3W76CWH5AZM1b2KYG3mnxnDJwBre7bGPLKyiL95IDENlqKjDVFpVJsCyipRaVGek62kYx2o4qAhUqUGbCEIPWg8gO29Qg+Fzb50h2KFSAThLl3Elc3be0L00K041tEJAv186OJ6W4zoG+RJO+VLSgJ9f8mc3OLY5AYyGG6oBUmpJgN3+i3M476EDPO7Dd2ez9B+YuJ+HQJbrzmM/WpgelIT2HXV1d7bzvug5dtzuIDcOA3/qt38KnPvWp+plzDn/mz/yZD8xC/KUwW4QL6YI9LVFVvhBQ1VkKHaGozhXLrdGC7LM8A+KpIGxo5OcTMDwSWywL3EC1SJV4XZj0r0AX5WXRksbjT/MSalAIxj9nMv175a6LV7pPiXrkGUADIZ7KZB87N9kiqlE5MzYlIPjJgrJjHREG/bw+O6ugNJeWQZcB0gooUh33xVlthoVosKFVGtNO4MILeB7BZzpG+7OEvAngqPNC3AaELuHmeoZmlhC8XtBlN8A7wf/zxpfjo6fX+P2rRyASfO7qDE3I2KRG6Tw2R9xsOgSf0QTdPyaPYQhouoS+90irFn4Rke0WgHQxjkYgJ3YTjcpTVPWKdU0ac+9iQBMyshCebOc4m23xu2++ipPZgFmjq8/PXl0gOIZ3jMZnvH51WnMp0hAgrPNGM0s1uCODctRokZU+fB3AFxHoPZABtgJq0jLYOfCstF8dvEIhopMI90YHPsngueUpAKbwpIM5JQLmSk/KHYM2tk07Botc0vvIncCv9Ph+SxgulBZFWWlRbpgoMTEBrItvP2gAsb/QY3Fjx7JnptDrChWv1I4iAfrHMtYZClSLlKalPr8lT2a4GB2IPFMnivLoQJTChuVZ57YoJVnfLOsEP44J5btSC+VWEO8Dai+SqvqSXJKjHe1oR/tgWvXTn/Zn23784x/H+fl5/fv0pz9963hvvvkmcs746Ec/uvP5Rz/6UXz+85//4v+gox3taEc72oPZvXPEuzjmi6aqvi/Iwh/+4R/i7/ydv4Nf+7Vfw3q9xtd+7dfil3/5l/Et3/Itz3Uc7gTonvFKPw/CcGj7g0jE3eHJd5X8fJCStEc5mUaYd5CIvbZMYYJJUHnnXBO6TtXsvy/iOt22tsEi9yjRfYcsGtHO7EBJ0JPCsAV+LsgCHbiGJalaKsqAmjQsMlJ8KoBgaEuJkt/6nWUb24fziA5kFlBS5OPdtm18rW1j1ghVQTo0oRyaJFbdc2vrHR2lfnqoj013ORT9P6DEJKB6j+q2DjtUs+lrml7KdxGFnzb71u5yoLM9I3rxnhCFyTb81GIRz2nPUWfhs5/9LM7OzurH+6jC0R5ufsgdVDefNYJYzWlkM89Fo4yk6kG50ah7oUmkJcMPzpIjNdLve6oRzjwXFKqoRmQ1KptOTL/eqvECqPQSpYrY65mAIiBWo4Ht/IBGQuOZAELIC67UUwkCDLovoJFnNxDYA35DY6RZAD5LoOugaCaTRYOhUfVO4Daqu495VpSxiFYM0Ah07yDnqpJETOCTrDQmZ0iDVQjGIitlo0RsZ1mrCCen2zWCvA3A4PTcyYE81zE5bgLmF0rvefvyBOT0u9/vH4OcIHiuNWuGqHRPAPCOkXqP+dmA66sxa5aTR94G+FmGbzKGm1bnh0brDviTDM4O3GvSNzVl7qKqMsSZsO0bpOjhPCMExtWTBUKXcLLs8cblKWL0YHbYBKUhXV/O0S0HcHZIg0fTpdpuYSj1KDsMycE1GZy81p8A9Fo7RRiEtSKSG5zeHwJoOyaog5wiP9ME3Ldb8IK1KvcyK6LgBdR7pZ+JIkAkmtxMhfZk/RTzDIkODCusk4E844oOKLWMtQ6I1/tfxuK0TPA3AW7Q5yx3gnCjyfN5pmgbdwJuFKXgMKJQaakTjaIDVOlUbkMQQ+LEC/rHRsXqVYyD7XaTAJKBeMaaYE+CPLPaDC3g14rGlWPXZwAjeueiIoZaE4LAbLSmhwylfxHqLLxoquoLdxbeeecdfPu3fzu+8zu/E7/2a7+G1157Db/7u7+LR48eveimHO1oRzvae7eJk/XUbQCcnZ3tOAuH7NVXX4X3Hq+//vrO56+//vqHvjLycX442tGO9qGz++aI54xdvR9U1RfuLPz0T/80Pv7xj+OXf/mX62df8zVf866Oxa0hC3fZPc7aM0X/n8YTf9r+B5GI5zj+gW2fqb2Fdw5gFwLYe7t/3kn+w87B7mkT7YWQpUbU6XAS6T2/4VY0n6bfHdpBbqMdTzEpsqZA1X6Tp/zkW/USbh3w2c5Lltdx+3gH0JAdiOnAefYQiVtB8jvaNM19mW64e8nl8DFvHeTp53tq4P5pXz5DJ783deMZ7gk/YPZagZLv2+ZZrW1b/Kk/9afw67/+6/ie7/keAAAz49d//dfxgz/4g+++oS+BPeT8EM8ZIYzogTQCDoL2iUd6lODWHtIo51n17AFgzBETS2TOc9boKwmGc4a/KSFZ1Dol8czQBEMQAIuEml4+z1jzBIKMCHEGyBlSCcBvqaIS3Fh+gcljuq2zGg66TclNKCIJLhHyRyJwYzqtmUA3QQUoxDjvonr7WHsgCPKJcudJaKzYDMD1TqOqrSa8AgBfRI1ul7yFxho900i0WP0CAHA3AXKSQKJcdjJpVn8SwasGaAWyCRj6scLy5Zsn9ZpKDqCGgaSR4r7kmVCByHUfyaoic3nTwJ8rMpGfdHBnA3irS5vhrRkwy/BthmQCJ4+01usSlhG5DyNC7QScAOcZadPo78kEjg1Sw6DASNuAJ5sG5BmSHPI2YFOqMDeM/rrTqH5yiALwNoACw88TkADXWe6Gc3ptyzU7jcgbzX6nrJH+7EUlUG8CsEzA4PRaQvtjSVoGoPkXGwd4QKLT69dbMR+vKJJkgUS9Zi4DeWF9NhOw8ZoM7wXw2jfhNWovHQNBnx0hKFrkpfaNcBkUfZvbhWwZ6RFbn1XxEbZ+n84UHWBDc8KNQzrlKuPqN1p7I53nuj+x7k95zKfgkqQfDelrGfaI6vYjNA9pZKzM3Cm6AOgzk04YzEC4cshzlQN2UdvHDyiDcd8cUb57lpw24OlU1f/xP/7He27vIXvhzsK/+lf/Ct/1Xd+Fv/AX/gL+7b/9t/jYxz6GH/iBH8D3f//337lP3/fo+xFzKxdUWlFlh2eZid8NLegOu3c985QFL3DHove+c95DN3kW6a1dahON7Sick+kikmzhXmk8u79pZ9FrTkJdxNr/wvo/8fRzYH+xu9vGyWRalaBkTKSeUK7IPi/Jv3TAaZDaNqMMTZSKaptY21qUgMB0bzvvVS2iSVsn1/IuilO9nsXZE6Be/HrvCwVqt23P0v13E/YnO9hPffY+Oe57r5Nyz4NyuN33/5h3uduug/WQGc73RY3wDN/v2Sc/+Ul84hOfwLd8y7fgW7/1W/GZz3wGq9WqQs4fVnvI+YEA5JNsizLAbRzgBOmE4VYe3OpiIJcFEglkCfiVLrhllhHnqnsPQBOiIyE/ToAle5Y6JTLLqha0yJqcCj1eKXxIA1nipqjOfTsqlpWFX2pIaSaAqhMF0cX94JBPNSuaG4YMXvfLVAXn+SyBroImMgMA2wKpdzr+RqdUpMsG+TTBrTycORrSMfzKIVlxslpDZ+2BU6u5sA5Kg/FGi3Gsz1MkoAGozRBTEpLzWMdQWiTIdQMKojScWVaFOHG1WBoIwFCqyQlcJgBeC5B56HGyXme2wnLToqQAkN+04hiLjLxqlI6ysURtJqVBkdVRCBmhzWAmtMsBcVuybXUcFCFdcA8EnGS9FwLgOgCd/m5JqqzkItVrTutG22wLYfQtwkDIC4I8aeCTLtAJAAYHt3VKHQKQk85RaBmuS+Dk4OZ2z1ubU+YZMiglDC3r/SlDWu/GRGXSRGl1EqXW1XCRkIOpQa3d6HBmdRBr7QYvmvTdMTCUoiCqhoSW1YntnR4HQHYOaBho1YEihjpZnd4rDlLvMw36zJSk8nShzw0vMyg6JJ/VaWkY7ETb5ATuUqlelEif6TIXlgKDiWq/kFJgLRHiq6rE5XpCWmal5xUVJ7s+4cpj+EjS39QKsjNa1EPKmd43R9h3H//4x3c+/rEf+zH8vb/39x6uHe/BXriz8L//9//GL/zCL+CTn/wk/u7f/bv4z//5P+OHfuiH0LYtPvGJTxzc59Of/jR+/Md//AW39GhHO9rR7rda9fqebZ7H/tJf+kv4whe+gB/90R/F5z//eXzzN38z/s2/+Te3IkkfNjvOD0c72tE+bHbfHFG+e9actveDqvrCnQVmxrd8y7fgp37qpwAAf/JP/kn89//+3/GLv/iLd04Gn/rUp/DJT36yvr+6ulIPrFVv9rklJd+jPdXf3P9y5/3TEYfbm1B9TyVaX7aRMcFoJ6I/Pcb0WBbA0Wg3jZHw8p2zHaZIwh66cLCNFq1XUeYCDUO9+clrlQgcKwXf1cYiG1oSm8QSqmrV6iBj5MuLoQ4Febh1AWvScUUUrI0AamSOMsGVduZJO6dIyLSN5da4STvdXjvtNVkdCiHsVl2eHqtcbwEs3riDNExRGgC3kZpD13Hv/+l9FBS8dkRldveR28fauaj7X9Gt7+qbF/toPt2mSEd+wEoLhlw987mf0X7wB3/wQ0872reHnB+4FTghpcpsNTpPg0NeZpBRXEoFXLLILrUZuVS2j0rjkJMEsddKkyFQEEURALC9B5x+1076ViNgBqhlyEqjvTBqBQ0EOU+QtbeE1UmScaFd+PLMk0ZjK1LrIEHpIQgCWAXgSiNtBO5Kp3cJlpDKltwaHdygev1uq4NYPrHXxcpzu9EEWWkZtPXaPoFe08EpEsJAmDNSQRZ6D2oZbpbA26D7lsTm6IBBUe2SkMpWORvQpN6wQp0HYLUtOCglLNzooEVaaFmTVQm1voSsPByb+Mk8wwdNZgYTXGA4z4hXHXzDSNvm9rg5OE0StrmIroJeu+QBAVzvtbYBwapvC9obvc6lZoB4shoFWm8AzsFvdB8Jk37UyFgG2RvyFAnMXpOxnYCjUypSGfsbAbkMuWw1kl/m60xa18J+e+lf2Uttq7ZR6cE0EHw0xKwxKVyLtIvJ62JwkIJUDYY4JJPKXSriAgAyz/r89H6s3zTP9TnBoHUcaJ4gqdUK4WXxYveGvABRrwt32kfB+nux8eC5JtenR4q0jc8Xgxdxd053hryI02ejYbCg0gNrraMgoMDIM91emIB5AlYBPH9YGtK9c4R99yw5bcD7Q1V94c7Cl3/5l+Prv/7rdz7743/8j+Nf/st/eec+d/G2EFhLyD+gHeSoP8+CZ2932qN8HPx8/7xSPpvsuOcY0GTxCN77vOw1OcV+3QhxGJV5iiqOA2oBL9bFbVm87rd1h8rDNoFmAqXxf5dQNZApjQVWFFKe/p7x2owLcBt0A8B+VGQovGMA6jgE2XMaRirSDu2oODKJ6qDhEtlEoIoIzto5beNOO2mvnV7/2Nop3riOgWq7EHQb8pNFOibXer8PTJ2v8prtvvJ4vytl6p57XahRKvVk25IVips4h9VJoEnffOb+Koc/L9ftWe3Ao3dIkeq9WG1feMiJAPf/zg+S0/QBtgedHxhGm2BgaTTFjQd1WZ/PjQcF1Z2HUSbApAsV2L6902d1niCrRscZsfET0AVwo9QczBi09sovn9rgdNFNUMe/YV1ELZIurK3egbQ8OguWCwCCth9QaozRQyTROH6XvjXLmleA3YWR61U9iWeM8MQrNaQT+LXTWhADgbZG+YGqKuVOlINenBtzMHgmwDIrDanJQPRAJuTe17a7eQIPXh2FMk9tCX6r6kjcCdp3HNJS0L1FpvJk597qHzc2FktZgAPdO1q8K6xRa2LwKRBWgJRBn3RcpCTIGWAJkFmGm2Vw9OCVUqLiuhmvb7l+JX9g48ENgzLBbxycFc/zPdCsgDQbx9v56+N1KyY2T7CH5Xbo/MItEFYjtSovpe5LkXRB7QAKrEpNTKCG4WcJ6bpVp4EEeKeFLLP+Tls4Ux7nA7fVhTacfu7XDi4D8VSVs/ygc0Ftd9Z5qfQZ3zuki6z5AOb4qkqTBr8oOqX9zHPd351EcPKaE2H5CbUvNwz0HnLZQmZZL3mpL9Fmpfc50YU6CFh7fUYaVmdinoGtBz3uISulI8ks13slAML5gHTToFC5kAhYJKUEtjoXh4seadtUx0LEfnurv4lOI3gTdG51Dzxg3zdHvIvTvWiq6gt3Fr79278d//N//s+dz37nd34Hf+SP/JEX3ZSjHe1oR3vP9tAJzl/Kdpwfjna0o33Y7FkTnJ/HXjRV9YU7C3/zb/5NfNu3fRt+6qd+Cn/xL/5F/MZv/AZ+6Zd+Cb/0S7/03MfygeHCu5+FDxbP3fvwUMT/XrsLXXgKClVoKHqa3ahxpaJM0QOrmgiMUeZSSfEQfYbKPwVVIIKU2gjONPidQY1G6xELuwiRJaXtogmARr5pErHXKD3VKor1Lxm6YH9kajQ7lCRrG3uNvnCwv6boJqtGM5kSQkUZCsJQEt+mB2RrY2mboQmARtRc0gqubhjb6QxdcFkOtq9cs9I+mbazocn/oom0pY1+Um1aqFZzrtdWdtsMu7aw+0237vft+6zHQ4XxyRV0AZDSt51RnaxyN+mXu/3zDoRhPMcUyhh/063Pn9Lnp+c6eNw7z/0Mx7zT7PjDAyILz5Cz8JCI9ofZHnJ+wDIBPqiCTEFKz6I9GFDVnOzG0qSlfGyJmDJAp1qd1wVGblURB+sAt4yQddB9CZBoD1zD48Tf+5rICYuEYqVKPzI4IFj5Wp/RLiKGdVsVZvSYDuEkIken2wO1DgBlBzSqjU9bX3+D6wt8KFVxRilWqOoybiD4pGNsWCmFhxtVWgKUWiON/YZMCJcePGdVdMpFKMKNEWCgRmsBgKMHtr4mlNd2A/A9Iax03J29oWOaS+MQ1qzsdyStWO2iIrXNmpFbQnep36eZVspefF7raXjLb+dGK1vrOOr0d1wFsCXkUqJy+5Vm4xVhAYz+MigS7rNDWFGtNkwZaC/1OW+joh8FlQi9tp6DvnepzF2EtAS8H4+hCLkhJ5EQrIoyW/Q7+wywg1t54NEAiV5RG0OvZHDKIjb1qoIGiIPSfqMi5gVR7q4dOOjc1pjij99otfGS4F/mRgmqVASCUowMGaDBKU3Jic6lQdWtylxGTsCD1oxwc92Ge6/Us6gVpCUw3ImieERS+4UYiuc8I2+DohbLpGsKLzpniT2r163S3ma5Iiq4GIDowclpxfHOEu1tZeuWURPrW0a8aUcUEAX5sLnPajQ1Zz1y9HCBQe20kMV7tPvmiHc5P7xIqupDlp14JvvTf/pP41d/9VfxK7/yK/jGb/xG/MRP/AQ+85nP4Hu/93tfdFOOdrSjHe29mzzj39HuteP8cLSjHe1DZx+C+eF9qeD83d/93fju7/7u93wc5zVh6XlsChwQDnGsaWfbGumcREnv1d4vx78jX+HZ2kkVUdiR9izowYSjWBJyC5e9RJz3g7SFS6mJY4W3btzFEoHO0KQ6p3kARWJVSCboBmqSEE1yFRRFsP8tWu/ttR8ELgI+iuUvjMhCQRk0sZmM+w9ki9LnlsAtkK0qYzZkgBtFGaSRWlkS0yRiQY3Ou6yRHDdo+wDAlzYOt9uoyWoCYqnXURxVZKHkKdxqY0VBVKKtoAySNXJUojXin3Jt2WTb8uR+MtUkwPq+bH/XfXawXA5rd+Gost7zsr84QxcMlRHQ8+UKlPQH26c+H/f0+bvzeaYb7bZjv13vGmU45ix8YO2h5gdkBxcYnDzaxYDhujNZSq8VhB3gfQZHBxcEeVDevQuWuJwcJJvIvyUaIznQSYQkrbjrlxF5PUEvaMLH7jQxlYJABkMJ1gFYB/izYUxeBTBstHCBWNlY12WQzW2+zciix/VdQr5uNCFz8CCGRsyjA7a75PkSMS8UCL8mhI1Wq3WR4HodS5pLQjqROi6GFSEtAGrHucVtHGgQ5BPWpN9E4AUb8mlobZGznCsvnWdcc9gKiiuk1yisJgg4gGB5Ad21IghhrY2mLGhWjDR38IOOyeKA9grozzXnImyANJ8MBDYXhjWhf6zosF870LXW16BEKvnqUFFmAPDXTnPspOyv7e2e6PzAweaKKOguGXHp0F7nOkSFdcZwGuCSIM0dKDO2mqyGeAqEK6C/APyV5l74rc4PepMIkoGQgiLSjej9zQTAgSyBnQyhdr0DN1oTAEBFBshEOnT+op0cQJDmoxAD7SWBiySwbZPniq5IK3BrBz7ZHSPJCyRZph3JWNPDpEzZEtul93DzZFXBMa5jKkOCxhsvACUHzg4UWJdZorkaAGouZE4ONMsIXdZ6FIb+SXYV8YDJzWYRzJY9tlcdQpshDSNugyXnUw2RK7Kg13l22qNfN8jRQzIhs1eE7KHsvjniJZgf3hdn4cHMElqf2WR3cbFPmxDtqXWxQ5gkwkz69w4l52mnmx5/QmWZtmd/e0j5n+pitzoKeXQUaLJ4HD9D/auLyOk5ynhOgNCYmCWmJFSTirNdKCcVZq/XryzACyUmky7+40jp8b0OVr4HfC/wQ/mf4QaBSwKX7AAs1VkAkS7IA4GDA7eE3DrkDkgd4DpdkLvWdjXHQYJRfjxVyk1tLxulKGo7i2MATJyEXhD6/TYyKFnbzMMUR6q0AGj7Au20MbfaxpwAjgqPl+uj8DONSk4Ok7oR9vNtkprSykqy9e41x66jcNc9dhMHp+hRAzXBTmzw1K49dRigiYl2nP1E7Hv78DPYIUdhp+7HZJt9h+BZqEr32gMmsB1zFj6Y1pz0gAtol4MuXGxh7k3HPrQJ/U0L3zLIMcirGAKbqo8LjFwCNCRwXVJaHwPNckCKmsRLLasTQVB1tSk1VqDJmUWcYKFa+Rxt4T940GWD5svWGN6ag4yuxFYATVhpT5hluJk5CpkgNOrZu95oIgyQ5VYT63PvewJ7gAZT5hFdMJbXZbxsrqg+R2mh46bfUh1D01IX3eHKVJcYpuQz6tGXAJJ7U+scCBklhvQYrtdztZc6hvlB29CsBd6oPO1VUpWj1qH7wgbDRQc/MJqrASDC8EgH/zI2iyOkhYOLun+aE4YzoLnR3zZ/Qx0fAMgzQfuFgLQUXagHgUtUC3x5S/IOa6izsBopqaEXhI0gbBguqsMSNoywiqBSs0WAFoAbGJQDxBOWn0/oLzxmTwTr1xzaS50b00LH4UKfclHH6v7VjLBykJ7AM6q1JnjGeq+LA5gAH93oLDBUTYtRHZCizsSNOgLNtdFmzTko6we2Ansq7mHPQCuaJNyJJrj3Tmt7OGhS8iqokwAY1YhBNlDv0KCdPm+ZG3WE7VJ56+eZCQKGD6zPUnQQYaAPOud1GfAyFtXL5Vm0BGfP9XnlTCDHaBcZQ691QWKvCmTkBC4wIFQDzJwdsjns/boBOUE7SyASpOTBvCdU8B7si5Gz8KLt5XYWjna0ox3t/bYjsnC0ox3taEe7y47IwvtrjgTuKS7ZrW9oN/JZIqYVSbBcl4ocGD3k1nGfQ15V9sOe+9tNg1B7VZB3ZDPz+LpAjSMVCLuoQnk99fDt95fIc6UcwSINhjRUyNI+q1kt5VpMovUAqkTqNGrvhxFVCFuBHwR+y/B91qhLyqCYre0WudcLD3Ga+MeNB7cOvvPInYPvHNJMo/Wu1d+dO4OHG00mK+0/iCykMdm6RHP8IPA9tI09w/cMZ210MQOJQcy1bSClSAGANB4StI2588jRIbeElDSapqgCwMkQh0Q1GRowFMdZNG/az8p9m6JFhiTUBKlnvL8luVmrWk4k/mSkVVTqk5+8NvpZQSj2E5/f1aC3/xjsJ0PX7e5GFZ5F0vXAqQ438wFDOUdk4YNpqQ9o52MUsUgrSyY0swRHgu5kQH85A7W5Rh/zRh/SPHi0pz2GTYO8bgCnFYA5ekQmSPRAIvg561CaCQiA66zyblJqBWeNvOZtUMlTr4mfWYJW3j1LGFat1QzSthcEAyBFIyIBMVQaDzUm6wobPhgqTVoA26BjXljrOAkY/dIi+0XKkxt9nxaGPEDH1LTUJF5xo+QnyNDSpHNjWJXkXIAiIBahp0zIc8D1pMewaD1lQ52TIRe90nl8P9JdiIFwE8EzD3EOs8/dAMyAcwAR2jIWA3DJI7cOLgtSN6ZflnmxoL1NCRBbZvPsTdpJ6G7fseNFbWt7rZsr0jzSsxav98idR/f5a6RHCzRvXCN+5BT+ZqvXYdEi3ETQkOD6BHEO8azB/A2GNA6zJ3qcOCe0l4YYGAownOn16d7yEA/kVhCuHfJMEZ32LY94poN+uHE6twSlYAFag8L39nuv7L41gC+CHWudowvdKy3HKcdFu+4bnd83X8bwPen8H5ViJo2AHTSR/cpkZ0syvRO4RpEBbDSZWLLT72cMjkYVGhxAKlOaC9LmRsQbngHRWhwSBP5sgGSqFEEAkERwXR7RhOTQziPiNqBZRsRVg+WjDeI2IHQJREAaPEKrlcNjH8BZj+W8wDeMpk1gJuTkkbNDXDVwrdITH8qOyML7bERyJ7dahG4tGgTYpRDZwucW1/pZ7VkoGM+8sCqOgjkJRkPBPnd94ii4smDP9juK01BoKtMF5fQ0BHMG7LNpbYOJk1AXi2VH7DojwETlKE7yEwqtZ8u7jkKfQH0GDQmUikZzBnhsIHkHBA9qPFzjwUMDN3i4wcFFh9w7U7sA8qD5ALkoTNzhLJT6CT4q39QXGtJWaUfaPnMU+giK5sykvFu8yxHI26AVPKQNoOQ1tyF7UHZ2X1y9R2zn5gZwppABYKR+OUwabG2e3Lt6P+26A/ffW7J7V5w+eN2/5OuwmFcsRXFC8yUKv7TQ7qgovdCeh/Ccj8lU6etd739g3+pQ3LfPAXNfDB3to32grJ1H5NihmSVw1qJcRcUl+Ix+22I2HxBnCW2XsL3u4Jpc+dLtPCL2QRVoijKMw7iQcAJaZKSVUZGcAJnAybxy1mARJVUuAkSfMUJduMKKTqmWvJtwsW2cSLo4p0b0GU0EdDzWbfCiLKlIAKvCWzk3SGsCdG8Dw4WONX5r3PR2oiBkKj6WLgFvuQxsdE836KKUvc01BACEuBT4XmmW4gB/ZYv0hdZPIFEngi1wEtYamOFAaFaaC+aS5RRsjSK2iqCcEd66gXRBByMGKCUgMxwRSAQ8C3A94NcJeRHqfNTcCLhzyA0hnlhNAQBxCbRPVClJAuDXOh+w1/+BEkiSHcU+vxU7bgZE0L69ASVG88Y1kDKa//kHwExrfDic6LwhAukaUB8BWiKdNKCeMd9qTkOaEcJGf//6I9q+2ZvWNhu3XWOU20j1fjTX5hza1Om3Y19vbnS/QkGeqhDWmhV5ci9WqPOo2L1my2Pr3naWa6dKiGKqWuiV9iTncVThAoDO6kIkUoe596r+lUgVs+a6yNdpYHQSAKgiFQHce133lAKCLYMHrTWRelgxOgYagm+s0J49Jznps5CjQ3syYHU1swJ8orkOJIgbpe8tH6/R97rs5eTgG0a/aeC8gDMhxwCQBheYH85Z0MY+7OFetL3UzsLRjna0o73ftlO87ynbHO1oRzva0b707L454mWYH15qZ0GZIbfdtduJyxYVxwF04Wl2sKoyHX6/t92B1h7erv6/q4ZTkpsrHUVwG1Xg8RhaFwC2/RiVLmjFJNi+o8NfmlboKrWWQPl+2mwZO32JbtSaBIXiMyh0O9KPskbst2PUHkMEkmHDmRVmLuYc4B0oBlATQInhYrA/D9cJvMGDuRkViEol5SliUiLwLotC4BFwg8BbMpwz6lFFPQb9Q0zavjvaBgCUA0hEExAZgAhIvP1pIhUxkEuCc0KtHQFMUJwpElKuce0Hu9e8JthP6EfT+wqjKNSEfNuW7XylvzgAvJPWrCiD2P9k+1eEYdoP6kOEPbuj49PuM1JRBpo8p9PjFfrfPXYIVbitlHT3cd5brYY920d47trmaC/UmsCAZ6QhaHKkqOoRSLDdtPCBsVm1ECHk7NCd9uhXLbwhC/3lTNGDltHMEuKm0YRkZ3QhBkKbEZMNOpmsCq/uT0HAq0Yr0xp/qCAGFKzfB9bnbHCaDLzSAUKr1xIwEyA6FYIQQFqGW3mt2ZKUKkKGKIQN1fGlzAV+AIZHRv8pSEI7qvs0N9o0P4xjE8koUkGiEefcKbogfty/6wncWcXlMApHdG8bzWeAJTkDEFREt71RhaP2MiKeBLRPlN6j5xa4m16FJJzT8fjqRgejJsANA7CYw8UMv+nBj09AkeEGo451XqPnAnRPGGmu1NFmrfSfxEB7Kcgd1WcyGHqglCNVMureSaCsKEX3Bb1wxAxkAdbG/XEeeHwBvHOp3791qSiD90BUxNzf9IAA6UT5Rj4K5m9mbF5VlaT2yjorAehH5KZ/ZGpMzq7rBOkP65FmVubhPAPCjd0bo3lxo9v7QelJErRPzN4SbF7dU9cra4ACiln/pKxoQE1qB4CNITmlUjmTVkM/jVpd+sQqLp9Frb+w9aoCWMZ9S5jWh9TYIYOi8phnzRK3yc3NMoSVNugdY/3WAmnjQQs9N3kBJ1IaVHIYNs04p4ghdAQ08wjODik75D2Vo6ZLSIPHfNnDO8F63WE2H5DDA9ZZuG+OeAnmh5faWTja0Y52tPfbjjkLRzva0Y52tLvsmLPwPhuVqKdZ4WTv5yBMkYRb6MI+HZvG4+wknu5td9Dq97cRiVvvC5Iw/bxUZy4VkktCc0EVTFZzX19/Ry51wnXfl9akaSR6cu1uoQ1T1GFyKcrxdhKca/Kwcj0LsuAHgevZkoXZcgDY8gAmuQDM+r4Ys4WvLHJs0qWOVY7OJV8Tj1zjIA2BPVmCc6ngPGl3TXAWRRiiwEc9txsYbrAciphBfdK2DHFs16Ey3+WHJ026I5fhvEUOiVCywst94QStuRA0GAVMkIVnuN77KML03td7OX6l917hgypbOE1UlrK/SUIKNHcBeUS34Kz7O2gy8ORB075SOlX9dO+9teYgCrF/Lfd/+OQ8B7a7D1V4lloMTxNGeG47IgsfSOv7AL8U5TIvoiYxRg8XNNG5bRN6CfBB0Ye4btAsIpIlUzqTWHUW/fddgjfZxeGdGcQL4pMONE+a7AzoM2TPv6xKUqZpyEeNnpIlNWPrDflUMQEJUuuwIGqiKHoHnCa4dxpwy6De1YrMIOW0ixeElSXMWpKxi4ZstlonIC0s+mzRaspaLTktNHKdO4x5aFETZsGGGAOABVnDFpBhzFVLC8tnsCrBgD7CGajcf7+Vemw/KMorpPLTs89rlD7cKOzg1oPlsRHQBkUVAEjfg+YznReGCGobwBHcekC6WMANOoeEJxu4V1QrNZ4GNGvA9Rnx1KNlQbMpwg0y1m0wsQduCH4QzN5WVMH3jOY6gjuP5s0bSAhwq60iz94DsQc462sAiBFYmk6rJwhUNYKY0Vz1yPMGzpK5u0udt0pSee4AIaooQPfOiDyLG1Ggcm9ctPoSlncQbgDHAFl+8uCjiwAAr0BJREFUg8rmwvJB7J4nRR76R5rsXnIWyBAEYiC1ikCVZOe0sKrOJu0qjcCtNCev5I2HjUM+zfoMNGWRoDVDKDq4nsBzAeZZ83eiIRWACg4kQjgfkK7bKoUv0WnunRdIdhjWDaT38Is4CsEAOsUIGeKnz/V82SMlj7gNWJz22KxbMJNJJXfwJkAwnXR9w4gxQEKGbzJiVNGSB7MjsvD+2r4aEk+WD9OCalNaUkl8vuUwACCIbQsAoyISgUZKBg47GQdN9v+n2rb6eXFiSmeaUJCqozBxEHb+pjalFNnCsDI8pm2dOA47u5aF5IGF1c6CdZ+GlMeEMHUYFMqlyFqroKgdATrrEOngetcifGo562I8FkFooxRNnQWvNRlKTQEQUGohgA1KZZ2sSnvInAVK6sRQtoTmfcfF7Q0WExoSvNffUjYRLSDkEit0TKPDwA2Bs4CDUaWA2zSkAw5DvfbA3X1tet/LppM+sLNNsb1+pGoqpAO1JWXqF0ZRKspI1iCxk9R+NXUcnsM5oIn3OnVAVLjg9jb1/fSn3eEkTB2EQ44BP6Qa0jFn4YNpTsfqbjkgDQFNq4sEEdWS324bLOYD1psWnAjtyYDUe9VjhymtLCPiJsA1gmHdgB0jdBm0SGhnqmIkQgjLAemy08VLESKYJ2A9FoPycy0Ix0H7tzRsuvKCWnelND0SuIxnG498kkBbX4te5gC4LUFaqbRBbnb7WXODKvxQKCXBkmLFA3ExBgTKgh/Q7csitoxRRcWoLFTFAb4My2FMpgV04dteCuIpIVwLUkdob1gTm9c8BjsISKctwvVQ25xPZvBPsopcXG+AtgU4g5oG6AcdfxmQrgW6FiSiydBBF+zp1SXC5RY8b9Fclx8B+Mh17E1Lr05LsuCSzRd+m8Ge0F4OyPMAv4mgxPBXG9A2gvqVnn+5AFbrMahUnIW2BfoeWMz1uiw7+CcrOCLk0xlcZOTOWe0b2hnXmrWM17UH+gsd0H2vDkFrjsJwAszeUeotHFCYMiVIRmJKV406CfHU6GTJqGlxvM/TmjrE9jmPNDMJ0HodXov48UJAAyEvGMQEtzVFokZAWzc6ANeWQOzUGeC51tygdYAEhj+NteCZDE774Osz0IV6m8WplrIegh4HXVYHIkPphICKCwQBBUZjzvx206r6X3aIJjZwfrrBk8sFzh6t0EdtX9zqvs4JciYEK8boSHQted889hx2zFk42tGOdrQvdTsiC0c72tGOdrS77IgsvL+2L506jQPzjlt44E7sZMGWrSySql8Y8jCNzlNFJJRhsVuhucqCjTDEGGmVyVelSSWZdPJ+Gu09/KPtb69Owq3vy59gTEwqAeP9jjs5J00u1z4Vpsqy5RFW1sRqsciFIguUpbZfIzdOy9QjaLQ6uTEaU+oY8DQk5zTaM+WZZQEha1KxJQkiKrLgnLPfWyo4j/eBLPlY229IhyUt19elAicRELTy453tKWiDd5DgIN4DwUGc24nuUJYKcFREJhOc0QzEGcpAI7pwi5K0j/bs8G4m25f3kwT1qTRrfV9sgmYcMpqAQXqSsVrIiDqglp/YaVs95hQ1OIAOPAuiYMfbQQyw+/2zoAkHazEcaUgfepu1Cb2gIsRDH+A8YzaLyNlh6AM22wahyUii1WFLcjMAUJMRtyqlOKxVW56cgJkg0SGRh2sy8qpBEoI/G5QiuTLx/JYVPSCBDB7ZauWABNhaxecMSKeRWto68NIqOM8KJ0hM2MKq83astBkBpNHHk5ImFGsdBYvEGuWkVE3OM63gu/mIRpzJ0GAOQF6iJkMDo6QqYDSXMs7YuFFQCPZKlwEAYkGe2blNYGP2ts4HWs9GBxVxBL9lEIvSUxMDnsCNLkXCO2vkV07gVj1wMtMxfNVr4rCIjs9tA+oHRReuboCzE8hcr3l4soHSVgeEN7bgsznSaQe/SvCO4DYD2rc94kUHlxh+HbW2D/S3NdtotNSmfi5t0DacLJRGCyh60DaQ6xvg1Qu75gxstpDggCxw2wEyb5GXHShlPR4RXBaEVUaeu1pjggPVRPO4JMzeEcS5zg+NSc6mGaG7EuRW/+cADKfj/XZFYtuMW71neWZzgJi8eEGajDYmDZBMUrUMsGkBo2kBEAJ3Nm8Z2kCJwN1EMQPahxC0v0qjcy8NDjzPmuTcKC+Wr5uKQlS54YsEGTyasx6JG31mre4JRw/uPcIiIQ+uVlwHAL9ImM0HrJ/MESUgecFy2SMzgdlhsOf3yaXSwzK7KrvqG1YkYt2imSUMfQMf8ijIwZMJ5b3a0Vl4f+1pdRY87dZT4Lri2t2egN3cBsKOSkvJYZBCt6hqSOWL6YFQnYPK/SYaHQZMKE2HbPL5tCYc2cKQHCATnkf9eRM1g30FnaKvf+t/7A4sO05K+b/mP8itY1LNKZg4DBPFnsJJdQDECSQQKAmI/S41KQuoXGCZfH6XMYPqvdQS87KzStzffnxJ+8ef0KNKMbhbVhyWch4/rnLFaxE5CQYrO6NE7TkJDgprOpHqf4gj5cvuqFDRTp2EqUOwk3PgDjsIU0fhrs+B6XvZUdmYdu3xGo3nPXRpdhJhiqc5XeDvLfZBuOUgjJdZJsex53vnfLcdgHLrn+YcHMpheN6SKk+zY4LzB9O2Q4CbATk5eM/6fInmMoTAODvboB8CiATZsdbeINScBSKgmSUQCVL0tTBU7gNcN9ZD8AtddXFyytu2WglEAr9MyFsParP26+SAwONzFRxcmyHXDeQiAoM9pB1rgSsPSCPwKw9xgnDtwZ3U2gYy1wQlWhNyN3YyL4Tslf8etrrAz7Oy+NNzp4UuHN2gC0syJyHNdOEpXmkucQGEjWA40yJr3KDmPbgkWuumI3SXev7hhCot1Q86p4Y1g1uqcwe3Oog5FlVCsgc5PV6ChgxedkoT7SP4fKljswhoSJDGw4nOG/L4DLxo4bap/nZednCbiPjl5wiXWzRvrSCN3dMsSOcNmie95mX1GU6siN68gVsPEOdAiSFzD9omiPeQ0zm4a+CfrMCnM1DMkG4JWswhQZdREgBq7fWiAbcelFkDTQwrNAd1Jthoq+Z7xBMHDuZ0tYT2mtFFrUlRnIKwFlOqEgynOlcUWpkb9D4Mp6OzlhbjmqAU6iwUs7pWgDoKfqO1OMIGtX4GBMgznSPcVhc1xBqIFS9wydZNgzoT0gqQCOK0VoJ4QE4TaOW1sGDJnZvkHJS8BAJAXdZu4AUU1RHI0aFdDhAmxG2A77TGCRkd2AdGyh7t6YCcHE6WW9zczJGj1ldYnPYY7BlnJvR9qOu9psnI7DBbDPpZyFqzAcBHHl8hhR7/+1kGmmewY4Lz0Y52tKN9idsxZ+FoRzva0Y52lx1zFt5n826kLQBjBHGqilS8yIo0FISpRMBlN/JYIOuyrQZhZJKBXyreyg4qUZEG3aT+jYHsMdw8kp2kEjxoukn5zpEpG1hCXGm/k4oS1DaXyP8EEdhHAyqVqHxWIrgyfr+DKlgUaAdRMKShJDiXBOLaaqMBidfIOQdvbZEJaiE14l/Ujuo2DNMUt88LClEqeYrs1j5gtnYdQAwmnaNUpd7lqrjdz63dFUVwI61Jo++GIAAWkadJ9J/GCL2ffF7uPmtPqvesVE7mSdRfRM+JXXSh0ommyMKEZnQQUSj7TdCFEr7Y3waGqI3fFehp/JsmOO+gAxXxmCAKk//rbbgHSbgrcfkuZaO7kIS7aEnFyn5ypCF96O100WONGRZdhHOMflCqytAHZAJi8mAhkCg9cDEbcLPqsFxqiL0fArom4eZ6htBmoFH6QztLSMnBB8awacBZFZMIArQZUmgObUbaBvh5Qu69zkeBNamzEbiQwVkTMTHL+rlRH0QAtAK3cUAjmhTNQDrP+pko4hDeCXAZSKesVZzNxI/qRCUpmRtLUl6M88P0L2leLpprrXjskqIMzQpadXilCERzo882Bx3PmrUgdZZ0C31fEqrFEVwSpIWDSzrOxKW3McthOPNor3Ot4DycNwgbHZf9NkHmQROR7VyyaCDBgZYtwlWPvGxBkTVab0aDqtqFJxtIG+BWCdQnSOtBfUJ7tQZmLXjRamVoGyj865fg82WdY2hISkGKGTxXpACPl4YSNODOwweHtNAf7mIGdx6U9PrEk4DmKiItA3LXwWWB3+gkykEH0XLNususFCFH6DIjnhCaG4FnGZEAm6clKNKTO0J/pvsHQwJ8r9vFJaxN471kO1e245T3HADMUVWUAFXVclERIqUgGQ2uBXiR4VYe3NpkFkRrJOzRnWG1GqRjkBeQA8CGPJTblbRaM0jQzBRJgFVy5kwIXaqiAy4o+pfZYbZUSGW7atHMU63UvFp38E1GaLUugyNR6mEbsR0atCEj2fOZs4NzUteJIWTMuoiYPD73+gV4MymR/V7tvjniJZgfXmpn4WhHO9rR3nc7OgtHO9rRjna0u+zoLLy/RiTwbowyT3MUAM1TmKINU/lUP3k9tTFILiNQMEUb9Jvxc9k9jgbBqSaJkowRZGv0JJJOEC4Yg0lX2uewSLsYx09g0XPjq5NMUQ0ZEYGKKEzQhj1koWgqT2sllCBzvbay+7r+Wf7C3o2AQKz64w7L/HB4d4ICTHMkCoqBLJoAly1ZOovyV7MlIxeuZM6GgLAlJE/+yrW2P3Kmf+6hScmAJiZ7gtRkZUUW2BuC4KlKsh6sh3DPb9u/Rrvb2bV0VO9Z3XOKFHiVoJOSmAaMsqv+KciCG6P+O3kPdtGnSdP7qMH4J5P9LdK/jzwURMEiNFPU4b6E5btQhKfJnr4bqdRDeU3+AXHf6aV92jZHe7EWk0cWj3axxXrbYtZFXF3NMZsPSNlqKVjf4OSw6Rs4LzXy2DQZQxr12y9OVhhiwPVbSzQng46ZgesD5AIjbgPapWYK13oNTpCzZi4BhO68x3DTgi9bSMs67jut41BqyGDwoIG0HsPaV6lRt3WKSnp9xnkmkKifczcOIiyaACsegBf4tbNkV4HfGGJqkehsUeVqrPulTn8aNyrDmucm5Tkn+F7QrPUcqUOtGgzYOC4aAadBo+hpRlop2cZHkiLwQIhLj+HUrlUGtgvl9rsUENaMeOJVkrtncOfQXCXEixZ5FtA86ZGXTa2zQJFBOVdEwL1zAz5fwK0H0DYCKUEWc9BqDSeiCcslwTn4iiagawBmSOM1QXoTwY3XucIR8sIDWfMthrMyMDdorzNkRoiGpKy+cgYXpY73/UVA2DKGUwcXAT/oRRtOHHJHaFYCCYreSNBchNw6uAzEhSU4N6T1MZLmGJTrWVCBNNN7kTvUCH5Jdi6Wm7EmB2WAyeoUpREV58akZTMhnWj03/UObqN9EKUQMivKBW9z80JRMrBWLKdWa4y4NkPYq16I1Tpg5+G7DBGoRHFgkKEIXRex3bQIbQYzwXmtd+Is1wBQ9C5Hj25mz7SgooGnZxusNy1CYGy2KnHs2ohFo+debTo4xxAhLOc93nmyxHLZg4X0ufYvbo54GeaHl9pZcBC46cqVZEcFaT/JGdh1INRkZ31XnqepE1Fe88QhKJ+P24mt79UZ0O/sPWOkRIlAmEanYdx9TIqeLvwx/n+baSM731d1JftO6UQ0Uo9KYTdzFoouNmWAEoBsa+tskt/Wjv0kW8LuwFOXfnVhSZU2c1vph3afDHOopo6Ny9Dkr0ndBpdkLPBWBL4jQMSQBBDn0VEoHl9N6KWawCzB1WQ3CR7cOHDrNJGsofq/Og17C/CntX3ipI20Ltm9j1OzazL9my76i2qFeHtdJn4obDx1FsTLSElyBxyBvcThO19Ptqv7TRb/dVtzEsiV73cdBpp+diBJ+a7k5KcVVptuP7X7HAN38OLv5L2/ZzvmLHwwrSQvAsBiNuDyeo6Tky0yu9pvhiHg/HQD5wQxKj1m6E1Zp00a+HGCJmTE5DEkj/a0h3Oi84EFkpw5FM0sjQt2q9OQk8PZqze4uZ6BnDohsWFN7ExO6Uo3DRiAFCpR8Q5KFCcr/YM2XhdlTnRsj0BeshZqmxhlUirJoIGPtNT6L35LGB6xFesiownpArOoIQ2PtHgbJV1sUjaKUmlaAnJH8FEXri5JHZsAHb85qEPBLelxWBeecemsGJk6Ee0NQ1pCbm1utTHbD8DmFQcOHj7C1JocQi+Iy9aKzRHybG6UV13KtJcRlD1oUCeAFy385QY8a+G2gzoO11utiVCCSYP+cDmZA96DUgLPZqCBkWcBuXNIJ3NbQGvgKHdGtWV1lvTCAMNpUArRSidOpfYQcgv4Xp2+GJzVpVBHABivV1zq/ZBWjxv26jHEhb0pfay1/8vc0GnCerLacPGC4deuzq/xjOEGDVAVRSJurL+JJTTbbxGCJhsn0oR3R+AFw61VyYttMU2tgFbeHAjRJP0gwEAatMwECgIevNUacboGAqqjEJqMyATO+jw4J9iu25EOLup4zBYDBqMHAsBAHgRNch7WDUKXMCSP+bLHzc0MbZeQs0PTpLpeK45GEzKcYwwxYN5EXDdKUZp3EfMuIoeJLNh7tGPOwtGOdrSjfanbXQ7h/jZHO9rRjna0Lz27b454CeaHl9pZsCB2NWXp7F31A2jDuP0u6rBrcktutRTYHClHNNkGFUkQMVpOSWA1VIEEE/mwadI0CpujdqpdNovsdqZD7Z2CDBMaFNiQDSalvWQyyTuqURyXDa60XC9TerP/Sa9pRRYOSL9OIuMlSatGvqeUGdrddmw71aRqxzANcDJUAarTPQj84BRd6A32dw7OZRBlpWYxAblkd2tb4bUGAhoPaTy48SrbB4A7fZ0tspVb1SsvcnUSlAI0lRedXu9CJSPBDrWrvjaU5BZSNL1uE/oQe6oVV3f+D+N7oHwmlWIwlUGFRft3EIV7+syh72/Loo4Rpx3UwGhJFVEo6AJGFGGfIvQ02lHZ5ml2l1zyXSjCIUTiwe0lGOy/1ExEo4erTYfFbMDZyVb7TgLYIpuL+YD1tsViNsA7xnZo8Pj8BgCw6lvEGOA9o2tS7XfOBCZS9gi+yKQqStE0CWFCXxAmhCZjtZpBmNDMIjartlJOw8kAzg7UZq1c6wsqqlFaSaT69C1AiTRZtHegkwi5bpBPuQpeTHmkTIC0DBEHPkuQZJVyk9dE1TmDXongq1bH3UQonBVuNLmVnKLP8UylNSnrGBSiDgdpRlUa1Q9jgnNuVeaTGyAunFZvbsaxFWLzQQC2j12VYQWAeIIqCVrGO5Al6p4Q4lLpTBwI649oJeZmJWiu9Zr3j1v4TYaLHuIJ7VtroI8q4d14uPWgSIIIQFq7gS9O9TQiijzPAtKiAZ+3dX7ghupvyy1hONPE79yN7SSoVK0bgP6MKhpMSX9P7iyCzITQG70oWp8q80YGwoaRO9Jr0BDSnCxZXI/PjUni9thFGEi/K9K26ZThNg5pyXoNe52ruDWZ0zxeX0oEOY/AJmjfizaJzDPoSaO1Enqnyd0dV9QEANwqgBdZQbZMoNMI7j3I5IXhBGGWFFGLHqHJ8PaMxOjRtQnMDk2XQE4wbBo081iTlh0JmATNTGsgNE1GP+jStSQkN54hM01Sbg11SK2tCywpmrMer7HONiSP4JVpsh7a2qZt30AA5L5coAeyl3yOeKmdhX2b1OLasTupCPcsIvzeomRKOVInQXYcCHUeACk0JGBX9aZUsZooD+1QjAx5xvjfATtAKcG4gBrzGGwj1glLWAv7IKtygQQdxACFvp0tWJ2D0ntsdyIAjmwBPKHclNZU+szoIFTajNtd6Iov2x74gUVpKRv/NQIuEnwE3KCDq+9V/9lbrQPfMKQnOE8gT0BiVUoqc7WDKh4Z9YhbD+48cmNqCDPlieaOkDoCt8blbABpUDm/VTVo7zbUPJBsg30aubtaJIfA1XG459r58RpVJ6GZXL+gkzhg19ZL5Y2K0RIK9xm4nSuwn5uzkyBxp+05CNPX+7SjO5wEV18fph5N2/isdtfzvG8vxEkAjnUWPqA2axNWa5WFubxa4PR0A2GyxT4hZ4I4xnLew0GQidA1CdmiKEUhhUhws+ngHSNnh8V8ALND1yRcXs/x+GyFt6+WcE6QskcTdJHhPSOzQ04OIsDitEfOSo1KyaPfdIhM8K0u5qjRYA4AVUpKDuS0oBu8fRdUm58vW6BluGWEvN3peNAyXGtF3QYP8oLsBUjqhEgm8KMIrDyoYeRN0Oc2am2YdKETgts6xFOlKWWoo8BWtEs8RtU9wChAushvr/TD3I3UpvJ+SmnNc3VOSj2HNMO46DVKz9BiLB7GWiPC90BYAWmh42Vzo68hQFzoUsZlIHigu0xwQ8bwygKtc+DWw9/0msuQGkgTQCLgk67msHFr/wfLSQDQX/iat5Hmel5LPcH6y7V9zuhbaaHnL05B7oD2Sn9HPNEx3FvNi81S61LkzpyQcm1apcxyAzQrzQlxg6jDwOM1dWk8pt4HvU9ogHjOmsPiAT7PoKRzf14y6DRCVmEM/gHAXGsXYPDan3Lhweo4n5fmKNTAkfUFW0DxjNVhXERwHyCp5CcY9x8AZ4dmPiCz00KHlrMg7LR4Wq99sfUJp2cbZHaVMigC+AC05rDH5BHsGWsm6kazLiIzVdWj4DNOZgP65NEPDRbzHsyuOvOuOCIgxOQhQuhalRBrfUaWB6Qh3TNHvAzzw4fKWTja0Y52tBdtx5yFox3taEc72l12zFl4APsH/+Af4FOf+hT++l//6/jMZz7zXPsKbqMITzO+I4r6rJHKKRJRAs3lmJrALKADCAPbDoUaxABuVYDeoamMidmHqtreEhmaRG7rESz5TmREFoo6ARJBkkXjrW3iFF2ARf0rLWmKOEygx/HcEyqNRcVrNLyxzwIgQaMkKJSZAoDQSNEhNgQjkSaARSAPGlHihuAbQmhMoxqoqIIPDm7wVS2JrA6DOKeKRt4ZnOzAnUPqCrKgiELuUP+4nUC5YVQdKdQemtwvMoqXS9bmZChDHFGGCi+XRPO9rlZQlp2E5sn140JDamREFrwAQSBBTL968kdP7w/je23LLhKF2/3O7vEusqDnKBrV5fsRRdhFFA4pFU2P/8zPn3Wa/ef4rv2fNjY8aCBn59l9ESf80rH3Mj/E5DFfDnBOsOkbbPsGp/MtVr1SDkQUfRAhRHGIySNlj3mJLjZJI5KzAauNw2KmIeTr9QyzVqOYX/b4Cm9eL3FxtsambxBjwBDHaVWY0LYJ3mlENGcHZp0j2tMBzjNS9Dq5OFHNeei4601/PsMGnsGBGgbPdGxqTwfEVaPVnjsGEoF7jYg3p4MmknqCsEoftScJafAQeHSnPfpVq/1yoTSlMj5w0sToQl+BOLik1JdCvanqRwKrPGxRfuhYluZUUQEJhcJTENIRZR46/XyE6HU/OKNXNkZzWjtwKxXxgDYLvgf6R1Sj++2NIM8cNk2D9iojrJIiBkSQxkOcQ76YoXlng9w1iBcdXBwntdw55LnHcOpAWduQG0JUphLS3JCCU0Xoc2fVjgHkuVYeFq80L9c7cKvXcfYFRQt8r3UPwhboz6lWcHZR34eNIRhGARNSxFu81cvImNBWsTOPDhdQRSwm8IyBhrUewonScdwygqMHZjzCPNB7+P9n789ibVm2s1z0axGRmb0axVxzrbULex8X+Bw2vlwQIOBiJGQEFyzx7Cd4MA9+MghkHrBBwrYAWRYIIQGiEmBeELyAkEBCQqK6SBzJx1zrwMX2Pfuca/Zm7732KmYxit6ziOI+tIjM7H2MMcdca41VzLV7k+bsfWTPInr2yIho7f//1hQJMKRgdI3gIpIF0BIETgZyZSldRxjNRATgt06veVVhz3pEEn5b6VwfhWrh6bcVF0/WnL52refM47/NyJ0IIw3o6nJBvVBhckkMk5JwvW1YLAZSEryfqqynJMQotL1jvW7xuX5KiIbLXcOyGagrfQZjZHw+h8GObamyuDlm8XMwaUQYH8TumyNegfnhAe/G+7df+IVf4G//7b/Nb/pNv+mTbMbRjna0o31gKxDzff8+KvuLf/Ev8gM/8AOsVivOz88/ugt9zHacH452tKN9FuyTnB8eyj4xZOHq6oo//If/MH/37/5d/sJf+Asf6BxhzGv54SxwSzT1AU35//togcoTZHQoJYuIDyO7t0V099JTjp/tp6gcA+A5ihWDIUWIxqCViQ1kzUIkn9vomyRMGoaCLtgJAZhrK5BJBLzHry8RpCplVCFHw0slRzO1PeVGxKKrGATjBekF28kUYa80SlV4mrEyOCfEOgufQ9LqmbM6C8lp3YRYGxWLLWTiiTbKmw21cmJjDaFR8Vd0CarS3jS61WO0Ogoxp6ONXtsbvSCDYFyOCnmIGWEo4u09JKloFgo6Y/fvYco6hYLMpFGzkBCnVTGNjSpEtDELjtPU52aXmovp52l9RyH8vF0zu4lsTX1wvs+HkQfchfiN7T/UWxxY+ABX/1ijRrzE5x/C+r7nh3/4h/ldv+t38ff+3t/76C70MdpDzA9t6zg/jVztGprKY0zk+fUSm5+VlDQa2feOpvGEaHA20ObIY0qCtZpasXIqrtx1Fc5qNLTrK7a7hkUzsG1rvLcsmmHULDy/XLJedVw+X1ItPatFz3ZXg6Bi6usal7nby9OW3cVi7CbBa556s8iDtDdQxxz11aj2cKV5M5NNCEk1Dxn+9p1jkes9tFd6zaF11KsBLwk/WJabjm5XIQaixBGVkI0nXjtSHbFXjlgrYl6qAFdtFvIO0J3p+GY79tKnRgvVboY6i/Ltk1XNQjLg1wnTiabwzF88nOi9S5UKudMiKgK6iCq6rRIeqN5zhEVi8Y4wrGHxRI/vN0K1TUgU2seORQKsYPpIeK3G7QJ26/HnS4a126tXFBaWUKmY2QyJfmPoz0BTiuq/4UzT1IZFzNq/RNzkxkeBVVJB+tYSm0hsFBXpHkfszqgw+kr1BuVnBdUySII0THOdJFEkI99TCRlByG2aa/9infI8ma8fBIIQXxs0lelCNQR24Wmage3zJSePtgBcXzcqAm4NbjkQBq1XkHYOmqBi+kFRLYA4GGytVckBFeVnFCI8aWDtIQn1qtP5LQqmiqQoXF8vWK9brrcqTgm95eRsR73ZYY3WOGnOPP1gaXc1i2U/pi22dRzRgPPNduxrV22DtZGYn9GTdcuzixWLhSKE3aCpVq1Etr4en88q12twVs+vz7RqJ3pvCe0DcoM+QWThL/7Fv8i//Jf/kl/6pV+irmuePXv2gc7ziTkLP/ZjP8Yf+kN/iN//+3//vZNB13V03SQ2ubi4AMAHhc0+jO07CHLw2d3HHVIc5jUX4mwxNgqdD+s23LEAKpPYixZpZp7fPu9yKCIda0GIjLUlQjAYIhGDEEkHwFIUhRkl1xMoDoQEVIA8F7YVBLNkCyoLXTuJcdN88KoS2IixCWMTkovpzUXpMUOgqTaEwSBOSM5gnIzZM1Q0ne+zE6JL2EFh81KfYd7GUi8h1kKoJAua9fPiJIwUpCYR60iqE1JFZGxvvCGeT9EQQ6Z1BUMcBAaDKXSiQdssTp0GCaq9HgsXzds4v4d7GZBShuzT6HQBiItQ2mWTLn5MOsg0NGtr6YOly+VIRozc7rTmY+50nvP59sTTc1iblLNoTecp+4bRGb774Xohfegex+FlLXzIcWNun7Rm4Wd+5mcA+Pmf//mP7iIfsz3E/CAmEZMKKo0kYnQ5C5KhZEEI0dA0HiNa4HMYHDGWsUlrL2igRaiXA4JmPbLZKV8tO/rBMQyWuvbEJFzlhRBJ6AeHqaJmZdo2LBc9F09XVEvPctPRXteI1ZzyzJz9OBjEZecgQYpgFkEpIHmRliJIra62sZHopz5t60C3rTB5zDAuUjeevnNUC0932dBFzXhU1Z72ssFmxyQlXQSLN8QmYr0hLJSSaVoZsxfFijHjW382G9t8zo5UaEcO7DAFZAqbxXRCWGn9h9Tke56LcqXeImcDxDx+WHUoUhJiaxlOA2bQxXdsEl0ZV7zSS+vnYIfE1XdWVNcRt9NsgP2pgxNHdRUYNjbXxJnuW3uuNXdMSAwb6B6pgHkMgjVJaTyLqL9JE4i5+J44dUKNi3ibSLnAXhxk/K6I0Ns8v0YwudsOJyp87k90u+30fX0Jw7I4D9P91AxGk8CZJMRMC5LOkDYBXMRWkZjbtVz3dJ0jRINttOAgoH0MwCTCYKkaT7+rMJtBaXKtw9SBGNTrk1oDVONxebw2i4Cc5/vhhX5bY+ug/TRnzXO1p+0qXJWTALjI4C1g8d5QVVpjwdnIYqk1FQbRZ9kanef8YHlyoYkLojckb6g3PSdrFUQ/u1jhqsBuW+fneEY5MlPRRZ8LLnZtPQbMmuWA9xbfWeLu4bIhfZKahYcKJn0izsI//sf/mP/8n/8zv/ALv/BS+//sz/7sOCEe7WhHO9qnyj5hZOGzZsf54WhHO9pnyj5BZOGhgkkfu7Pwta99jT/xJ/4E//pf/2sWi8VLHfOTP/mT/PiP//j498XFBV/60pfoB4sd3t9XeBHV6GWrxhZ7Ebowp37sVXPO7w8FpeNBs3NpAc80fjRFt2WkLd39XWZsHMjUIk35Kknzco85vWfMnZi0rkJE9ByWqW7AvMPPkIV5TYUpIp5G6swYpXdJBU05Cq7tnKLT0UViMASveZWTMYqqG9F/pTL0rJJxrITQC6ZJL0YWXE6NmgXMMAmawyIpqlAlzWPuIqaKWBcxNu5F7Cf0SGHV4C3Ra1uTgWgEMZKRglyNc34PSwRhdh/nNKTxNQvCk82Igk17OdhV0MyEMh389i+0xAHSNbXnkK40daBy8oniFTOioMhBRiLyq6BpvOeowsu07zZU4UVowgdFGsLgP9Bxt5mkpJW879kHpqh3saZpaJrmtkO+Le0h54cwWC4vFxirtM/+ssGuNH97v62oVwND5xhMYrHs8cGOCCwo0rlY9ip87rRCbLXU9I1XFwuqped624xoadfWuNpPqJUkht5p5L6tqGuPD5rGdHjWwLmGleMw8XdMFnkmFzEuowVRH3BF0RPSzGoyJCAKoXf6t50GPxWW1hgXdCxHnz0/WMRFXB0I3tDtKkwVxjSX/rrWZA5LD60lbCIyKMUScpXfqGNbdQX9aa74nAOxyTAKgjUvv6YGLdF0v0wK7hR6URTsSikjYeeQSiP2oOmxV6uOXVsReqspYYPSkSKR4UyonxlC6SqZMmRbRZNNr7UeIDKsLNVWq1d3ZxW212QZEqdxLlmhe6T3L1V6nuFUqxjHXJtAzjy2CvjOaeKQPL65Etk3iXo5MBhdm8QoxHVCdlZF0F4pXMkIrrBp8jxhhpwkZKX3rbM6Z5X5N5SKzVVCzJRwJBmlXokX0uud9pkghGipVgND69heNWMSDFf7cQ5uVoMiY6uBYefoLxuwkdhbIlZT7gajzIAqEJ/XhBk1V+qg6HprFXVwmkqVTNFNSVGdQoeOUbAypS8NQWsgVLVSAZdNx9VW21rSHMeQJ0mBev6MJQEbGHaOna1odzVV4wneYGwcGQDRKy2v792EathI3zl95pIQekvXVlgXx1TgD2X3zRGvwvzwsTsLv/iLv8jbb7/Nb/2tv3XcFkLgP/yH/8Bf/+t/na7rsNbuHXPXDfO9I1b2xvb77K5OcNsi5r4Oc7hYSXuLrlkBs3TLQmzv1IcXz4vTcRGWzyGS89pHZK5vmC3SDs8yOS2HX252jbzoF1soJHrOklM65ZONbJO5jzPSkNK40B0dBbfvKBiTMCaOMP6es5CEOfBXKP4xFwtKAjbXJACFh6MDU2ve7pJ1aG8hPqNIFS5oHAfcmUah1jzlc0fBWv13m7MQohAx4AJgiWRubR5Biw5EdR96f/egxlvu5eQs5MxRueBaKQp3W19MhVKEKB3tsD/u/f4yHpNy/up5v9zvk3f0RwpFTRdgzPtn/s5zTcPhM/V+n6fS3pfd914rzl7/gEPf+0AWvvSlL+1t/qmf+il++qd/+sbuP/ETP8HP/dzPvfCUv/zLv8yXv/zll2/nK2APOT8U+k6KwhCd5oEfjHKx66iZgbzBLge2l7ratFUkZPqISKLd1fitQyqldAytw9WBNFgNVq0GgpexJoIf7MjlBqX/DIMltI52MLpwMgkWgWFbaRaaIS84O4vv87WrONJbkISpI+mqAi8aODAJBtUxSBUwdSJ6Q5WpRMOuwl873GbAX1casDHTAitFIQwW65TLHgdD7KZnQuoIwUAQ7M4QFhEThbhI2G0OghhoX0+4rUyLddRxIGeFax/nMTBn8REPGAibMPLqSZR6cJhF0Dz9ZUFXTXSZejXgqzhm23FnA/7dBcNJGgt1StTrd69pjQO/gGoL3ZkuNLcbQ/NMnQStoTPNJ8NKfwa/ysGd7HiQhOEs5MJ1kHpLsolmrYX8SgadmEQ1L7uaOBjcwuPbKt9LLainWgOlwplu0i6YQftrf5Zw1zJu8yv9vPgkoWbUeCSbCKs8zmZKUFwFeF7D6aC1lVzEd1YdwTKlh1z7IztJVePx1xWxUc6/1EEX/tnxNLX+JuwcsUuwDLC1o+4wDQaJgjsZ8FcVuKh9s4kaKB2MzmVB6Icau/T013kSbg31a606gl6olp6nT5VilLKjLLUGGGNgfM5iqz+aXXnNuLT07K4akjd03uh3tUk1m4P+3VJjqqhZwMiOuahuInltowj43j68fvUlkYWXnR8+CfvYnYXf9/t+H//lv/yXvW1/9I/+Ub785S/zp//0n74xERztaEc72qfZ3o9m4Wtf+xqnp6fj9ruiRn/qT/0pfuRHfuSF5/ze7/3e99PMV8KO88PRjna0z5q9rGbhZeeHTyKY9LE7CycnJ/zG3/gb97at12seP358Y/t9FgZL6l72K7zArfsAiMKdVznIWz+FjWfbZhHeFzVqpB3lyK0elqNKMvN+5WZE90abUqkinUW5t4msJY0oQ3SZQpJFcGMkfP8r5Mh3mlGRSmXhpJGHWcaG+W2J+QRzmemUxCjTbKzCIcklYirfUaFiyIhBzVjfoFB99r77IUXKTjSkWGVEYV6zoNQtGJGEfM2ZeP3wu5TfgJLlyc5+WxGiJMSiUZKZwHnvXhYUxCg6U9CEmyWf9cIpZPQimpwV457f/haqkUaWZOqbL+yX0/culIYJmZp/nPZ2/9DP0d7GFx3x/lCGOfXjw9rLpL4rn5+enu5NBnfZG2+8wRtvvPEArXu17CHnB4B4WZNcRHpDqpVuIINgTwLhogIBT4VkykJ4Vut+ADtLOPFIa8ALftCoZt9ajYAHQ+gctAazGQjXFXY1aH0ENGIZg8G8W6ng1OTn7qoi2YTZGcJaMFtLOvGaeSZHTBMG8aKUw96QmqjR8yREqzQgbILWkGwktg5MGjMkYSNSJUJnNTK8cwydRTK9RylOQoqKeojTOg0A1BEuHWmh0fTQ6Dge64S7NjqehpzxrdfsdDIbyAsFSfI+GgXPyHMD8dxjnjutBRAhLSIhoyi28aQsaBZJU1QcjYgbk/C9RrX9kwVpoXRQnzPFSQTE5PoLjEJsk+sfSITuXLC91jOQMFF7klVhdkEUYpVF3YOiAqHJEXxJY/2irq+pG6VQDduK4CxxMBgXcS7isog9RRnHAJOrIftNpLow47WT5GvlOdNn5Nvt9Hfxq1zTYRDCKtfdKWO61QxZKQlsPFw7pFGKl47zuWZGTMTBkryoYB7or2uqjWbOSknwl7VmPsqHpa3TOh550pILR1zGkZZGHkrD8zpTnpXapfsFZDB6eQOpjoStw+xytexloN9Viq4ZS1/QbdHryOOO6C3GeW3XIEpdK893r2kau+fNhCYUZK9WboK4ROoNPK3xyziiMKHcM6s0M5JWq2ZriS49rMD5njni/c4Pn0Qw6RMvyna0ox3taK+0vQ8a0kdhX/3qV3ny5Alf/epXCSHwS7/0SwB83/d9H5vN5qO78NGOdrSjHe1+e0ka0svaJxFM+lQ4C//u3/27D3bgTlNu3WkvE9W8IyA5C7S+b9u77N77/RD7C09fPpTiZk+R5pSRhDRPryqzi91ON2eMIsccaY4Tz3Of55+mdJomjVHpvbSpMt8/7yca4RirQJd9Mnc4BINJ+6lh501NaLQmxhnqIUxp88g6hiJwrtDKySW16x3tTDnqH4ueIh8/ioczqjA2JuU2oBG+OEMrRjQg835jVMRmvPXl3hhIY045/V4q8ppOdON+zto6r3JN0t9oVKQkEBGtEP5+fvcZlDEiDUn2hetJ9rrSnTa/1rzDz7u43H+aW0/9YQfVl3lwd58MsvBR2J/7c3+Of/gP/+H492/5Lb8FgH/7b/8tP/iDP/jRXfhjsg86P8SrGmdE03DmqvXpxIO3xHeaXP8GjTpGwCXMIJCj3LFKmKeVRsC9YK81d77tjQqPvcAqKCL4XoP1QmrN9IxvArRWo7CtgTaH36ukguHZcycXDrs1+NMc+c/7Sh4LZWdyxV6N6KYqIZ3JSIXDDprm1PR53DIWiRAXkbQIOmcU0XRnia3CqzFHVwk2R2IZxxtam8cybWRcBU0RHcGvwXZak0eiCoH9Oh+eUQjxooLdRvVlkisLy5UlrgJmp68aEc7C7qBItquC1oVYeLqtttU1geG6wjRB99sMpM4qElTmssFoVLgG04umF630n9tqW02v6EfRiJXfIFZakiBVKX+HqPVzDPobuIhZeq2uXak4HEnsLpUq4hae6DUtaYpC3zlNgWsTstXvKkaRFVpFF8Iyz4NB+6J4mUoQxXzPKm2j6RXlSVbTzlqfq2yjv0VYRq1PkSBVqlEwdYQntfbBOhIHTX2KTNW+iYLvGp0XbEJ6GdGBJGBbA9dWBd4brXhut7k/5v5iW0NYR6QXpNd+k6qEvbZjXQp7bRTNauJYM0iiwM4ii4hcOFKVn6s66lzdOdha/JBrMCW0knmZkwcgiNYwEpBBiKuI2RmSMzq/C7hrrQAug0x9RVTrIr1REb8XzDuVfk+THjSd6csiCx+FPVQw6VPhLHxQM53BzPHP92v3iS0/oLPwAS71gutOi+Y9B2KP+lE+v2PRuHdybi4IyyJ7TxycMp1m2jZfe07XTTMazX670rjINaSYdLE81oiYXWf2xeei2yLAQnSAFHRwT2E20NQpOxfsLcBnp5wW4vnaqYzGFnVy7Ix2FGWk98TSzluoQGM7R5hXJ9FU1vjlmoUyINmJOsxCNLcb19LvmFTZPg1eMt2Xe3/r0uYDB1Zm3vCeszBvzkv3Wbn1Wfmgj8+9132IB7N7uDoL4+Lqnn0+Kvv5n//5z1SNhYcy0wtiBVOoI0GgrzCD1meRoM9U0jXfmFhg7H8WqgthiLo4SQ7MYJReszVapMw73LXgNzm7SydTx3/qcrGshAmaaz/VCbyoM5B0cZhcwl7rwsZ0xUlQZ8VeG4bzQPXM4gKEVRqdhdHyeU1riHnBb7yoOPnCEjuTxbmWuLBKfzoJY4YjCbld1zkXfVAqjG3zuGFEv0On38fu9PNYqXMVm8TgGBdhewJcq+fzJ0lpooOM9WLiQoW/EoXk8/h75eB0IFwsSTbRDpZ63ROjKP3IJuJFDYsswg2izkx+/uIq6HcuFJ0KEP1dhpO0RwVNZrrPcwuZqiJBv7cEMk3F6AJ7GQg7NzpRy9MWgN3FAjqlhZqFR0wi9RaaAJuAFKcURsdgohGhzl5riA2UukaknJAjj9nidUGvhfKY6lNstZCavXB6fzcec+FI13akvKUIpte6BLY1Y/aqWGudorAJuOc60cYg2dkT/FnAXYgmz+gqPX8UXFscU/0SpjXYnTCcBtyVVWpvdooli9RNB7LNFDQY+3u6VGfE7PRZM5dOHbkLS1hFzJXT5ydnfSqmTimE1VQkz+yMOqkIdidaI0R0PNB6FNre6l3HcKp1SuonlmgZhfvu2im176HsvjniFQgmPeCMebSjHe1o34ameZHv/3e0ox3taEf79rNPcH74+Z//eWUhHPx7v6jzK40s2K1g4oeJMsr7Dn9+oKDmyxxzEE7du47sv6YxsnzbPtN5PkwANt1yvv02zLfNEIVZdFyCTHmoc1XodBgNv6uNaf9VBHDayUuvTbkhd9K+Ds5/QzAsY7PUcr7TFG+PlN84f47O36D0kK9TBI1ZGKai3TR+fGt7b7leEWTdtNu379+P8oPd/A432jC/NYftepnO9AHGu/cNvz7QmCrtw8GGnzQN6Wi3m700uJxrvz/TaLtRLSoSdHustXJurEB2Ohj4tf5Y9VONEi/ek5yyEkhKZ/ErKOmsJcDibbNXvwWguoCwFPxSsJ0Kgav3tN8NJwnba/Rf0QUwu2l8iI2KiY2H1dct0Wm+f3etqT5jTkJhS3Q3oyR2N1GoAOJCo8bJgt0JYJRqdZWh2ghxlcWq8z4qWsE5rCN2J5g0QzOSIF7R3iiKnMTzgL3KyMQgOWKv90YrF+v9CuuAvbaazjLXj1HqS44wLwNy5WARc0rmRP+tlYq5FwHzvFLRObNxcZgN4kFGak9YqqCdVSDmCLtkEXd5JdONAKWhXVtFSJIiJKmJyk0ySVOBekG2Vuk+vb7uni31+J0K0SVmik9p07VG+02vKIrdKRIlYYpyu2vNXa7oUkZ6Uk7rmim+hJwePZBpaIK7yIJ4k5kWHmRnCNGRBNyVIawU0Tc7iwwgWzOiO6Coi0So3lPkSGlFOQrfJOr3LGGRxii9DNqffb7PplfBeOqyCP7KYltIdqr2HTZ6vBn0O7ss7I41uGt9tkJQ5MDt9P7HSiP9tjejSN12uW5SftaqS62fVF1a/EbpY9WlUrfcNaNw3G21j0hQYTtA/QzEKx1McleJDpqnQn+WiOHhBu1Pkob0UPZqOwvtVIPmoex9L7Bv2/9g260L/1sOune/O47dP05ubp8tkm/w45n+HilFzD6/oYu4pR239fTCC3xRw287x/y6xScySQdrgXkxuv1sULN2zq3Mb7OF/H7GqjxJJiba03zhPy6k7/4Ot35SRof5h+ng7XyRPrvOHpc5t4Ub2xih6bF9h07AwTXvHJBu2/4yx9233z3nfRn7qAZR3z/gyea/34v2OdrHatV1zu/vdMEPID4vTBb6mb2EsMwOQF7z1c91X9NBf07mbU90kFhrMbLooO6m48QzcuJB30sAtxPsblrgSITFOzl4YhmdGUngrvTa7h1daIUF9Cf6XexWOfgkMOSCXlHbb3PNGat13khGxsXVqHnKC6lQ63WK48QzmzUI+mdxdgp9JwlUV8KwBhz4TYC8EI1V3qc2E52ncNmrGe8iZ+CTwYx6Bnoh1TpEmm1Z9ObaMjulToVVdhqSOkTJJqQ1I+VEvKjuoTQ5CslExCWlGjZaMCFVBlaetLPQaCYou/KE62pyOuqoGXJ6Q1pnp6UzqiHLtLXyrLtnjrDOWonZ17SXSk8Kq4h7bpWutVAOvQQhrgOxmvj3aalt9/n6BBlPFzcBkuAujDpAeW5Ux9LsOT/63ZUW5tfqcJT+5i6FsEIdzXy8u5Dxd5bEqD8Qrwt/CTBskvZTgKydcFt1YKpLxtoWtlfn2V0D23xe0X6dNFkRzXtamyM0mvGpzIvmWvtdED2nZpvS/hpyzYyUn5Ow1D5eCgGCPlPVpToSxmsbk1VH3W+geapOcslwhWhwQDsbYz0Nt9XuOpzqtuW3hNA9XEDp3jniFZgfXmln4WhHO9rRPmmTAPdJp+ThsvAd7WhHO9rRXiG7b454FeaHV9pZsC3YB1Ssvy+7xenci9TP9ruxXQ72v2vbh23bGKXXP/bz+eeIPdPfGBmj4ZqVJ+XMRrNtt4lq74iKjyWYb4uWH54iIyLJZJTAyCg+Lt9FTBzrIICWaxeTMKJl4eeVlsfzJq0MHaO+pihjqfgUteZEimaK1AeZokUzUfHtbT68z/nemFu233aSw3uTBKJWnRTm29gv6pJFekUAN6cT7aMhN9v8fu02utRd9KUbQukX/N6fWCSl/GbdA57yHoi57HO0j9dKXn13xZhPv0QSJVcYLtF/4zUSagaNXoJGYOtnYAeUrlMxiqElgMl0iOpa56Kw0H/VhR4fq4wylArsSdGHWOfrJmBQhKO6zmiHz8fWuq/tGCkZ5fm3PaRhqi9TUA/bMqIFpb6BeL0PY7R2Act3dB+/KuO8RmsPn12/SthWI8ndY6UjJZmiv2GZkej6QHS98kqL8oqOmNYoYrCIJKMZcpJAXOasNdV02UIPS5W2rXrPqaC3SZgsOE1NUhrOoHQdaa1SmkBrVRj9vVgoAlIvB3q0Onc0iWY50O0qXB3YbNoRab58tsKtB4JzWnH5xGv9jcFqNiuXFC3I/cB0BnYH46FAQrCXdvxbBr0X2KSZe3pDOPHYK4dk2phElPJ0pXQppYhJzjwVqZ9ZhtM4ztVxo7/NRGPKEf0I9bOJ/mMG7cfNE/3c7RizAdqW8dpVjvonq1F2fTZk/A5myJW58xrCZzRLfzPt85qBCuwOQq48bcr18nlslytrZzQu2oIK5Pel7kWanqP6WjNtVVcTulddzZ7xoJWw3U5RhrG/XzBm6oKMYFTT75Us1Jd6vYIGNk/1+Y/1dJ8ewo40pKMd7WhH+3a3lxGoHQXORzva0Y727Wn3zRGvwPzwSjsLtrulysLHec9vcPdzE+YR5/l+s0h/KrS994EuvFDIe0fbxrz9UtCDCUlIJu9k9YRpfkyuwJxs0kiN5NdbL5y/aIQUZxEJpveSoyRzvv3eGaSgHbltqXyHNKIKxiVsFXBWMbvKBZyNVCbibMCJ8ltNvlExaUVLnww+WIZo8MEw5DRuPljCYIk+kpKZvnwokfspqn+bcFpkur+qqZA9JCSZfM/Gmgl33LuMYqSYxqhdChPioNFPGaFKmSMN5X2+/y8tnJ71sXv7211owS1Ihhzuc1tbPslntNgRWfjMW/MUOCWLLTWiiWSEIHOX/QrqK410ulYj8eW3MlnIPG4TPZck8IscaUW51Mno+dM1Y/+OOYpZ9Ao2Rz1jPyEUZSy27aQZgBnay9TuUJfaMlmLYfV9WE/R2XJMQTrK2JBMrnUQNILruhxNTUzzw2wytR1IysJuYRTlmt6MKUclMYqA9+a5oVQl1vo1aRNhZ3U8bO2Y714y+jDn3ds2oxH9pDELDqpLo5WkBaoLi19HzCCEJuoqpp7qNNjGUzWe4A3WRZbNwMm65XK74Ls/95TtUGNOEr23XLUNm4Xe+HC6w5pE57Qq9NA6TX86CHIyaMXuM2AQbGtIkjCDGX+3YZNyJFtGhMpslQdvWyGsNa0ngPSa5rakPqU1Wm8gj/880lB3bC3SG/rXAhS9RkHAE2NdjVipNiZZoGhnBv0dk89oQc9MxDtpU2Kj+hwzTNoFv9T9YzVpQ5PJyFiT9QWzfm67Mvfr53ariIYE7WMm6PM2rPX6I0oWSl8reoaMlvUTElhQs4IimGHq5xKnfjfKBP2EVCQzAf22BZb76NuwmlCFccekbZWPcY54FeaHV9tZ6F9Yku3l7IP+SLc4CjdpKdPr6CBMyN64HfaPvZOJ9KJF2Pz9QTv2FuF2tq8cHFraY9OUpSI7DVL+3dK4FNG6CEEQI6RQFo0ytXdvgSs3Hg6dgErBNMXsxwlIEsYlXO2pXWBR6dPeVJ7GelZuoLaB2nilJJWMIij1qI+OPli2vqILjm7Qbt8OFb0kPI4QdbFf2itRF+c62M1qHJT2zmhaiZnjkLeP9070VUZn6+A8ibFWQymCM/IX035nGNlMmToxf91zGm7rHy9wSm/7TacG7l97T2id/74huD5wIm7Qkw7b9n7sRW19P/aAAuc9itgL9jnax2sSwcwoCCUzSqEf2SGRenXWq0tdrFRdomtkPN5twfiEGSDUMo6hbgfVLhEthIVQXyaGtVBtE9Hq8dUWTK/bbTsttkpgxPTZSdnlhVuaqB0jZSpMwmgzTAud8owJuT3Pp8UUZCfo2XReQRdvoE5RtBMdpAhcy73yKS8cZ5miho3SbmKVVAnaGeKph2uHVIk0W/CbpR/poDFkT2QdVJS8DEpPahL2wpJyRqeYaURhqRmfCl22utKFccxUGr9Ga1oIhEXMwayEVLmYnUm4OiDAG+dXLNzAwnl2Q8VJ3fFas+O07ohJ2PqKN9dXPOuUE7NpLgEYouWybbgcDGKgfq2lf7JQWpDRgE5YRqpnVkW7C217/VzGPlYW4sElTKuOVjrzmoUK9B7kzEOAZlFyCftoIEVD6A1pMNiVJ1qrRSRdIq4D7okjOf09S+FPzXQ19XsVs2dncpEXzqJOotvp717r12WQvLCP2jcA0qDHYpgcxh58M/XJQpkj9x8pC/8yD+UFfimaWn7P0EyOse30eXFdGtcFtkv4pdA8S4SFjM+CbaHyWl+iUAXL/bPt1GdspyJ5yc+hX+r13C6vvMq8F2HxNNGfCvVVwi90njeGsRDeQ9l9c8SrMD+80s7C0Y52tKN94nakIR3taEc72tHusiMN6ZM141XYeqd9yPs/j37fStXYo3LIGKEtCMI8sj+lJ51FoZn6SNmfdPNatwlK93a5LWoreu6xTaW9t30nSRn21oh4cglxKiY2Vl+LmPjwNiQYqy3HYIhBFMaYf78kGlW/7fcoMEtpc6bvlLaIS5gq4mpPU3lW9cC61rDEpupZuZ6161magcZ6nASqHF4bksUnSxccu1hx7Wu2vubK1gBYkxCpcjsdEaUCkaFT5kLjeVvnlmlICuMrIoPLaIKNmHIPTUYXbrt/WXSdghCNASMkmUTXGFHUpSAfewezj9qUvnFHnyjvCxoyP+EL+93LoAnxlu3j/vOOxw2791l7P/YSx5eKsQ9hRxrSp9MkgGsTrk2ESjBB6UNJRPtj0si/KQiiCKGWMbpqO402Gq+ogu1zHvfrhF/liGfMCPcAcpkyRUR/bG+EWAvNRQkfw7DR6Gl1DWZIKrrM13DbNOaAL2lQw4KRlhEdOn8U9KBR5MMWEelsXqmycLO+VOpHfZkYVlrPIdkcQZZM13ATRaS0M9Y6b8V83upKKyCbXkjJEFdBkdONx7hAjBa7mFK6uNoztA7jItZFfGeJ3lKf9AzvLRQZWEfEq/C2RKlNq9HdYZOorkRpYPn3Gd8PAk5TkkpvYBFHkfLJyY7BW87XO04b/SF9NJzUHd+xesbTfs0XFs/x0WIk4pOlzrTWNjhqE3h3t2bX1Zyfb3l+uSQEgzkZNM1qGQczTTQ6xtSryeo9t32uc5HRo1jroGzfrZSGduopQLaUDC2dxVSe0FuqpcdWQefUnM7bnPXEYBAgfK7HvFcryjHSkHSA1766L1i3mWJUaGaFolSi84W2U0TwBR2R/PvbbkIXirhf7L5AOtlJVK+NzIhCpkT5pYqdTUhjWl+AYTVF9cszRwIrZOpgBBFsl+jO9J4ngWqbkStbqFe57oeVCeETff6r60SoBePTmBYWFFlszw3N84QZdIxwrbaluU6E/uObI16F+eGVdhZGmshDn/e2xQwHi5iDhb2klAdr2VuTl8VVuu0ct9htn5eHdH7i29atL7SZs5LmlCTy4ODUSUhVQqqIuDgO9NZEnI0YExFh1AQAY6ahEA0h6L8YEmEwIHnRK+RE0uPNmi3AM+UoDw6F/kRuh6kCVeNZ1AObpmdTd5xW6iyc1TtOXMuZ27EyPSvTUUnAZkwvJMOQLNvYsI01z/2SS7+gNgo7O6PfrUDmAxATkJTIJEmpTBJye8cfgkkLYhkdrOJkYRO2ihgbseWfiWPGpvm9Swli1lKEaAg+EXOhmDQrsJ5mdRRScQoKX/N9Lq73uvcdjsLsp3mhzWlHt9OR0t4FX5hdab9JD5MZ7A570HFj5ky9cJ+jfaxWbSOcQKi0Iw3LvBhYQjQaTXGdLlDac4MZEsYzLlxMyFQjp+eKTohOF7DlnDYklu8EQqOfVVtdmIAuRkI9PbfRZd1A0u3Kx87X8upIlH1NQBebXhdzKdNBJCrPO1bQPFPnB6ZnpXmex7K1zkPDRj8bVrqD22lGGGBM51jy4pfhptAa00odEb/WzEhjIa8yFmZaTrXwDAJVrSt+kUTllApkbWTwugDuozA8bWDtIYoWOAtWi8Jd5yJdLikFpMwHOQgynKZxURrPPLRGF8rrACZRL3X1mZKwWXQYSXx+qTybxnjeqC8xkvhi85yFGWhjRWU8Q3ScV5p4/2JY0BhPTMJp03LZN3QLR987QhAd26+niqDDScT0MtblGDb6+4Za61uMASSBVCWCTbDU9hqbiJ2lWWu7QxNomoFhcMQgPDrZ8uxqxWrZ07lIGCyGSMg6itjkGg9rnetMZ5B2ovgkl9+36rwMJ7m+QGIMXhbqS7XVvhkW+rnJGbRidkxLrYTiKCCTMwp5nqwmnYEZsi4oTc6TyxqGmEd3mxfidpiepcXTSHtucF2iuYjYXhfuoYa4kilzWUxElx20HKizHnyVnYPdzNEFkskZvc4MbpcImWYYaqUPlu/nWu1j1S5N8+tD2X1zxCswP7zSzsLRjna0o33SJmFK5/uifY52tKMd7WjffnbfHPEqzA+vtLPwImjnw0Ql7z32tmhsRhX2xM2G8e/xfXmFkb4yHb9//r02Ffhz7qHeEqXdbw9TBiSbRU4Zho6OseJmQRRSFXM0P+KqgLWRygX9N4vCH0bHQ9SouI+aaWjwFmMNwRuiSWCNln73U+XK/dzUaWqrSySn7bB1pKo9q0XPqu45q1vOmx2vVZqG5Lzacua2nNstJ6ZlYQYW0u8JnNtU08aKy7hgY1c8tyuWGQOt7WrMoGRNYouKvYIkkjFEa0YYdbzvc2ShRI5cytQjvXfWxb17VxAMa+ItyILev6HcO2MJ1uCNJUrKyIwhwkyILJgc2FOkJ7dlnrnpjj4xtn3WR+af7VmafeX571UQjcNtmWomcYakIUg5EXegZB8BgvCx0oKOyMKn0vqNoSkZxHLksNB87JDG2gvRTRQjpebojxVyPn3bK9rgOpBWP6uGiF8qtcEvDT6jFqGRkVIzZPQgNGXMS5i8KEhZGF0yu6gwcxLGlgxMks8VakUbCqVDAnRnTNlhrEZp29dK5DYjGTnPvuQMTMNS//a5crRfafTZz7LChGXO+uShP89VkmvNeqSZlRJSK7WyWnhFnlc95yuN0F+2DafLludpSeUC66YnJOFKErKBEAzDziF10loIW0dY5TBuENy1ITkVj+Og3wRsq2hrXEbk2pKaiD0ZKLyUs7Ve29nI/3TyDJ8Mr9XXvFlf8NyvOHM7zuyWNlWc2y1DsvTJEY2wymrbU9vwTn/C64srtl5/iBANfW15+myNVJF0kqtA17kdVaI/m/pcsjkjXhRilbCdEOqYK0mDqQPW6ZwTM9UI4Px0iw+GL5xd8N52zbruGVaWZTWwbnqeXK6U7psCyRvkZCC2bswkFetIspppygyCz5mw/Bqto5EF/GKmLFhF8B6ZanyUebiI5UvmIhXy5/4ombpWxNCi20udh1L/I1nth2MfzGJr24HPSJdWOE+EeqL6SVRkTGldMj4frtXrJiv4jA40F5FkhfZcUQLb6TNYXUWiNdrOriQOSFTbqXZTqGRMvqKNmX33jGI9mB2RhaMd7WhH+/Y24SWck4+lJUc72tGOdrRPm903R7wK88Mr7SykeWQUXuqOf6go5uzYgiLsnbdEeA9QhVEAe4g4mOmc8+Nva2fpaKNO9AWoynj8LH928ZgVVUikijFdHVWEKmGqMKIKtQvUlae2gcZ6KqsRcncLkc+njCoES+c0TWlBGLyzijB4o9GWXCF5H1lgqklgIza3oak9yyxoPm9azust59WO13P5xkfumsf2ihO740Ra1qankojNbnpAGJLhOtZcpgUnpmVlehYZWXBG063WNvDM6PfbuYrOOfxgiYOBYIjz2hHz38dMqWWLvsMVJMaF93/vrKN3ln5QXqo3lmiK+FxIJpOKc6TFeBWOp3ka1RwpubdvHCAKLxI3p7Tf/yTOXgtSYDKykTmxc4Qjpf1UualoGZiu8UHtpZDFW/Z5UDTjmA3pU2nJgm2V31zGWtsljE/0G0PdRWIWNRe9gsSk6kpyNdmS0tkYQq0IaKxUBK3cbOWmG59yesk0Rj2LKYoLZpApUptrPUjhfQdI9f4xJkyIw3CSc8035Vz6Wl1B/2j6O870CKA8+vpCX0ka/a0voF/OUImc0tVngbNEaB+nccwLq6h1DEyCKlIvPFXlidEgklg2mp70utcvsKg8IRrOVjt8sCzcwJPtKqOrmughVJrAIQaj80/moNMZ/BsD9CZzzfW58Wc+i5kDaQn1uqdyASOJuvKcLxVZWFjP5xfPicnQZIjn9eqS76rfpY0VX66+ydf9Iz7vnrEQz39pv5PfvPgqAL/afYGV7diGhouw5J1uw2nV8aRbctq0PNlqWeLrbYN/1mBe7whPa9JGb7a0hnCSkM6QmqDz3eOgc7WLxJ1DFn7Usa3qniET6ysTOV/seOdqwxubK7rgqG1Q1EYib5xdcdk2yDLRD46urRTpKEITkxiSjClUwyLh8vthjWpQ7KzvWZBrPdSfTOhWeW70HPnUvdZOSCpRGSuGD7lK85iWeNDKzSHXVChomM+VzMXs10gAfe+XmsAj1DCcaMpUElx/3lBfJFyrmptk0visuk77RZe1RjbXhPCiz9iwsqoZanLdjjAhFrYrNI0pRXFJmzqmTD1cW35YO2ZD+mStLH73tt2VNP4FP/zL0o7m7w/pG4d1FfachQJvzRbw4+stzsKd1JBZf3rZxeBczKxC3PKqtCMAqRLGBVwdcC5QV4GF89RO6xgsrC6onUScCSPNp5gueC0+GfpgaYOjC47eq+MQciG0WLL+zIq2le8pRjNbFfrOohrUUah6TquOR/V1dhQuec3qKPfYXXFulIJ0YjwLSVQIVS5oMKTIQODEeNaxZy19pirlOg1moDGexnhqE7hwnuuqZldVtEPF4LXtMddBuK3N1qpwuXJK26ptuPO+HToLEdm7b1UIdMEp5cs6ehPx1uJNIlo7TpxxMIjN9Sw8Y8G2vVzOL+NMzr7L/od5c4FOD2hjew5Jfh0zMZX9D/9Oh+eWvb9vvL/Fbvs+6cabw2Nu/+AhIeZjnYVPp7k20Z0Z6stId6bFxNZvRfoTGcWTxblNVufr0MhYJ0G6hB1g99hQX2k++NKfulNR4eZOM5wFJ+NsWigWtk0MJ7pYcbtZhqNlETpPTkN0uThWX86hjsBwkmsgBHTszuO5XwFpliEoUwNLlpmwzMXXttCf6uKONKM65QXbcJoXS+uEu9J29+e6WIs5U0/aBHCRZjVgJBGjEKPBmMgXzi647hteX15z3uiC3UjCJ8PCevpg6aPlS2fPuB5qtkNNZQPXdU1KsOtqfGdpskA5BKOBGmNJjdJ2Ym8Rgfp8Rxgs63XLrq1Z1T2f31zSR8um0hvnJPKo2jJEy5v1BZbI/33xP1jIQJ8sbar4fyy+ylthyXVs+GL1lDaph7UyPQsGzu2W2AumiXy9Pee8bnEm0PoKHwzXwMnnr7i+anCPW3yrP7ycBqUKVQnTeOJgsY0nRcHVARaa0S8m4WTR4Wyg0cwfLN2AM5HPnVxSG3U+ft3pe1wMC66GmsZ5LnYL2q6iqoLOPQtPyuLglITUGcJpJPYGiRAyFcrthPaNRHUpIx1IIvTn2gfMkAsMJuhe023JaqE2209FB82gDuVwkuspZIc0ZrpT2RZrzWeSskC/CKF97v+kWT2RRc7mlR162+nzEGrJ70WpcwK+UUchVjJmcnI7FSjbTjOUFcddRNtSbdMY1BrWgtslhrV2ftvnDEhhSrDil1oTxYT0oFTVY52Fox3taEf7NjdJ6U6nZL7P0Y52tKMd7dvP7psjXoX54ZV2FqITxB2ERQ/+vIEa3Pf5ffvNXm8InMvrLRSkkRJ0KHSen3eGRLywbS+yEVFI03VmNRRwuX5Bpfn/AWwVcC5SV16j+s5r5UvrFWHIkffGeIxEqgM3OOQI+ZARhj46+qgIQx8sQ7QMwWp60GTGlKFjk0WjUc5EKhuoc1XmTdVzUrWcuJZHTsXMr9krHjulISmq0HMigbUxNDgqsZh8E6IkhhRYSKBioJJIJZ4qqwb1fWBlepZ24KRacDksuKpqtr6iD07bHe9usxVNK1vZQGWUerSwer9q43EmUGVkwR6Ev4dkiMnQRUdvNN936wOtCRmydww20puE95FgNRyeqkQcslg8i8YlyphmUCP7t0TuX7YLHaIIM3HWDeTgAGEYX+f7HLTjNpH+jSjOnUjBi/c7/Dzd8RDF8IAYc041ee8+R/v4LSlVqNAUujMzdshkhGE9VZP1jajwuTBizmVMQ1nSqSYr1BeZ2mShfaz0hZJiNNRazwFyKtRMbfDLfI1FHpMbxqq5hR5kBo3iQm7ra3nbQrfPn7kyzhdKSZhV1gWULxJFP3eZcuQVZZCoVZD7s6kyfTLgN/rwaHQ4aR2DQcAqzbKkCl80A29srohJGKLl0XJLnD1nRhKfX1xwNSxUQOwUNbgcGt5YXWEksXADKzdw2Tf4ZKjyTXuyXTE4i10n2q7C2EiqA1UViFFoVlpr52TREaJh6yvOm5bTnP70OxfPWJmeLzRPWZuOx/aaSjxGEt9hrzHoo/i9ruW/9A3fXb1Hm5W+3+Ge0SbHL7XfxW9YfIP/ffslXqu2DM7wfFiyqnoWC8+m6RiiVTpVNFS5enRTe569t8Gte5yLhCpSVR6X59lF5VlVPRHBSsxzqx57NdS81mxpQ8WjeksXHEbiWPvhcmg4W+1Yn/X0wfKtdEKMZkTBUhL62iJea2DYC0dY6nX9GmRQFCo5FaybgRFdCjV0j1QYXaL7pS/FTNMJS+1PZtC+Fx1Q+loqzxmkZjo+GaVASYL+ZEqtWkT6oOJjv8rpXVcq0lfK7YyulOehUDNWCi8Iml9N9KFkIC50PULSZ1Uj+vqsjzUk8nmjBdclho0o0hcT1ZVSl/pGCP3HOEe8AvPDK+4sgFT72+6kV7zISTj8jDs+u41yNP/s0EG4jY50i+Ogx6ebVKS76Ei34GM3MzOhE4bR11T49bnAWuHYg2aQKE5CodCs3EBtAgurxc5qowvrykQM+1l9QDP7DMlOTkNSJ6GPdqTa+Gjw+Uk9nFyUqhPHay5tz8b1bGzLxrZjxqNze82J0TQM+46CpRFHJftd2hQvzgAxTDg/YF2klsDadKxsx5VbcFUtuPI1u1DThiq3X9t92GZgbHehGtVGnQYtDhezsxBuvV8NmgXJmUAVHS5EDOo0GUlYE+mNw5jEYC0+/17BG6IzyvcNqgNRZ0HyoDQVnXpBl7npjd7hJOj7yfm44SDcRT86KNK215ZbqEmH728M1S/6Pned44794gMOzkdk4dNpoRas6ELf9klrD5TFsehCOjpdhDTP8sLayli7wOQsMGWR4ZdK4dg9Fi12ttHFv5RhJVOa2lM93vYTvcB2WkQt2aw1uFY9RFiA3aILsGaqm2A73eaXmgWmnCc6DRaQVAMRFolYJ+zWEJu0l9nFDjCcRezO4NcR04meczE9eHqMOgSjrQLJC9WmJ3qDrSKLZtBMeCaxcLr4DtFwUnXUNnBatePY/mZzyZN+zcr1bCRyNeiX+sLqkpOq5XmvK8VVdhja4Hh3p4KJTdNzfrrjeb9g3fQs3IA1ke1Qs6p6NlWfF9Y7IsLK9pxXOz7fPAfIwZ+OWgJtqqnkOeemY0iGNhlWEnkrLPlu1/L7loFfGaYgjpFEJT3/t+br/Ofdd/O/LN9iZTq+0n2O/85jHtVbvrk74/XFNd/YnrI+7bnqm3FeOG1azWKUA0whCrUNbJqOTdWz9RWfX13yrFuycB4fDZ9baC2IX3+y5f+4epPTqmVtO572Kx7ZLV9aPeP5sGRT9TgT8NHyze0J66anHSrqSgNfzy5WVCc9KRpCb4mvDdg6EC4qXWAvEwxGHb9eiwXadhphbSf4VcLuhP5c60eQQIIQV3qMJPAnCRl0e6HFJiNZr6N0NpLQn2i/TaUYqwC9Oi7JZNoT2t+N135eMjLFSh0HM+gzVl0z6WqWSunrT8ZuPtYFMdnBcTs977DOtVIy/Sq6kvlMjy3jQWg0oWGsBXedn/e5s/IAdkQWjna0ox3t291i0n/37XO0ox3taEf79rP75ohXYH742J2Fn/3Zn+Wf/tN/yq/8yq+wXC75gR/4AX7u536OX//rf/37Ples9pGFl0IEbvn8PjTiTgrS4TnmaMJs2z4tKd3YPp67oAt710jcQBhmaMSNdub9JdOQEC0GYmzaE+QWITGg9Bmn9J85jeY2VMFJwM6QhVItGbRicjRCQKPwMUfOYzIERLfd4q4XalOJwjfGszDDWJV5ZTpObctKOtamY50FyguJJXEJAJHEkDw2C5xDisRZr7ACCyIxH48BQ2JhBhoZODEtW9uwdVqboYtuDy25q+1GEpak32OGvJT7dHiPtK1CICM/pUbB3NxEc1KEwY6ZMwZrCc7sCcZTKCJsjQjFIsjOmYgSzJCD0mHyhnmEv+w/owdp9ehp3330QG5HFZj+viG2niMXs+vfizTct/19IBQPiyzcgdwc7HO0++0h5wet/EoWBkvOeqK/RbRTViGJ0G+YSn/kDjOslV6EAcnjdcxiz1gxVlhOFs21XyKoc4qQKIWoew3q5/qZxCw6LnnuT/QcxjNSmGKuhFsEomGZH2KrKEIy4NeR6tJotiKTCMuI6fL4soyENzz27Rp/FjBbQziJOtbYBF5Im6iVkM96kjdjzv9m3RMGy2qpIdhucBijyRvOlztiEowkltWg2+otfZyWEu92G4wk+mhZ2Miv27zDk37N0vb82vVjvrB8zi7U9NHiJBKTsMhUpS+uLmhDhTNxRHTP65ZHp+9w7RvaUPE/n75DJZHH9RWVBL7WPuJ1pxH6NlUZIfB83l7zTjjlxLzLygSGJDyJFWsZMMD/2nm+5CJPgt6zbaz4uj9nbTq+f/E/+D/7z2GInJiWLzbPqYzn2je8Vl/zhcVzdqHi2bBi61XB20fLaqWI/NVQc97sOHEt73Ub2uDYVD1r2+MWkVPXcuEXLHOY+9mw4rzeYiXxbr/hy5u3+EZ3poLyJLTBYUQpSYX6eupaQtS2f/61Cy7bRmse1Yb2uib0FirNpid10PdBoDXExwPpQn+ztPGY5xXJpIyuJVKZWHO16FgLuIS9NqQ6Ia1M/dypyDg2ZPqPnqNUKS8JMLrzCW2LRfS8mgTWEjI9SXJ2rzqjAWU9lY/ZvjnRkCRlVK9kcKoY60mZTC8cNoxJBsJiouqZYaoBMWzyNUSft1JD4qHsvjniVZgfPnZn4d//+3/Pj/3Yj/Hbf/tvx3vPn/kzf4Y/8Af+AP/tv/031uv1+zpXtDBnndy66L/NKbiD3nNrhqPy9wEF6dZjDulGcwdg7hwcbJ/Om2afT3/vOQGH++nR+oDNHAUREBPzqxZSszYXBjNJqTJFs2DiyLevcwpRV2YtGBf+ISUMsrdAB8bsSEaUa18sJDM+xIdWFtAmpzpVh0GdhTprCSoJLGYZjCqU2lMclZhAx4xIIGEJE+2otJ1ESImBxJCd+3J8RWQhAzZrGdaxo001Q7Jj0Z7yfnJ4iiNyN0Z5m3Ogbdm/cTEJITtQc4qTM4GIUKfpNxBJuLzCrUxgiDm7VDSasSmps5ASpGjyq96LlMo9mahExTFIs/e6gE/T/sVpOKQM7R2bDjIfyT4tKc2O4Q6ngTv2Ofg7sb/9rnPu73z75zHwcHZMnfpg9pDzg19AJTmr0EYXBcWfNl4XKH6dg05RC1dhpzHd7ZSikMyULlLpP3ou2+riY0+HxowyVE+ZjIzPmYtSvl7ObjT2U8nbcxG2uEh6badc8riMmFZph2Ghz1xcRrplVCrFMsEqEPeGGCE89pqZp3akrHWQwcAmYBsPy6LF0pSogBaStCEXjBQerXe8d7Hm5NEFp3XH1y/POGlaahOynstgmIp1Lm2PT5Yvb77J19rXuPYN1zklzm84fYtvtme0oeLN5pJTt+OpX/G4UR3a82HJF5fPqEzkm+0p3718j4BhYQZCbXLQyrMQzzf7M1a259evvkWVU/O85q6oJXButqpVIHIZa96KzRho+t+77+D/ufoqJ6bn14Y13+E0u957fsVje81FXPDYXvGGu2BIji9WT1mZnsu44AfOvsLKdHy1f51KAkurQS2At/pTLIlnw5LXF0PW+CW+fPIWV6Hh2bAkInzn4ikhR4e67GSdV1u+1Z2ysS1faJ7zre6UNlTKJUMzDp46Xf06E2msp/UVku/5bqgI0XC+2nHZNtjTqNm9omHoHCIQfUJqSAsP3pDq2Ty18UhrCY+1GmA6G0iXlVJJg2Z4Uv3NFIQshfRMa9Rx7nJ600xzi406EeJzPzeqJzBetQXAfjayQs/OlKFSNK5/pMe7rT5TpdAbZMrSSdbjnOUCg5v9fX0uMhianAmsPHPLie5XCtD5ZdZPbNTxeDA7pk59//av/tW/2vv753/+53nzzTf5xV/8RX7P7/k9H3dzjna0ox3tQ9kxderD2XF+ONrRjvZZs2Pq1Aew589VmPTaa6+972NjlZGFQ57BXfSh27a96LPDbbegC/uf76MF+wjD7HNKNCrtt2OOJpgJSRBJe5/JDEGACW0wueCNGM39bWZFcIxRwayVNIpnCwpgs0h3ithrdiMMEByDWLwJuGTwYuky3QbAEEcBr5WIZUILGjOMqIGdUXOsxBGN0PcqNC77WUl5m8dQzqv7Kx1IXf5WEjbl7zATqc1tRALyjS4Uqfk2S1LkwgTWdPTJZSSlUKoMfbJ524xGlMx4vrJfQR/Ka9mvCMBjjigVetZcDB6TjDUrShtLlqj5dzOSsDGNyESIuRZEjgTGqHc35W0xh1NHJtEMcZjQgHSAFkw0JkUbygORj8scS40MlfMxCqtT3neONpT9mX1W9pt/foggvAg5eOH+dyASkiA9JLJw1Cx8ZPZh5geJSl3oXtMuaFt0bHUwLBmjlQYgKu0oLDPCwDS2Rwcxi5bHfPMrxmJrrs1RyIwO5ED1iCoUdCLZhG2F0Cg1pLoS/DqN4k3jheEsj2etkCrtq6FJGr2VLEiuEjQR89yRFjFTijy0dhQqJ5MRPxv1eXcRCYJdat7/qvEMndP3C8+y6Rl8zraWn/Gz1Zbn2yWtd3zukdJcTupuRBVAI97f2J6yqXp85ouc10JjPd9oH+GjxRrP0g5EhC461q7jjeaKK19z4Ze8WV+OyMDSDrxZX3DlF3z/5ps8ctcMyWKJnNkt3xwejb/vdy/e5d3hhDO7HVFbS6RPlq8Or3Fut1iJ/NrwBpV4/q/+TU5sy8IM/EL3OtvYYCTya8PrAJzaFkMkYvi6f8Q7/pSFDLRURETr+dgd29hQSeD1+pKA4d1B1bbfv/oGz8OKxnoeV5cM0dFFN47l37l4xi7WdKkiJOGqFCAA/o+rN/nC8jlvtadcZJW7k8jbuxNqG3i9uSYibH2NkUQXHOu6YzvoOVZ1T0zCbqjyOqAgQwYxic26xZrE1bah31WIi5iF3nNjI8NVDSeF2wOxszqOroI+B51mEdNinII/D5AzE8UmgktIsLqvTcggmnlpEMRnMXREM/nNi7JFQUSfkeiK2DkhIWcVy4ts2+cicQLBTtmUkKl2Q0kSYFtFKkg5A5RA90if9WRmz2eVM0V5WL4Duzen5AN+yYMKnI+ahQ9pMUb+5J/8k/zu3/27+Y2/8TfeuV/XdXRdN/59cXHxcTTvaEc72tHutWM2pI/GjvPD0Y52tM+CHbMhfUj7sR/7Mf7rf/2v/Mf/+B9fuN/P/uzP8jM/8zM3tic78dpgFuWHl0YObt1+F4Iwfp5e6pgbouW87YY+YbbvHI0Y9QkGII2iZTEZPSiRZnM3mmBE3xdEQWbIwrwSs6IJhiga3VYOqsPk/V3WCpRKxCbjZofCZOWUBhqjIrKiRVjIQCUem8VndY4kmYw0aMx9QhuKhaTR/KEgA8kc6ACKhmBCDuZmKehJGq83fpavq9tT/j5hjHLti5FzjYh8/j5ZhuQISRiSo00VAxCSJSB0sdL6EsneEErr/TZ7KEJJzTr+Q/b+nreRjDRIEkwSrCSCURTBJiHGuIcyGKsRnJgJzclkMXTWGiiXWSAmBBkBhbw3Nx4Yct7qEtWXGcowQxEmxGAK/98QTuePZfb5DWTgNoRhdtpD5GFEK7jluPz5UbPw6bcPOz9IyhFG1f+O3OYSwSRlfvRc8FgimGQBsmSxpZl0DX6t5y3DVHeuVXK1kiz0j/JY0wnBKTIgQdNTJpvP2U9937bCcBJJXo8BPb/pNeUjdSQsA9IbfWZ7g3SGdDZAa5GzYXyeUzVDm/O8sDltuXy2xK0GjJ2eRWMj1SJQOY1C17lewMJpleFtP0W+u8Gxqgfe265JScfElIRN09EOFTtf0VjVPDzvFzxqdiyspw0OZyKn1Y42VHTB8YXFc4wkHlfXNMbzje6M37D+JgBNTmxR0mPHpBH9Idk8h6ng+Lvrd/g/+8/xxfop21hzYnX/rw2PqXI67K90nx9RB0NFmyq+ZN/jG8MjvhUrLuOChXhed+pcXscGgDZWvOtPeN1d8iSsicnwueq5og5JdRPfWT/hiV+rni4T6J/4Dd9ZP6GSwJndgoVvDuesTM8wWL7VnXJatWxDRR8dn2su+dXLzwFwWrV8fXvOpuq48g0+Gi76hpQEI7rtom+47htq53lzdcXb280oDH/eLqlMwJpEiEI7VIQobJYdlCg8ulaolwNVFUYkadg5cBFbRcJgtE8uPLEyiCTS85q0CNpvWxXXS2um1Km1DtrJQHLTNsnPV1gGRbW2RsXQhrH6c6qSCg+dzhsSNCVwqUruV1P9h3mdhPxzaw2UpeqSSgrVmOuXJJd1Czt9rv1K0YVSpdq1mZ0isP18RjBaRRj3NaEPYEfNwge3P/bH/hj/4l/8C/7Df/gPfOd3fucL9/3Jn/xJfvzHf3z8++Ligi996UtTgY27Fv+84LN7nImb+6W7KUmH1yqL/MPPp1OhS/vDDqLbBF3cJaOLN11BZfrHbOUjs+u9jKNQLCaBaHjReml+HSMJg56r0JVcnilrq85DnbMmNRlybkzFyqg42ZpIlAkmriWMhdFspjHp+zTRhZJhwOprXpi3qRqFx4AuyPPifIhupPzMrVCeKuOxpOzU6ABbhNTFkalypqcKzThR6E8BoSJoe2bOiNKN7Liw72JFGyu2saaLjl3QjEp9dPTB4ZOhDzpAF+fAR6NUISanAGYL6TvstpoPgexXGs32YzO/Ikaji//SZ2fdbr5gH2lIswxHI4VozwGQW7M3qIORneB83lS6eb7M3CkoDTl0HEYH4MBJ2HMC8jklHTxjtzgJhzQkeGCIOcHMB717n6O9tD3E/OCXuW6UyQWf2ixOlum19INQz5yGnId9r4hT0kXIcKJ/R5cICyHWSpkoC53owO4yPcPlxVOeL6JTZ0ILpSV8BWEZiV7zvZs+Ozfka7pErHIRrZ0jriIk0Tz5iwit1fNfO2gilCJq+Xi3jIiJbLcNi81UX2bwlrPVjsFrocx+cNSVZ7tT58CuI7uuYlHrGB2j0l+cDWMxtD5okKP3Dmsil21DZ3VcbodKAz41XPQNV13DF08MbXAs7FSoEjSZw+Pqmrf707F90Rk2eTW4jTWfs8/55d13YLOjsDADb/tTzu2Wb+TF+BOv6Wy+3j/iexdv879dfg+nbsc3+zOGZLn2DWvX8b8++15OXDcGbTa255v2DICr0PDIbQlooczLsNA5QSLXscES+R9hjSXxheopRhKNDHxX/S4Ab/kznoQ139O8zTv+lKuwICTDc79kF2reqC/5Vn+qdRT8im/tvjCO4798+TlOmpbn3QJrIu9cbXhttWWIlqfdkm1fU9vA8+2CzaLjvas1PpiRSlxXgW6oaSrP1a4hReHx6TVDNFztmrGWkrVT6r3g9dXWgRTNVKhSIHpL6g3UhWKki6LURMy1Ja4D0pWHB0ynzkOqI2Zrtd8OujAxndZ3wKSx1kdxNMyQnXKTcNeixQm91gcxrUFyIbixuGDJPnaux9fP1bEIuUaJCfmcNoug4/SMS9BjS52FmKlKscpZzVzOjhamRAgPZvfNER/R/PBrv/Zr/Pk//+f5N//m3/DWW2/xxS9+kT/yR/4If/bP/lnqur7/BDP72J2FlBJ//I//cf7ZP/tn/Lt/9+/4nu/5nnuPaZqGpmk+htYd7WhHO9r7M4kJuUehJq8AJ/XTYMf54WhHO9pnze6bIz6q+eFXfuVXiDHyt//23+b7vu/7+K//9b/yoz/6o1xfX/OX//Jffl/n+tidhR/7sR/jH/2jf8Q//+f/nJOTE9566y0Azs7OWC6X9xy9b/PI0Gh3eIMvoijdShPa2+8W2tELGzbtOEZgZ2HOJOXP2clm9COlGjF5xQlERGs0zPpU6XqGnItY/8PmyLLWEQB/gEiMzcxfKs7FrymLYm9xq0caUxZLA1p7wQatx5BrNKxcz9IOrG3H0g4M1jKknt441qaDCCGHuSsJBAyWSFvEv8nRJ6u1DlKJ1jdj1H6Xc5rtQp0j91OV6D3azoxCVaorK/KhoYWS9k5rOnRjvYWFGW6gH4WGNOTQX0E6rmNDl9t1GRbsQsV1aNiFiq2vaYOjD5YuOHywDFndNRclv+hel99NZEIQ7vstD8XOJa3qSEOKMtZmIAnEGaIQydvYRxFuGcv26T2HEN7N/W+egOl5mN4wf1vej9ebIxWHn5Vzzps0b8fheR7KPkEa0kNGjj4N9pDzg6Rco2CR87hndCA2SlsIy4lCVCgJSWY0pEqj/SJMNRlSoSspRcjuNBqK5LSNywkdkDghDaFJSEz4pdIsolPEwGLG9JRxGSm5T0sEVbxGTlMFZmumyuheq+aaa0M6H0iDQZxGb0GjxX7rlLq09iDaKGsji8XAtq2xNuIzFaVahjFn/9VOHa/rttZxxGtOS1sFrrcNde3xwUKCS79ETMTYRJ/nhBAN712v+dbFCYva44PhK++9zuONKkufdGtqE0Zaa5MR6WKNGXh3OGFlO75UPaGNFa8X1Tnw/9l+B2duh5HINjQ8ZzV+djEs+H/t/mecRP7H7hwfFdF4fXHN//b2l1jVvdaA8I6zxQ5gFGY7E6nHFOJaa+jUtZy6HW91Z+O88esWb3MZlyxk4JvDI76veWu8/olpeR5WvDucEBGsRD5XXXIVGrpUYUh8Y3fOu+2KlRv45pUiKmeLHU93K55frKibAWMS33h6hrWRvquIQXC1IvBPL1c0jccPdqwz1XaGoXd0naOuPZt1z7avuN42hN7SnG9pO6343LYVCXCZdlaE7qAU5xTMNKBeWdh4uHJIFJJoGlXTTgsvye+rS6F/TYX1xmuF6GR1kA5OX2Oj6IKE2WBsoLpQqlGpW+KuzPQMxEn4bNDUqy6jd2O15RktMDp9bgtigOhz2TzbRxCr64wc5jWX6SCsUDjy454jPqL54Yd+6If4oR/6ofHv7/3e7+VXf/VX+Zt/829++p2Fv/k3/yYAP/iDP7i3/R/8g3/Aj/zIj3ywk77Ej3qDrgB7VAaYFhcy+7hQKiSvOtIdx97fDtl7d6MthSYyc1aSyYt8kx2F/EpKpJz1CBTSE5O0qEoSQkyzxebNlpRsF2WRmuaLySSkyMg93+OgC1O2pTxWGBsxVovENFV2GNzAuupZuYGV67lwCza2Y2M7trZmIRPPs5Iw6gjibEHeJl2Ab0PDVWjGXN1bX7P1+rR33tH6ij4onD5fgAN7jo2zcWxb43RiKu1b25610/atbKcOhAwjBD1vX3EW2qgc2NK+0sbSvuuhHtvWDQ4fDDH/A/Qel7Ye3N/pPsOY5WquUXnJ33b+u47OAYzF21KQ0UGQUcMg46C7l8noYCy7jYZ0px3uewtVaOr08223XOs+p+XGhzePTQ8NMUfuH4M+otR4Dxk5+jTYQ84P4vPCPtMUSm72ZHIRNXSBIwlkgLicFiYw0RbKcUQYThLGC9WV/qSleBoJ2jcmmgVk5yJ/Zjt1ENxOGE6TLmYapV6MDnA3dUyJIL1uj3VCOn0OwypiCr1jZzTjzLMKOwj+zGsNBZQ6JF6giaTBQBVJUTVVZd7wweB7i7GJp8/W1I1+8RSFoXUYlwi9xbhAaB1pATEobTL0SlORKsF1rVGpJhNbt5Z+XZOCsGsCKQr1auCdiw0ny05ZtQLrehKlr/NC/LuW7/GV7edYu27UelUSGJLlxLR8azjj9eqKy7Dgwi+4Dg2vVdf88sXnx3M97Zasq56LbsHz7QJrEl998gg/WK5cM9Jt3nm2wbo4jqslAPb6yTXXfc1ryy1vyQlfWj/jeb9k5Xoa4/mqPOYqNGNhtWJtrPhaWPL5+hnv9Cecuh3f6k957pY8G1Z8Y3vKzlc4iVz2De9ebTD5ml99+3HudIluVxF7q5mC2lyrqI70rUUMSBW4umiQOhKHMp8I9XqABH3vuBbYXja4JmBXA1dXC1wVuLxYUjVef8NB57KwdTrXuAhBMBeOeOa1DwYh7RxmyHoZl0gukUQm3c3M7M5gOiFWaRxnJcHibcNwmvIzlUZnITZFJ5RG59j0StcLjfZ9EGIFttfzmkHGBT+VOgf1RXbOK0Yta6EFQq6pkh354sz7le5DmjkNKbfnwbMh8eI5Is8Ph8kZPgrU9Pnz5x8ou9wnQkM62tGOdrTPin2S2ZAeMnL0abDj/HC0ox3ts2Yvmw3pS1/60t72n/qpn+Knf/qnH6wdX/nKV/hrf+2vfaC54ROvs/Ag9pLR/XnEcowszuCmOc1hogqVz2WiRrzfqORt0dBbG8geHUnF2xlVENHojUlgc+aBUmfBajg2moOMSQch15Rd/VLdt0CPhXaSguQIc44yxynKPLdY2gEEq5EGcYmdC9gqUlWeugosq4FV1bOpeo3gu5617fZg5xK9B0ZUocv5qa9Dw7VXNOFqqLnuG3aDo+s1rOC90QhXMCSfoc1SH6DcT5M0kuESYiO2Djin12vqgWXlWdfdnW28rX3AnW3cDjW7oaIfLMPgCINRsZjPkb4Cv5aI/mFXyfd2ek36+5a6HDDLhqXbbvudx1oK5XdOE7IwXnuOLGQaEolbKzK/lH3A5+IQSbhr250Zjl7iGh+pxZeoyparb3+aI0efNfNLcM0semimLEjG55oIW+jPlXpUBMYlomiG/EhkSmhYaHSzUBxAP7P5b9sqZWiMeqKIgkSNnLqd5DoMgvhCW0rYPmd/yZQjUIFndWmUZiFQX+r3kSCYTnBXSn+KNumYEsE9d2PUNEZITRxRwfA0R/+XHn+1ROqA2EQaDMGD2Ejf5uVAfo5DZ6E3xK1FgOgrCIJc1RinUV9zqe3xZwHztCjEIV2IguDXFs48/VWN2EjXVqQonJ5tuWpPOFu1/MqTN8e6PU9PVkQ08cP/tHpKYzxXccFTr1SjSgLPhhVvdyf00dIHy/8vvMZFqxH+zjtEEu9cbBjy94lXldamaA1hHbDvVipSrxLBJFjlm76zsPZ8vauwNvL8cslrp1t2vqIygStfs3IDl77hrNrxTr+hi44L//nctkhjPP/f688TES7aBe+2a567Jd/cnrAbKlISnj1f6fhqE+FZfvYXqqqVKzuuA1yO0JutgGiWotgkkjMYL8i1HdcAaRkZTCJlyljoLSkahp2O/dVqoH+ywJwM9Nta0a6CBCXRjESZkhYtmCcVCMQ6Ynb6QBivlKOwStjttDaItdYPgUncb3utNG46obrWDEOmiO9naytzLaMYWRL05xHbmfF5RJR2VFAD08terYT+TDOUDRt9ziVo9qNSlb0877bN2dD6/aG6iJrNVis/l212B0zA14e3++aIPD987Wtf4/R0EvvfNTf8xE/8BD/3cz/3wkv+8i//Ml/+8pfHv7/+9a/zQz/0Q/zwD/8wP/qjP/o+Gq/22XAWjna0ox3tk7L3oVn4NEeOjna0ox3taB+BvaRm4fT0dM9ZuMv+1J/6U/fSMr/3e793fP+Nb3yD3/t7fy8/8AM/wN/5O3/npZp8aJ89Z+FlIomHWoODY6Yc8+xFS2/jiL9UO27jXr+gcfvIgmoXktHochr1CxOygAGsIgsFVbiRGrbwzrMmYYzCg0aLIpiQI1yh8NhRMd0t96dkEI0W5TA6iM4Rq8hQV+yqyLbxXFQLFvXAwnkWbmDlBhbWU+ec3G7mbZd6A22oaINjN1Rsh5p2cHSDY+gcsbdaTRKQ3iCDYIccfQhTVLx89yJ+0mqriVAlfK3XbJuGyzpQNUuayrOoPKuqZ1lpGxd2GOtLFPM57NgHRxscW1/R+orWO9q+YhisCsYGA72BIUeBfOZjlny1L7ivqfyzKXMsM9Iwq84a7aRp2MsJPUfPRqRAxt8Y9G+ZI0dxtu0QWXgJu1X8/yGfFXiJ639aGCvvQ7PwaY4cfdbMZEQhLFS8WF3niq55PLCtRhPdllGMXKKQoPsVbVayWRS9yKkdN1BdqC4i1rNUjZIrysIo0DReo6qh1muFrHOItVZxDo3OLRKnY817RsWeBiqvz3F1pfuLV653clC9azSV5FnC7iRzvMFgSBmFiI2KqePjAXle6TgyZFHrice4QLysSbkirxmEVEcdE0KeLJNkDYimshSnbSlR4ua/2/G+K09clPctEAdFHJJLxGUkmcRzv6Fe97z7fIO1Maf0hG/aE9a5GvRb7Sn/7yffwaNGhchtcHx+ecn/uD5jN9SEKDy9VMTB5Lmwv2x0frAJeoNthXqX57cBJNhRFCt54PIrO7bbDwJ9Tb+KpDry9q6iWg1UldfUoybROOX8L6ue2oapcnXT5qrLa2obeLpbkZKmkgXYbhvERGLroDOYzkxzS1uNXH/TC26nfRGj99sv8ni4kyzS1990TNJiDKmrZ4JfvQfSadrsYZe/40VNqiIyGEKeR01+TTZpqtJORuTFXdlJs0OO1l+IVkkeEbgJkR7XLDaLlm1+Nnxp5/64LlHLBiWnz2jzxGhK0zJXBe1DbjslHgB9/gDq53rOxbv6bE8nzuhCRiX8JiMIXreBPn9JFHEotRgkTuNFQfkexF5Ss/Cy9sYbb/DGG2+81L5f//rX+b2/9/fy237bb+Mf/IN/gDEfTIzxmXAW3pfYEm51Dm6c73Dx9QHOv0elmG+775wzKtK44M00pGTmzkOG9QplZXQw0s2OmR0FiZlBFCbIu5RWl9v+Fadh3mYzDRRaiCUPYE6ItVFxU5XoG0dfR3ZVPdKTKqfZJlyeHMyMRhOiGXN4D94yDBbfW+KgDoJ0BtsJtiuTmj7gtte2Frjy0FmITgevUAuxFmKVMxI1idg4uqaiayJXVcDVgaoKYzutiaPwbS4K92Hezkw3GuxYMEknVaUsGD8NUtOCnf0BovzO2bnRfzK+xuw0gH6Gvf/3lrRPMRr9splzMHcIx3uX3l8/Hal5M1Zb+fwD223UvQ/pHDyoqHlm70ez8GmOHH3WLCzAZZGw8dNiw3bZYcgZjoaTqaiT7fRv0ONiDfWznEUlOxOSAxNhOS0oqivG/l7qNPh1fj6H6VrJajGocT4I03VlyNlYyI5Gfr5syxickUyfKs6OUjXANjI6JZAdnaBiarszhGXEPKmIdVTRaqauculIyWFCrt0AmK0gwYyZ0WwnY20Kt8uC0naicpV7Vax5pgvEPmVh6UoyjUvgucGvNQgyXDqSTQzrMB4/DJbzzY6QhKe7FSEK71xsMJI4W7V87ckjYk7a4NtKRdaJkSpj+zw/JL3PJv/+tmN0viTlRajRe19nZuCwgvrCZKfOEmpLXEaG1jLUOnHW654rGqoqsO0rjEmEnLTisltwttjx9uXJ+F2Ct1gX6C4aZDCYrcFGcFt1HktR2eapYLd6j9xO+5vr0DnC5D6Qx+/kdPwe1oxzodsKRWuthdHUSQRGKhuAGQxyZUbhcDG7M9lhVgG/3UFsBHet96k8O+6KsbBg+e3dNj9vy4kCVF3pd7C99oWwys9NnlfGeiJWv1/zbhYgu+l3SmY6JmSH3LX6Wpxqn+unlIQFxbGxXX5+nHYt8VN9heGsfGf2nJ5Y5+cxO+MPmZPik6rg/PWvf50f/MEf5Lu+67v4y3/5L/POO++Mn33+859/wZE37TPhLBztaEc72idm4dDzu2ufl7dPInJ0tKMd7WhH+wjsvjnifc4PL2v/+l//a77yla/wla985UZxy/ebTOIz4SzcyLW+9+H9x984Tl7uuFvPf4AgHKILt6ENNxs0vY6wXnlfos9F8Ez5TEZ0QTHtgzal/WjySNlh8qbn0fnyeoPaw9QemKLgiizkqFcl+q/WCEasMj2pqsFGxCZMjpKLmR6SUkUyBSF5gwwG6WWMFpWUaiZHFWxGFcyQcvReU7PNU+Fq2zLyUWk0J+T087ERQqPtDE0i1o6+TnRVRNzUzsM2AmM7CQYGUbrRoOnkTJ9Rj/KvIAthikTeiNzPKFMjGjJDRZJThAHKfjIhEYV2dttvPkMVxr43RxJKfxj7yKxdL+qfcxTh4G+Z9Y8b6MIHpSe9rN1y/lsRhYdEGT7BOgsPGTn6rJltIWb6RqH9wBT511SN0DzJVKJKo5uFMuG2eXuOkCaTI+t1PoeZXu1WI6vzZ0G8UizcVlEG00/HFnF1MhmViNN4BrPIaijCTsaK0saDXGu0V4KODdVV/tJl/ok6zjVPJEfWM5q6UFqK7cx+RWkLprPTfatUOCpxomu4nV67eQoSE6HRKLgd0piiEnS8tZ0iMsbrNfxCaWDt61A/k3Ge8OsIz51SalA04lvPFkgVSV6wS0/0FjGR3eUCWwcde68qpaDm9J3uSl9LxLm6VBpafZkIlc6P1U7nx/oqEirBDolQC35RovPlvgmxhv4EBm+IO7CdpXsc6XcWGYRuGTHLnGq21/t2vfC8ffUImojYSGwt0huCUcRHgkw0rqD3sSBBZtCouVxoMpNKMnrUJWIlmCzODzVIp/20up76KjCiP7GW3K8UbbBZuB8WaZ9mXBJeZJBB5y1lHNhOzxWW+r55wlSnxGpfKFaQi+ZpTiqQkZGxbxmN4o+1ENKEVEh+PoYN47zpV9qfh820RqEkJ4hANUP0Lid0pqyRbKtpVzH5u+UEBdFlJOmp7u9Xur/J39ev8vdtp/M9mH1CdRZ+5Ed+5IOXJDiwV9tZOFgg3SjCxB1rgofgQh9eZ7bA2lsIzv8++OyF+eMPKB6TfmF6HTtzeZ9FFbfSqpgWhybk11k+8eIgTIvaNFGTYtr/TnNnwcjMWZDJYXBlAhbdXplR25BMIphZ48rvVmhSfoLUR6pRHrxspwMogO0TtkvYISFDwgQtfDSvVpeMEK2QKiFU6hyEWhsfmpxRpCI7DWUS04k0udzOgzaWe2niTItQnILc3vF9dmImTUWafpOD+zneyxkFqThhxZGATIcwut+oY3nB7z45DbNbfqhPmDkJt1KQDp+zsm1Ol5OxC04OwyE1afadP7S9jGPwEVGPDq76EoP9RzMZPGTk6LNm0QG1Ll4KXUFE389zuY86ItmnE4XF5LzbHaQsLwm17ufX+rdfTrSgZPJCJZ+v0JVK4KI4COSFVxlXBD2uOAsksHlROWbos3lfD2LAXOo220GogEzbAB3TbMdIuyltsq0GTIyHsEzILo9dO/byytcXjBoLd6UL2WTz2BbSSOuqdgm3izrOlkWbSSCC63Ts802uS1FpMa3ooD8tbVfnpThy1VdrhtMEWNVqba1qvoJ+v2QrTFDnYAxueagyFcZ2OndJhPpSBzwHNM/9OBe4VmlPfmVx1wm71oG1jFfDyhCD/oD1hTo6sQZJhrHWRm+R9xx+EyFr4GLOOGWeOezWjHoW22VnL4+rhfYUHTTPUv69BLdLI610XAxvI/3G4HaJsBCl9bi8qI85SyJ50dsz1i0wXul09eWMAmdk7H/JyNjXRlpbpufVz/Mz4sE+m/pOQrdVmYpUxtr6Uvcpa5JktL/4xfRqO31eylqjZDMa+3Sc+qmZ3bdynVJgLTbZIcnHl4KI7nqaH4uuKJVnDHXaix6hfJ8SDEhpepbNQKZ58cBzx31zxKd/rD7i1Uc72tGO9mGsRI3u+/cR2I/8yI+QUrr139GOdrSjHe1TYJ/Q/PCQ9kojC/Oc2NNGfdmrynzrwXef94VCynlk9CWCiXcJRW9sP9wnTagCMkF9kj33G1SPu6gfszbMkYVCMQJ9NZmKZEKa/s7vJaZ9GgtzZEErS6cMTxaEITmNdpXtqWy3ORJ+GHFminjLTBBssjBJhcxpRBNA4W/TR0wfkRARn5AYD5AFQ3JCsgZbG2JnCNUMWahlhJ2LiLEItpOTfQQH9qP1+R6Obc330A6l7ZkeFVIWN6f96sizezkXNxsrRDuraFnuYY6cjEK9EVmY/f6HVCTYQ7bmf9/IenRHXz00OfjdxvtRDr8vIiN3vD885YvOc8817qNBlXv5IBYCpHtSZ8SHTK1xtJexsVLrcqICKQVHx6Ngc6QRpcz4U3I12ekcKvRkpDqEehYBzZVeSxakEsUvNCeYUZ+Gieo00i2qjHakKeJaxuTYAAHa12DxRD/zuR1mgBShynSPIpAuFBCYosXktrrddD8k6DmaJ/lhKChzfvZNFv+6HSNlxvZKO7J9wnWJUAmrtyO2jwwrg9vFGYVKCFUZ/xIkgwToaoPtE/VVQpJhWOX7Uun9B81as/yW5IrbE1oRq3yfvNJvkug4W6haBSWvriPN04AkGNaG+iJgu0BYWMwQcZcB8VERgC4Qlo762ZB/K0NoDKu3B7ozR3Wl7Q8LoV8bho1ez3aCX2s02+0MKWuEjNd77nZaV8BtIaRMlREVLEumZUnSudW1+aa3Orf1G0N9ETPFSxGb5bueWOs1/EpytF6PG6Pk1xlJuJjWRENGk931FI2PtSIHpd8A1JkGVFCp7jXN9FUoPGU9QMoU3oWeq8rH96fTXO12GQlwEwJR7kuhO4fF9DwVal2phWLCJIwu7UtuEtbDRJMD7ROF4lRQilIvhTQ9mwVBDIs01oIIi2nu1L8T7kr0eZeM3D+U3TdHvALzwyvtLBztaEc72idun6Bm4WhHO9rRjvYpt09Is/CQ9ko7Cynz42/TD4yb0v52btl+uG3+0Z0owyGCUf6bR2fT/j8p/eVwv/l1XgatKCjDeHB+uSXae4gsjNH7Q4FzuIkqmHk0PO3rFsq1Uub2pQBmJsiNFkwW5U48fKZI/WHkNx20Lcz4/oNGtsxQ9AnacNtHxEfMoK9kVKGkIUsiiAkwGJIzSDCaOi5HaeygKIMKn7NeoaAKd7U33d7eKfVsQRNecA/n5ynIUZJMHxEiCYPkrHmJSK6GWvpaicbECZU4TLd7ox/MX7kb8bozEn+ABuyl9r3tPbe35760qi8tRr7tnC/aPv9MEik84OAcXwKSiZ/+yeAzZ6LpkTGZA70TsMrHdlmQXKrPdq9l7v9i6jeFv1wSIpRc78YzpmQsaO9eRecssh02s7oJQ0YHlvnZLYhCmvK6wxRxdTttf3U5IQaugyE/93NkeeSc99CdTcdLnPQZJVVobIBZNBY0Qh/NbIjLgtCx2m2GDE2fRvS07hRR0DoMTDn2Ab8UmqcB4yPto0oFxbWwfBIIjWR0II2arpJ8AqC+ytqNfH/KGCJh0mi5rW6zXZ7oBaqtPl/N03yNBIsnA8kKpvO4ZztiU2GvWmJTEZcV7uk19sqSqlyDYFFhd8KwqXBtHBNJaLt0NLZDot+ogFtijnjn+1hf5ih73p6MbitaFq1llEYdSn0ZiSVphQN3HXSfPmIHQXwiVtCfWuqLgATVgbSPLNV1Fj4P07giUfT6Sa9ZXTImKinItc3IU7nvMGlTzDAhDsbr71ASooRK+1e1ZdSc2FmaUuO17421CYz2vfFvyWhLRhHG6c8r4md3k0ZorHkyQx+inTQ9xs/6fjPVVzC5jxTkvTyTtp2+bxGBQ0YFS9V2Ide5mJ7pB9Us3DdHvALzwyvtLMQmQX1wkw8W8fNth+9vOALz1cU9TsboJBx8duio3CZuHvc5pIbMr/syfecO52Cv3eW6Ma/bSgavNDkLus904Lw4GAhJtFiLnv+OhiVdFBsvpJjGxf6UsWe+qJX9tpd7kIXU0wI8TXSekEXMPmG8NlxpUi8R1UXbLUFvhu2zIC0CQTA5S4XSp5IKomeOQhEQ36R3pckJG/+lG3/Pf5Mbi2WR2YJ/luFoj/qkTsQIywrj74lBeRQFThXuXDzPHZ69Rf1t9+ugnTdEzUznuMtZmO9zeN7bnIa7273fwnu/3x3nn/8dIw9nR2ThU2nJJdIiYVrJGX3SSHnoHoPpRbOkVAkJOdnBImKvM+Wj0nMonSEv6vJCfzhL2F4DC9JOGVhKFiLQRUl/mnBboT+HkjM/hckp8Ou8mMw0jUJbGsxs/Pa60LJ9Fowu8z4rRtWhu9aFUlmc9WeM2WNKhrjoGPPmFwfK7TLVaj0tolJe/EsiF6NL49hdxrRhZfL9EOpnAb+2VFd68ZSLhobK4NqYF3AJ3xhsl/BLg/FpFGCXbDig52+eJ4aVLvj7jdA8T/n7Tgt3pa8IzROv3y07G35lqC98zn5jRsdHHQSHuRbSwqnTsC6KdT2/6TxhVWGHiLSJWCktye4iw8ZSX0f6tWHxVOlBKuqdLdhFMxDZPo1jYbKC6xJul7IguSyGJWfv02Olhdho8CoZo3NbnifNkBjWdsze1DwL9Cd2zO4DMKxVIF1tp/nE5roepT8W+k5ZjLuc9ccvJtpUyWQ0ZDEyJbFGzNtyn5Ah9z8mKlnM9f7K/pK0j4VFdjAv9L1fTc4xotcr96XQ5kw/Sz5Qbm/Qvm9nBdOiBUrij0r39+s0ZnxKAv3jSPXMKM1oJ3t1VMSCX+n+WmMljfWMYvWAk8QRWTja0Y52tG9zi9kbv3efox3taEc72red3TdHvALzwyvtLMQ6QnPwA+xF+qew4r0UJPaj67eiDHehAIefJTn4e4YwMPv74Bwvvc9t3+Hgejc+l+y8ZogtZ4HTjwSi5NzLpkTGZYxc7Ofhl9vbU5ohZT8y/DlFXcbPZyc4FAwXhGKiTKUsXC7IwwECYgVE0+yRrEbh99qTUQy5TayssHpK+r1NENKgSEpJL6fCxXQzIn5L+2EfrVGERmYfy006z4xCpJW5p+1Tte4ZMsPBMbN7u9+waR9u2+e273OAGIxtfNl9Dq8n6fbr34Uu3IEm3Cl0vhOVSLfuM/87PiS0EAtcd98+R/s4TVMMJzCic8VpRK4sqULz+pcoaI6g+pOA6Q1hlZ/WEr2sExjocsXm/iwjDRGQpGlZeyFWelwRUI7izmrKOR9dypXup/FuOCGfaxo/YjMJjSFHhR10jzSSW2oCxCx4Dk2uWJ1TSrrriYZR0ktKmFJTjkJvM1FnRgFprrqbvx7tY6G+UMS134CtDX4hNBcJvxSSWBDoHk0pSGNliZVgO42ot2eG6lpRGreLkBQFMH3KAtYczXUypj0NjbB4BqSUzyPjfsYrQhEWZkxHDTpe2l3QyP2QI/cGTXCxHQiPVhAT4XQ5ormF1jqc1dg24C57Ym1xfSSJAxGqq0B/Zlk+CUQr2D7AldJXy2/kdhG/zHyuVO5zGlNg61guuFbviV+Y6fftFTVAwNeGaBnpW2XM8lbTxXbndoyal8/cTgXoKafUDrm+QjQl3bjWjSgCeAmz3zvTiMbaB4GxsjI5FXhJ8xsarSmSqv3j+/MZlUgYBcbVFWOtkGGWBjyupn5eapeEJmUqUBqrKdtrISxgOInYncH00J9HRQXzsyl+ukfRJGKTtD7T1hCXimx1j/WY7nEYJ4u0CMQLp/2jisRGxwR3bbT+x0PafXPEKzA/vNLOAsug/4rdWEBPK4U9x+39OBRj2p/bPrvj+NmCVubnmS3ib1vUzx2NW+s23Lad/c/SbP802zZfjJc83+MaLc7PIftZcmYOwki7Kec6aJ++ptsdgFs+m75z2rsnU/GwtHd/CqwrRmYbuWFzzcLND/fPNz+PDAmRNC3wc32FaVErNxa4pb7FuFg2L/hsNrjPtRDFoTnUHuzpJcrn5SvPzjleUw72v2Xb1K6D94ftG7en/ft0q1PA+KPd6ViM2+Yd7+a+44//Ph0BuWufw+uMbX7A7BNHGtKn0uI6YIMQNvm3HoSUF/SpjoTN5DRgwLSGuAwQpw6TXMJeWl0AL+I438eQzyVAgNgIttUiY77QHIIWk4x1JKwg2YS9NroYWiSlQPaizgj7XVKC4DcJd61jw3Cix7tryQW2lD5iBn0frb4vFIsxA02csjMVvQWDLtLsbsp9X7LGwJQz32Qtg26TMVNdtEK1TXRnotcN6kz4ZR43TV78Z4ek36ijEGoZF/lKP4qYAOY6L7JRHYLtIn5lqa4jZkgkK4RGaw0Yn7IuJE4UnpBGbUF1PdCfVZCgedLSvrlk8daOsHb05zU2Z89LAn7tqJ8P9I+VjmQyPdWf1EhIDGtdHrkrT2gMiyeeYW1pnnn6M4ftIvVFJLmpv9TPA2Gh2gbJ39Xu0piBD0l0Z0brVhjNeFTubykU5xd6//oTvSehEkxQZ604ImMtD8bTKg3O6+9ovNKEqquJYiRB+0fJPDQ6piWzUJh0A6MuwEG/mdYMabbgn/cXidB+fqLwFccZI/hNRAZBvBBWUTOGtbpf/yggXjQ42UQkF8hTWmBSilDKz8M6Iit9ZoveJlXqYIRNhCCkRUBaS1pEvCuOYkIGIZwFZGfHuhhiIJx5pIpw7XLQIBHPotZoMB/jHPEKzA+vtrNwtKMd7WiftB2dhaMd7WhHO9pddnQWPlmrlgOyvD0ZbjrkLsz+PhQl33pcetG229GGNLvOeI0DhGIfDZCbiEXevpd5aBQXzyL1MzrQSBOK0/n30YL91/tE1XK4TzkeGduwhyzMBb1hem+CnmCMZIz7ToiBCpQP2rN/yzSSbWWKwB9G+g+27Z/kFtTitm2lTQnEp3LZg3ZMESyN9AvMEYJcQyIWcXTOpnEo8Ib9vw+RgvH8hxH4w0j9CxCEEYUQxjaONUmEkVq1h0rMKGOpoAUztGG6ZrqlLfuIgNyxff/94TE3UQN5AUrwIjThxnEHx8Q03Pr5B7EUAumeOgvpFcij/VmzZBNp46lWA0PrsFVURCAKtg6EzpKwiItIFUlrSK3TSCPo2AXEDaPosXyWvCFFjU6SI52+zoNJyHPAIhBWINeW1ESIGt0kCtILuIRfRpJLuAur0dF8HXoDJuGNjJlajBfaNyK21XFQhlzfxmliiWExIbchKhIQq0R1JWN2t1gxZkbqH2VEwWjEOJUECrnCs8+0FOOVwuJXsHwnIxpextz5sVbxcal1UFCJ7kzoN7I3HrXnZhSt9ieGxbNI98hh24mGofNIon6uEfzqMigVNWkEvtTZkZDwK5sTYei2sLCYPjKsLf15g18Yrv+nFcPasHgW6JYOv1IBsdsltl9YTJN1Y7GDmahMpU7HymLbyHCiImMEqkuP7SPJCjEPgmFpsX76DQpa0m8MZkg5W89UOdkvIOTMfN2ZsHiaaB9p5efuXO+v2yoaEBpRIbydqGekqeJ3nxEDgZHCYzwMp0ph617L6ILXWhaH2RBLxsIy3o+UpEyji7k+Qax1nkxVGhG4uIzgFSUbzgNmyCJrl4gLITURMYa00OcjAeH1oqYH1glMhMuKuFQUIpVnKQkJiKuADIa09KTOUj9SdXZ30RDeCNAb7HlPikpPT51FNp40GNx6IAUhBqOZA/IzbJqA5DnPDwa78IhN+OsK0wStjfBAdt8c8SrMD6+0s3C0ox3taJ+4pXS/QO0ViBwd7WhHO9rRPgK7b454BeaHV9pZWC577OqQkLxvNxCGg23x4PMxl/2IEOTX246/DX1g/3ffu/4tqMP+5/nv2StJiHGGJERRBGEPWSjbCqJwU3ewpwX4IDZG4PeRhXldBM3PLFPaVK8pyYyksUKolHMVvmmcbsiYVxsmcXGJzFsVh8Vcu0H3Ofh3gDxMyMFhOtP8+bwOwlhBVSMfRTQniVlkPxNGmbUhR83GytWWvVoNhd85r9swb/scmfjAP80cUZgjC6NQO19njhyYpAK2EWFIGiUd0QR9lbnGgP2/b6AH5XMOPj/YfhtqIAf7Ta/739Xcca0XbbvNIv39O72sjcVT7tvnaB+nmTogLlLXHmuziLV3uOXAetHTNo4QjUYcgaF1LF7bjX2s3dYYF0lZZGpdZNhV1GvtO2GwhJ1Dlp56NdA+WWJXA9FrSLpaDPjOIY89RsBWgWHnEJMIrcOtB0LrVPbweiD1Fmk0wmjWA9EbYqsc63CWCNcqxgyve5LXh13qCK0hJIFFQC50SjeDIg5E0VSVPotEtwa/mqrklvHJtZp3HjQybXI+e2CsaGs87N7UCHV3mutQWE2DWY4Fch0BFabGWisud49kTNtthwnd2L1mWL8d8Is8MGaRnQmJ7lFFfal6AdtF/e6NRWIi1gZ3rcgDgia6QCPwrhX6U4NfmYwO6O939XmnpzcgIYu1h8Sw1msv34u0j/T89aXQn6gY2XiItaIR5GtrFF5U/5DbLkFrH5Rn3Q6JaLUGRH9i8Xmsd63WauhPZC9dbXcqWTyvSI9fsqc5iSeTDiU0WQRfUIpci6PUIkhm+qw/099pyLoW07E3pg+bLBQOKs73K50bwjqoXqdKpHUgrkTnjSRgEuLymNYZOPXEnYVFUFlP1H1S1H6aGg9BkDqQBoPN/Tx2qoROUahebwnekKJgXCRsK8xiYLHs6ToVVlgbkU1Pd6WiDaki9XIgNJZm0dP3jhgMdj0Qe0tzqjlakxGW6x5zlugGfUaGnWOx1JtU1x5nI9tdzetfeM7zyyVSPbBm4UVzxCswP7zSzsL5Yodb3q8ij7esxA6dBJgW7nFv4b+/bf6bHp730DG5/Rr7+x86LilBjEbX91E/j1Gh8xSFFPLDV96TF797TkSaHIh5H533x1toIYdC2KmYxOQclQFf8rWnYmS5AEwutGO8ZgwZhXOia9M0iqTL/UyZ3pT2BcE203msEO1+wbSYBWXJsV/sbS4QZvrukiH5sXhangTHdpa2Bl0wm1w0RhKMuZVKu4r4eUYzipW2Swu8MRZJio4xa8RIAyjCLJumWhYvuN83hOzc8l6m15F2NHMCilNQHBWxKTsJCbFJM2CZhDEq8Baj9AtjIiI3F+h3OQTFzMGC/XABb7h5vDlwEu7adtc1Ds97n/nY3b/Ty1qc8/LusHT/OHW0h7XT8x29tSxqXZEtnD74vbcM0bJZ9HTe4myktoHtsmJZ+XHcdjaybnpCFIZoGbylqjzWJCoX2JmK5mTHrqtwNnL65hWny5a3n6nK+HSzo20qjCSlBQmYVWLRDGybmkU90NqIMQnvDfVpS+V0gdL2FSkJoY5YFxg6h5z3WBexNlJXnotnK6qFxxtLCpqFJ67zIiyqoNT0Oh75TcQMhuSS1o/IAQwzCGGR8BvGDDPJprHew5QyD2wn+GXKY7JmpZGoC0jbyliLIpTc+lGvU8S4bpuv63LRtbwWax9ZQhbZ1pdK+6kvvY77TmsyDCd2pCpFp2Nxf+owPtFvlGIEkAbozgyhVmegZOUpom2JjDUtjIfeTfSp7RvqBKze1cJyuugWFcjGKUjSn2gWJ7dTcbO7Ll5Vwq8cJiZiYxCfSLVhWBpChRZR84mrL5oxM1Wh+xCVbhQrFZ2T0KxcaV7HQMe36kJ/67CKuCsd1EtGrOQSQWQUKxcbTpS+Nmz0Ny+0OtDfNZVsR6ukzsGpV3rdm50u3m0kGotrAsZGwmBwtd5z2ST8YElO5wtXe4wkvLdYG8d5pHKBlGC7azhZK43outXnYPCWGA0xCotlzzA4Tt68pDKBy92CzbqlHxwiiWUzjM/0pum5bBtWJ1v6MD3TttCLgmFVT5TTOo8BABeLBbUN4xjgg+E7Xn9GO1ScblqC+RjniFdgfnilnYWjHe1oR/ukLYVAuie70n2ahqMd7WhHO9pn0+6bI16F+eETcxb+xt/4G/ylv/SXeOutt/jNv/k389f+2l/jd/yO3/G+znG+aKkWH84jO4z+x1vQhYIgxAMU4L5zvcw1R+QCyciCvoZoSAlCMoQo+GCJMW+PKtaJRUgXJSMLQiyVC2ei6FEwXa45o5kAE5ogaaSvKAVldsz8XEHGiJN4/VtmSILtIQ5gC+1GtHYBWc1rUkYYAEFIIU0XK9SjHL2KtVZWLpGZErmHHL2vJrrPnmAXJiQkZdQjpwgskaTSXlPa6jN0W757mPGiAKzMaEQF8ZjaFuqcL7pSRCHUU0QoOY3YpQLd5pRu997rTCvbS7N7328qjEjCiCJk5ADA2ISxETEJazSy6WzAmoQVjQJZEzEZRTCSxqj9bZH/++xWFOCW88yRgXHbISrxobh0kw3hSEP6NNtDzA9fOn1Gtd4Sk7D1FSs3cDXULNzAdqjZ1B0+GnZ528INnDctbdBpsa31NSUhIvTe4WzAB0uIwudOL4koGryq9XiA73jtGQBdcKRKx/PNQj9rrCciY0TzbL3DGkUeQjLUVhcN1iRiEup1wEeDXe+ICLuuQgQWladdDvheaxzU654QzJjG07iIf29BPPdIEY82EbFTZdu4TJotcmc0LazktJdNxHSGkjY5nXrYWWItpEWkb/K800SdCwR8LRMEGgV7nSvmbkWPK4hCB0MW4OrqQz8zJalEgrAQehzVVcD4gF9abJfGasnJCaE2KjBGaT3b1xWy9Uv9fgXRniO9pWp2qLUdJRVoqU0RKz1u+4bSSetLjdbXz0GCpnuttpHqKipisjCYLtKf5hOLzllKExKtk5Dv1YiGnOTofq5rUOaTUoMj1UnniyrXD7CJ1BmN9ldan2JwWmVYgtAv82TWq3A8CVQXwnAaaZ4YFVGvsig/z43+3COd0d8VCK2iAqYJpGBIQTAmYpaJ6A2u0f02Jy0h59K1i4jL1D5nIru+QiRxumzZ9jWDt5yvtajDVduwbnqsifosZDQA4LXNFh+Monh1T2UCRrTvb4caayLr+gKfDCw6GuvpgsObKbHNG5srQjSs6w4jiS44lm4gJuGyW/C59SVPuyXtUDGE6bhHyy0pCYtKWLoBn79b1WgbfHpAZOFIQ/pg9k/+yT/hx3/8x/lbf+tv8Tt/5+/kr/7Vv8of/IN/kF/91V/lzTfffOnznLiWuoqY+ygA91gc08SUv+9zFPb3P/x8brctbm47f9kek+CjIaKvPhqGaAnR4IO+j1HwwYwPrjoO2XnIHEH2HAbZ76aHC1QzLVpNpqRIXnyWxaFqKHRiTEFI5dpe4W4GkxfEOvjb2aJdxsXtREEqv5hBHYVRryB5Ie7UMSjUnlDLuBAvEPn+RJByIZm0T0OKCsmKl0w3YuSJGlscGskTYz5wUOZOyWk9b1ssWoWRGsXY1lgzOQz5NebBn0qznhSep5iIsffc50w9GzNnxULd0nbd0OOU3zVTjwqlqDgHJg/u1uhAb0yiMgFnI9ZEfW8izkQMSV+zszD251sW9HN7P8/B/Ll9kcNw2/4fxObPbe8e0FmIc67YHfYKTAafFnuo+SEmoTYBnwyvNTuufM2by2sWduCtnVKFvnP9nIthwWnV8qxfsnHTAmFhPRvX8aRb0UfLuupZWM/TdsmjxY6trzitOtqhYuEG+uCoTGBZ6QBT2cCq0n7mTOR6qFnnv8trTMJ53fKkW45BIgBnAykJIokTm2kdUZ2JVdXrfhvog6UygT5Ydm2NKXUkgHjWay75ncM+6olBVAMhYC8cDEpTTDmgEM+03XLpNLBRip5ea956c+pJlzWpTkiVKYorr8GrncPkhWvqLXEzwNbh1wIbpa2aXgNLyWomIEmqXwiVvkIeT60gDsLS0DWO6jqoFkBAvNYskKBFzfoTpQuV47tHmrXJtnoT/CZTVZ3+HZYloCKEpX730GQqT6/7hYU6CMNKnYruXK9dCr0lq3Qis4vExoz6NdtGnE8Ma4trE8PKjEXmTEh0J+owVFfQPtZrjcOlSYSTqEGd9UAcLDR5vtwMOrTbROgcuKDDTTObN3DErBPoKw1KDSdToUAzaCYjrZcgpNOsewGw+nuaKhKSYKtAvfAkYHEy5AW1px0cJ4sOkYQPZly7nC12rKqeIVoa63l8uuUbl6fjM/C/vP4OV0ONk8jzXrlR33H2HAAfDc5E+mBxRsf3Otc3aH1F7x1vnDzHSeTddkUXHI+aHQvr8zM6sA01rXf4ZFhYz8J6+mj5rs1Twlroo6MNji+sLnWNldu9sPrMFvPJ8F674lGzo49WMzQ9lN03R7wC88PNVe/HYH/lr/wVfvRHf5Q/+kf/KN///d/P3/pbf4vVasXf//t//5NoztGOdrSjfXBTz+6ef5/+yeDTYsf54WhHO9pnyu6dIz7988PHjiz0fc8v/uIv8pM/+ZPjNmMMv//3/37+03/6T+/rXGvXU7uEvQXeedko5CFKEA4i/bftd5tgGlCv/H3SJMLBNWISfDL4aBX6DhafDH2wBKvIwhAs3irSADCIJdo4IgypoAqxhOpnbRKAgiyUKLcKeyVTUsSkkYJySI8pIqSQrx2tITmFaKNIhrKnOhESQHIGh5iF0dElSmIejaRrBCVlVGGeXUipRgVlyFH7LJgbKT7VjOJjJnpVKsiC10hVGqbz71lGO7TC9NQeERlrQozi6wIbu0JFYqxqGe0M7aghNolYRY3E1RrZNy5H93Nkv4i/5ve4UNFSLOL22W8KEy1pLNKw/9sWwbIYRkTBSBrFk84qelDZQGUC1qjA04m+KqqgfyuyMD1LH6R/33XMPopwE2UAbjzbH/S5hv1nu3IPXGdBXhx3eRU4qZ8Ge8j5QSk9OnY6FzmtOpwJbH3Nm4srGuvZhYrTqiUinNYt21CP6IJPhtfqa9au49o3XPkGHw3fc/oebahY2IF32zW//tHb9NFxMTTjMwQTUlzer5bXbFzH/3XxmNeX12MktQ0OHw2vL7ZsKhV+fvXqEW8ur7gaGowktr5i4TxvLq/1vfW0dZdpVZ6LbsGqHrjuFHZNSUi14FxgF7JA1VvsyhO9gTdb0mDhymlu+14oZXHT2aBzx2C03sM6QBCit5jTXoWtCfrrGlcyxiw8Ln/v7bAkJcFsBuJlDUtP2jmCgOTshUk0e8+wLpmbyNsFm7MBDc5QX6qI2DeGaqd1DRDBrzRKH52oULhmPG+soFBQ+9OSzQjiImK2WRxccv4LhJwkJTlBrgW7g/40ZxfKVa9DrQh1qdFge4jN/jOfrNAvjVKpKlGRdKeVrUMluJ1mkfIbMkUqTddulBtmlorUIIoGl0xdxkWciywWA9cXi1wnxCG2HB9g52ARoLXahqVmkEouKkqdkWypgv72Rch/0pOCUFUBV+koWVee02VLZQK7ocbZwKPllqu+YVPr8zEiAEGFxzaj0jEJXzy54I3FFbtQ8aRbKQIXHI8X2xG5Lsduqo532zUrN/CF5XO+1Z6ycd04J/mkKMam6tlUHVtfs8hQkjOBBYM+d8bTR8dJ1fL17RmXw2J8Jr9n8x4+WZ72K/pMRXpvt+KN5TXfuXrK290JMVR8afOMJ92KlRsYZmLoD2v3zRGvwvzwsTsL7777LiEEPve5z+1t/9znPsev/Mqv3HpM13V03QQPX1xcfKRtPNrRjna0l7UUU9bkvGCfVyBy9Gmw4/xwtKMd7bNm980Rr8L88EpkQ/rZn/1ZfuZnfubG9rhtwXhu9cneRwR0Ht0fzz2m9sw5lDlEHW65JFOmORizbL7Q9tLPJ6MR0WQQDClaJBkkGkw0+GBJ0ZKChaifQxZfBSFGA1FUpBTZT82amDQE5aJmehWTlL8qs8j0QZpMDdsY/ZKZW4s3Ws10sKTekHohDULqVTyc/PSv1F4wPo1p80xIexnFklHOajSQEILo+yD6r1yefK+jJFLKqEJMU70AFN2TqAcWIXYahKJbSlnDkIZZ+4ak9RfCHW1jioxFhGBy+8q/odyeRCTlQSBC0pzvxHxCo1EfMfHmPc76hJI6d3xfNAujduGO31ayZsFGokl6DZtIvlw7kEwk2UAyAWOD7mMiSSJiAhCJErPgeXYTXqJPz5+Nw2eimJFpu50S1CISiUzowvzZtpJuPddtdtszrW3Lkd6tRqYeYpD2qeO+1Heeh0MyjrZvd80P3dXAiduxlMRbz0+pbeDEtQiGnsR1dJxXF8Rk8NGxdj02Wq5y6eKl3fHfL1ecV1v6KFQMpOCQuGXwS2IynPCc/tqTGDhBBZ2nSdGBt7uTUYN2WrdYIpfbmpPwjOE60VQdojWkWfuOtBu41FPwiCewDTSpV5Q3c6u7Dp61jtqCj5EhDuySsK4ueHe7obGXADy5WuFsj+/ApZ7Y6vjnt07HExs1ujwMql2QNKV2vFJhLUHARswQSdFgJBB7YWjz3BAH6AZCMIhJYw93ridFIWwtkQGuBLkKiir3ggz6XJstMOSC17PHp+5UyOvaRI8i1tUTT7eyJAHpgA782sAlhKVQCuAOJ8AznSf8CtJ1ol8kTVaxVfG2XFudJ3Kq1/LqXSIlQ0zatgHGeUpqaC7A7CJuG+kag2ujtie3PVjBkwXkAbiGwQhDEoLkKssRfKmtEIAs7E5txJ73hAuLW6pmwdmeJEL0AiEx7AzBRkzw+AtLSoPOKYB1AW8caZvXKyaSkiX1ghBIURAUqUhXBmSgzjUIzKCpT/s+sV73bNuKZCPt4NkmobI7oon01vO4vqLdOhbO8+5uBcBriytsVFaE9TqPrGzHVy/XbKqeKl3TdbCxVwQMlfz/27u/0CbvPY7jnyTHJK1NC85jg6hbJ6KI04BdKnhhBzJ32MW6A5sXu6hFBCEVpbD558LeqYjMQhH1yu10Gw4KW89GkdMVdDvoWNEpKtRRsRra0zbbwTbkaNMmz7kYp2fFZ65J0/7yPH2/wIs8TfTzpcYPX588fSaVnPz1xhyZbEYpb1Yhz6g0KfWNlals0VOlPFn92T+iScunoafl8nszmphcpCe+jIK+MS3K/Jr93+kyeT0ZJSd8WhJIazxjKeOVSqykNDkpz0RWlsfSIm9Kg/9ZIq/GtbLksSSptCStn1KVij8JapHnqZb+aVT/SpVrsXdUgcyEfOPz1xFO6Id5XxaWLl0qn8+n4eHhaceHh4cVDodtX3P48GE1NTVNPR4YGND69et14S9/n9OsANwtmUyqoqIir9f6/X6Fw2H9c6hzRs8Ph8Py+/1//MQFrJD98I+//m1OswJwv/nqiGLvh3lfFvx+vzZv3qzu7m7V1dVJkrLZrLq7u9XY2Gj7mkAgoEAgMPW4rKxM8XhcoVBIHru7QhXQ2NiYVq5cqXg8rvLy8jn9s+abW2dz61wSsxWKZVlKJpNavnx53r9HMBjUgwcPlE7P7Ccr+f1+BYPBP37iAua0fpDc+55061ySe2dz61zS/M823x1R7P1g5GNITU1Nqq+vV3V1taLRqFpaWpRKpdTQ0DCj13u9Xq1YsWKOU05XXl7uujff/7h1NrfOJTFbIeT7v0W/FQwGi/ofeCdyYj9I7n1PunUuyb2zuXUuaX5noyP+z8iysHPnTiUSCR09elRDQ0OKRCK6dOnSMxe1AQAWFvoBAIqLsQucGxsbf/e0MgBg4aIfAKB4GLkpm5MEAgE1NzdP+0ysW7h1NrfOJTEbUGzc+vfWrXNJ7p3NrXNJ7p7NCTyWE37AKwAAAIB5x5kFAAAAALZYFgAAAADYYlkAAAAAYItlIU/j4+OKRCLyeDy6efOm6Tiz0t/fr927d6uqqkolJSVavXq1mpubZ3yzqWJz5swZvfTSSwoGg6qpqdEPP/xgOtKsHT9+XK+++qpCoZCWLVumuro63bt3z3Ssgjtx4oQ8Ho8OHDhgOgqQNzf1g+SujqAfnIt+MIdlIU8ffPDBrO7sV0x6e3uVzWZ1/vx53b17V6dPn9a5c+d05MgR09Fy9vnnn6upqUnNzc26ceOGNm3apB07dmhkZMR0tFm5cuWKYrGYvv/+e3V1dWliYkKvv/66UqmU6WgF09PTo/Pnz2vjxo2mowCz4qZ+kNzTEfSDc9EPhlnIWWdnp7Vu3Trr7t27liTrxx9/NB2p4E6ePGlVVVWZjpGzaDRqxWKxqceZTMZavny5dfz4cYOpCm9kZMSSZF25csV0lIJIJpPWmjVrrK6uLmvbtm3W/v37TUcC8rIQ+sGynNkR9IMz0Q/mcWYhR8PDw9qzZ4/a2tpUWlpqOs6cGR0d1ZIlS0zHyEk6ndb169e1ffv2qWNer1fbt2/XtWvXDCYrvNHRUUly3Pfo98RiMb355pvTvneA0yyUfpCc1xH0g3PRD+YZu4OzE1mWpV27dmnv3r2qrq5Wf3+/6Uhzoq+vT62trTp16pTpKDn5+eeflclkVFlZOe14ZWWlent7DaUqvGw2qwMHDmjr1q3asGGD6TizdvHiRd24cUM9PT2mowB5Wyj9IDmzI+gHZ6IfigNnFiQdOnRIHo/nub96e3vV2tqqZDKpw4cPm448IzOd67cGBgb0xhtv6J133tGePXsMJcfzxGIx3blzRxcvXjQdZdbi8bj279+vTz/9VMFg0HQc4Blu7QeJjnAj+gFzgTs4S0okEvrll1+e+5yXX35Z7777rr766it5PJ6p45lMRj6fT++9954+/vjjuY6ak5nO5ff7JUmDg4Oqra3Vli1b9NFHH8nrddYumU6nVVpaqvb2dtXV1U0dr6+v1+PHj9XR0WEuXIE0Njaqo6ND3377raqqqkzHmbUvv/xSb7/9tnw+39SxTCYjj8cjr9er8fHxaV8D5ptb+0FaWB1BPzgP/VA8WBZy8OjRI42NjU09Hhwc1I4dO9Te3q6amhqtWLHCYLrZGRgY0GuvvabNmzfrk08+cewbsKamRtFoVK2trZJ+PSW7atUqNTY26tChQ4bT5c+yLO3bt09ffPGFLl++rDVr1piOVBDJZFIPHz6cdqyhoUHr1q3TwYMHXXEaHQuDm/tBckdH0A/OQj8UD65ZyMGqVaumPS4rK5MkrV692tFFMDAwoNraWr344os6deqUEonE1NfC4bDBZLlrampSfX29qqurFY1G1dLSolQqpYaGBtPRZiUWi+mzzz5TR0eHQqGQhoaGJEkVFRUqKSkxnC5/oVDomX/wFy9erBdeeIEigKO4tR8k93QE/eAs9EPxYFmAurq61NfXp76+vmdKzWknnnbu3KlEIqGjR49qaGhIkUhEly5deuaiNqc5e/asJKm2tnba8QsXLmjXrl3zHwjAguGWjqAfgPzwMSQAAAAAtpxzdRIAAACAecWyAAAAAMAWywIAAAAAWywLAAAAAGyxLAAAAACwxbIAAAAAwBbLAgAAAABbLAsAAAAAbLEsAAAAALDFsgAAAADAFssCAAAAAFssC3CNRCKhcDisY8eOTR27evWq/H6/uru7DSYDAJhEPwD581iWZZkOARRKZ2en6urqdPXqVa1du1aRSERvvfWWPvzwQ9PRAAAG0Q9AflgW4DqxWEzffPONqqurdfv2bfX09CgQCJiOBQAwjH4AcseyANd58uSJNmzYoHg8ruvXr+uVV14xHQkAUAToByB3XLMA17l//74GBweVzWbV399vOg4AoEjQD0DuOLMAV0mn04pGo4pEIlq7dq1aWlp0+/ZtLVu2zHQ0AIBB9AOQH5YFuMr777+v9vZ23bp1S2VlZdq2bZsqKir09ddfm44GADCIfgDyw8eQ4BqXL19WS0uL2traVF5eLq/Xq7a2Nn333Xc6e/as6XgAAEPoByB/nFkAAAAAYIszCwAAAABssSwAAAAAsMWyAAAAAMAWywIAAAAAWywLAAAAAGyxLAAAAACwxbIAAAAAwBbLAgAAAABbLAsAAAAAbLEsAAAAALDFsgAAAADAFssCAAAAAFv/BTdtopr9PMecAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "def create_dataset(x_dim, t_dim):\n", + " \"\"\"\n", + " Args:\n", + " x_dim = resolution along the x range [-5, 5]\n", + " t_dim = resolution along the t range [0, 4*pi]\n", + "\n", + " Returns:\n", + " x_grid = x collocation points\n", + " t_grid = t collocation points\n", + " X = (t_dim, x_dim) np.ndarray of snapshot data\n", + " \"\"\"\n", + " # Define the x and t collocation points.\n", + " x = np.linspace(-5, 5, x_dim)\n", + " t = np.linspace(0, 4 * np.pi, t_dim)\n", + " xgrid, tgrid = np.meshgrid(x, t)\n", + "\n", + " # Define the modes that make up each snapshot.\n", + " def f1(x, t):\n", + " return np.exp(-(x**2) / 5) * np.cos(4 * x) * np.exp(2.3j * t)\n", + "\n", + " def f2(x, t):\n", + " return (1 - np.exp(1 - (x**2) / 6)) * np.exp(1.3j * t)\n", + "\n", + " def f3(x, t):\n", + " return (1 - ((x**2) / 50)) * (1.1j ** (-2 * t))\n", + "\n", + " # Evaluate modes at each collocation point.\n", + " X1 = f1(xgrid, tgrid)\n", + " X2 = f2(xgrid, tgrid)\n", + " X3 = f3(xgrid, tgrid)\n", + "\n", + " return xgrid, tgrid, (X1 + X2 + X3)\n", + "\n", + "\n", + "# Generate and visualize the toy dataset.\n", + "xgrid, tgrid, X = create_dataset(x_dim=256, t_dim=128)\n", + "\n", + "# Generate noisy data for a given noise magnitude. Seed is used for reproducibility.\n", + "noise_mag = 0.1\n", + "rng = np.random.default_rng(seed=42)\n", + "X_noisy = X + (noise_mag * rng.standard_normal(X.shape))\n", + "\n", + "# Plot both the clean and the noisy data sets.\n", + "plt.figure(figsize=(8, 3))\n", + "for i, (mat, name) in enumerate(zip([X, X_noisy], [\"Data\", \"Noisy Data\"])):\n", + " plt.subplot(1, 2, i + 1)\n", + " plt.pcolor(xgrid, tgrid, mat.real)\n", + " plt.colorbar()\n", + " plt.title(name)\n", + " plt.xlabel(\"x\")\n", + " plt.ylabel(\"t\", rotation=0)\n", + "plt.tight_layout()\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "a17001ce", + "metadata": {}, + "source": [ + "## Exact DMD\n", + "\n", + "We begin by applying exact DMD to our data so that its results may serve as a benchmark for CDMD and RDMD. Note that throughout this tutorial, we will fit our models to the noisy data set and use our models' ability to reconstruct the clean signal as a proxy for model accuracy. Furthermore, we record fitting time for all methods in order to compare method efficiency. Here, we replicate the DMD approach used in Tutorial 4." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "68a02436", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "DMD Reconstruction Error: 0.017055067185643223\n", + "DMD Training Time: 0.16346025466918945\n" + ] + } + ], + "source": [ + "# Define the data matrices to be used for model fitting.\n", + "snapshots_matrix = X.T\n", + "snapshots_matrix_noisy = X_noisy.T\n", + "\n", + "# Fit a DMD model.\n", + "t0 = time.time()\n", + "dmd = DMD(svd_rank=3, exact=True)\n", + "dmd.fit(snapshots_matrix_noisy)\n", + "t1 = time.time()\n", + "\n", + "# Record and print model error and training time.\n", + "dmd_error = compute_error(snapshots_matrix, dmd.reconstructed_data)\n", + "dmd_time = t1 - t0\n", + "print(f\"DMD Reconstruction Error: {dmd_error}\")\n", + "print(f\"DMD Training Time: {dmd_time}\")" + ] + }, + { + "cell_type": "markdown", + "id": "053f91a2", + "metadata": {}, + "source": [ + "## Compressed DMD\n", + "\n", + "Now we apply CDMD to our data, where we again compute error and training time when given noisy data. Here, we compute these metrics across multiple trials in order to account for variations that result from randomness. We additionally utilize the compression matrix used in Tutorial 4 for all CDMD models as to replicate the Tutorial 4 approach. We also begin by including the time needed to compute the compression matrix in our CDMD training time." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "2de0b129", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "CDMD (Average) Reconstruction Error: 0.02876651792689702\n", + "CDMD (Average) Training Time: 0.08456253528594967\n" + ] + } + ], + "source": [ + "# Define the number of random trials to perform.\n", + "num_trials = 100\n", + "\n", + "# Initialize the error and runtime metrics.\n", + "cdmd_error = 0.0\n", + "cdmd_time = 0.0\n", + "\n", + "for _ in range(num_trials): # Perform multiple trials...\n", + " # Fit a CDMD model.\n", + " t0 = time.time()\n", + " compression_matrix = build_compression_matrix(snapshots_matrix)\n", + " cdmd = CDMD(svd_rank=3, compression_matrix=compression_matrix)\n", + " cdmd.fit(snapshots_matrix_noisy)\n", + " t1 = time.time()\n", + " # Incorporate this trial's results into the running averages.\n", + " cdmd_error += (\n", + " compute_error(snapshots_matrix, cdmd.reconstructed_data) / num_trials\n", + " )\n", + " cdmd_time += (t1 - t0) / num_trials\n", + "\n", + "# Print average model error and training runtime.\n", + "print(f\"CDMD (Average) Reconstruction Error: {cdmd_error}\")\n", + "print(f\"CDMD (Average) Training Time: {cdmd_time}\")" + ] + }, + { + "cell_type": "markdown", + "id": "fed87c06", + "metadata": {}, + "source": [ + "## Randomized DMD: Varying Oversampling\n", + "\n", + "We now examine the performance of RDMD, which is derived in [1] and implemented in the `RDMD` class of PyDMD.\n", + "\n", + "The performance of the RDMD algorithm is manually toggled by 2 major parameters, one of which is the **oversampling** parameter, which controls the number of additional random samples (beyond the predicted rank of the data) that are used to compute a basis for the range of the input data. In short, increasing the oversampling increases the probability that one is able to construct a good basis used in RDMD, yet it simultaneously increases runtime due to the usage of a larger random test matrix. It should be noted that in general, a small oversampling value approximately within the range of $[5, 10]$ often suffices [1].\n", + "\n", + "Here, we demonstate how the performance of the `RDMD` module is impacted by the `oversampling` parameter, which is `10` by default and can be toggled upon the initialization of an `RDMD` model. Here, we examine oversampling values within the range $[0, 50]$ and we again fit our RDMD models to noisy data across multiple random trials. We then compare the average error and training time to that of exact DMD and CDMD." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "1e195809", + "metadata": {}, + "outputs": [], + "source": [ + "# Define the default PyDMD oversampling value.\n", + "oversampling_default = 10\n", + "\n", + "# Define the oversampling values to investigate.\n", + "oversampling_values = np.arange(0, 51, 5)\n", + "\n", + "# Initialize the error and runtime metrics.\n", + "oversampling_error = np.zeros(len(oversampling_values))\n", + "oversampling_times = np.zeros(len(oversampling_values))\n", + "\n", + "for i, oversampling in enumerate(oversampling_values):\n", + " for _ in range(num_trials): # Perform multiple trials...\n", + " # Fit an RDMD model.\n", + " t0 = time.time()\n", + " rdmd = RDMD(svd_rank=3, oversampling=oversampling).fit(\n", + " snapshots_matrix_noisy\n", + " )\n", + " t1 = time.time()\n", + " # Incorporate this trial's results into the running averages.\n", + " oversampling_error[i] += (\n", + " compute_error(snapshots_matrix, rdmd.reconstructed_data)\n", + " / num_trials\n", + " )\n", + " oversampling_times[i] += (t1 - t0) / num_trials" + ] + }, + { + "cell_type": "markdown", + "id": "13c03dc7", + "metadata": {}, + "source": [ + "We now plot the results of our experiments.\n", + "\n", + "Notice that exact DMD and RDMD tend to be more accurate than CDMD, with RDMD performing considerably well with very little oversampling. Also notice that as expected, the time required to train an RDMD model on average increases as one increases the oversampling parameter. However, as long as the oversampling isn't too large, an RDMD model can be trained in about the same amount of time as a CDMD model for this particular data set." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "af74369d", + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxYAAAEiCAYAAABkykQ1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAACRUklEQVR4nOzdd1xTV/8H8M8NEPaSIVMCuAUBUSgusPIIbtziAMdj1TpQ1LpxteJssZW6WlHrHmj9OaiIYq1aB4gVUVwMRYaTPZP7+4OHWyMBEgTC+L6fV15PcnLuvd8Tak7OPYthWZYFIYQQQgghhHwGnrwDIIQQQgghhDR81LAghBBCCCGEfDZqWBBCCCGEEEI+GzUsCCGEEEIIIZ+NGhaEEEIIIYSQz0YNC0IIIYQQQshno4YFIYQQQggh5LNRw4IQQgghhBDy2ahhQQghhBBCCPls1LAgpAmIjIwEwzCIjIyUdyiEENKoTJgwAQKBoFrHrly5EgzD1GxANUwgEGDChAnyDoM0ENSwILVmz549YBiGeygqKsLU1BQTJkxASkqKvMOrcT///DP27NnT5GP4lJubm9h/Bx8/2rZtK+/wCCGNVEXfO58+mtoNl7IbTdI8CJEVw7IsK+8gSOO0Z88eTJw4EatXr4alpSUKCgrw999/Y8+ePRAIBIiNjYWKioq8w6wxNjY20NfXl2slVVEMIpEIRUVF4PP54PHq9n6Cm5sbnj17hsDAwHLvaWtrY+DAgXUaDyGkadi/f7/Y63379iE8PBy//fabWPp//vMfNG/evNrXKS4uhkgkgrKysszHlpSUoKSkpE7rwvT0dISHh4ulLV68GBoaGli6dKlY+rhx41BYWAgejwclJaU6i5E0XIryDoA0fn379kXnzp0BAP/973+hr6+P9evX4/Tp0xg5cqSco5OP3NxcqKur19n1eDyeXBtx2traGDdunMzHVfQ5sSyLgoICqKqqVjumgoICuTS0CCF149PvnL///hvh4eFVfhfl5eVBTU1N6ut8zg9uRUVFKCrW7U+x5s2bl/sM1q1bB319fYmfTXUaTKTpohqV1LkePXoAAJ49eyaW/ujRIwwfPhzNmjWDiooKOnfujNOnT5c7/sOHD5g7dy4EAgGUlZVhZmYGHx8fvHnzhsuTkZGByZMno3nz5lBRUYGdnR327t0rdp7ExEQwDINNmzZh586dsLa2hrKyMrp06YLbt2+L5U1LS8PEiRNhZmYGZWVlGBsbY/DgwUhMTARQOgb1wYMHuHLlCteF7ObmBuDfIWFXrlzB119/DUNDQ5iZmQGoeGxuReNu9+/fDycnJ6ipqUFXVxc9e/bEhQsXqoyhojkWx44dg6OjI1RVVblK5dNhahMmTICGhgZSUlLg5eUFDQ0NGBgYYP78+RAKheVirK6yMsfFxWHMmDHQ1dVF9+7dubINGDAAf/zxBzp37gxVVVXs2LEDAPD8+XOMGDECzZo1g5qaGr744gucPXtW7Nxl5T98+DCWLVsGU1NTqKmpISsrq8biJ4Q0PG5ubrCxsUFUVBR69uwJNTU1LFmyBADw+++/o3///jAxMYGysjKsra2xZs2act97n36Py1K3SPquZxgGM2fOxKlTp2BjYwNlZWV06NABYWFh5eKPjIxE586doaKiAmtra+zYsaPG5218OseirE7766+/MHv2bBgYGEBHRwdTp05FUVERPnz4AB8fH+jq6kJXVxfffPMNPh0cIxKJEBQUhA4dOkBFRQXNmzfH1KlT8f79+xqLm8gH9ViQOlf2Y1xXV5dLe/DgAbp16wZTU1MsWrQI6urqOHr0KLy8vHDixAkMGTIEAJCTk4MePXrg4cOHmDRpEjp16oQ3b97g9OnTePnyJfT19ZGfnw83Nzc8ffoUM2fOhKWlJY4dO4YJEybgw4cP8PPzE4vn4MGDyM7OxtSpU8EwDDZs2IChQ4fi+fPn3J2oYcOG4cGDB5g1axYEAgEyMjIQHh6O5ORkCAQCBAUFYdasWWJdyZ92rX/99dcwMDBAQEAAcnNzZf7cVq1ahZUrV6Jr165YvXo1+Hw+bt68iUuXLqFPnz5SxfCxsqFqXbp0QWBgINLT07FlyxZcu3YNd+/ehY6ODpdXKBTCw8MDzs7O2LRpEy5evIjNmzfD2toa06dPrzJ2oVAo1vAro6qqWq5HYsSIEWjVqhXWrl0rVhnFx8fD29sbU6dOxZQpU9CmTRukp6eja9euyMvLw+zZs6Gnp4e9e/di0KBBOH78OPffTZk1a9aAz+dj/vz5KCwsBJ/PrzJ2Qkjj9vbtW/Tt2xejR4/GuHHjuO/NPXv2QENDA/7+/tDQ0MClS5cQEBCArKwsbNy4scrzSlO3VOSvv/5CaGgovv76a2hqauLHH3/EsGHDkJycDD09PQDA3bt34enpCWNjY6xatQpCoRCrV6+GgYHB538oUpg1axaMjIywatUq/P3339i5cyd0dHRw/fp1tGjRAmvXrsW5c+ewceNG2NjYwMfHhzt26tSpXB00e/ZsJCQkYOvWrbh79y6uXbtGw64aMpaQWhISEsICYC9evMi+fv2affHiBXv8+HHWwMCAVVZWZl+8eMHl7d27N2tra8sWFBRwaSKRiO3atSvbqlUrLi0gIIAFwIaGhpa7nkgkYlmWZYOCglgA7P79+7n3ioqKWBcXF1ZDQ4PNyspiWZZlExISWACsnp4e++7dOy7v77//zgJg/+///o9lWZZ9//49C4DduHFjpeXt0KED6+rqWuHn0L17d7akpETsPV9fX9bCwqLcMStWrGA//uf55MkTlsfjsUOGDGGFQqHEclcWw+XLl1kA7OXLl7nPw9DQkLWxsWHz8/O5fGfOnGEBsAEBAWIxAmBXr14tdk4HBwfW0dGx3LU+5erqygKQ+Jg6dWq5Mnt7e5c7h4WFBQuADQsLE0ufM2cOC4C9evUql5adnc1aWlqyAoGA+6zKym9lZcXm5eVVGTMhpPGZMWMG++nPnrLvp+3bt5fLL+m7YurUqayamppYXfXp97i0dQvLlv+uZ1mWBcDy+Xz26dOnXNq9e/dYAOxPP/3EpQ0cOJBVU1NjU1JSuLQnT56wioqK5c5ZlYrqDpYt/f719fXlXpfVaR4eHmL1j4uLC8swDDtt2jQuraSkhDUzMxM799WrV1kA7IEDB8SuExYWJjGdNCw0FIrUOnd3dxgYGMDc3BzDhw+Huro6Tp8+zQ0HevfuHS5duoSRI0ciOzsbb968wZs3b/D27Vt4eHjgyZMn3PCcEydOwM7OrtydaABc1++5c+dgZGQEb29v7j0lJSXMnj0bOTk5uHLlithxo0aNEus9KRuq9fz5cwCld9X5fD4iIyM/q5t2ypQpUFBQqNaxp06dgkgkQkBAQLk5AdXp8r5z5w4yMjLw9ddfi8296N+/P9q2bVtuKBEATJs2Tex1jx49uM+oKgKBAOHh4eUec+bMqfI6ZSwtLeHh4SGWdu7cOTg5OXFDpgBAQ0MDX331FRITExEXFyeW39fX97PmZRBCGh9lZWVMnDixXPrH3xVldVOPHj2Ql5eHR48eVXnequqWyri7u8Pa2pp73bFjR2hpaXHHCoVCXLx4EV5eXjAxMeHytWzZEn379q3y/DVh8uTJYvWPs7MzWJbF5MmTuTQFBQV07txZrMzHjh2DtrY2/vOf/3D1/Zs3b+Do6AgNDQ1cvny5TuIntYOGQpFaFxwcjNatWyMzMxO7d+/Gn3/+KTYZ7OnTp2BZFsuXL8fy5cslniMjIwOmpqZ49uwZhg0bVun1kpKS0KpVq3I/wNu1a8e9/7EWLVqIvS6rCMoaEcrKyli/fj3mzZuH5s2b44svvsCAAQPg4+MDIyMjKT6BUpaWllLn/dSzZ8/A4/HQvn37ap/jY2WfQZs2bcq917ZtW/z1119iaSoqKuW613V1daVuaKmrq8Pd3V2qvBV9TpLSk5KS4OzsXC7947+1jY1NlecmhDRdpqamEodFPnjwAMuWLcOlS5fKzcfKzMys8rxV1S2yHFt2fNmxGRkZyM/PR8uWLcvlk5RWGz6NUVtbGwBgbm5eLv3jMj958gSZmZkwNDSUeN6MjIwajpTUJWpYkFrn5OTErQrl5eWF7t27Y8yYMYiPj4eGhgZEIhEAYP78+eXuSJepzS/KinoR2I/G98+ZMwcDBw7EqVOn8Mcff2D58uUIDAzEpUuX4ODgINV1JN0pr6i3oSYnRdeE6va0VEdFPQo10dNAvRWEkE9J+l748OEDXF1doaWlhdWrV8Pa2hoqKiqIjo7GwoULuXqrMtLULbVxbF2pKEZJ6R/HLRKJYGhoiAMHDkg8vq7miJDaQQ0LUqcUFBQQGBiIXr16YevWrVi0aBGsrKwAlA5XququtrW1NWJjYyvNY2FhgX/++QcikUis16Ks69rCwqJasVtbW2PevHmYN28enjx5Ant7e2zevJlbK706Q5J0dXXx4cOHcumf9qpYW1tDJBIhLi4O9vb2FZ5P2hjKPoP4+Hh8+eWXYu/Fx8dX+zOqaxYWFoiPjy+X/rl/a0JI0xYZGYm3b98iNDQUPXv25NITEhLkGNW/DA0NoaKigqdPn5Z7T1JafWJtbY2LFy+iW7dudLOnEaI5FqTOubm5wcnJCUFBQSgoKIChoSHc3NywY8cOpKamlsv/+vVr7vmwYcNw7949nDx5sly+sjsi/fr1Q1paGo4cOcK9V1JSgp9++gkaGhpwdXWVKd68vDwUFBSIpVlbW0NTUxOFhYVcmrq6usRGQmWsra2RmZmJf/75h0tLTU0tVz4vLy/weDysXr263J2yj+8ESRtD586dYWhoiO3bt4uV4fz583j48CH69+8vUznkpV+/frh16xZu3LjBpeXm5mLnzp0QCAQ1NnSMENK0lN11//j7taioCD///LO8QhKjoKAAd3d3nDp1Cq9eveLSnz59ivPnz8sxsqqNHDkSQqEQa9asKfdeSUmJzPUoqV+ox4LIxYIFCzBixAjs2bMH06ZNQ3BwMLp37w5bW1tMmTIFVlZWSE9Px40bN/Dy5Uvcu3ePO+748eMYMWIEJk2aBEdHR7x79w6nT5/G9u3bYWdnh6+++go7duzAhAkTEBUVBYFAgOPHj+PatWsICgqCpqamTLE+fvwYvXv3xsiRI9G+fXsoKiri5MmTSE9Px+jRo7l8jo6O2LZtG7799lu0bNkShoaG5XoDPjV69GgsXLgQQ4YMwezZs5GXl4dt27ahdevWiI6O5vK1bNkSS5cuxZo1a9CjRw8MHToUysrKuH37NkxMTLhdraWNQUlJCevXr8fEiRPh6uoKb29vbrlZgUCAuXPnyvQZVSUzM7PcLrhlqrNxXplFixbh0KFD6Nu3L2bPno1mzZph7969SEhIwIkTJ2jzO0JItXTt2hW6urrw9fXF7NmzwTAMfvvtt3o1FGnlypW4cOECunXrhunTp0MoFGLr1q2wsbFBTEyMvMOrkKurK6ZOnYrAwEDExMSgT58+UFJSwpMnT3Ds2DFs2bIFw4cPl3eYpJqoYUHkYujQobC2tsamTZswZcoUtG/fHnfu3MGqVauwZ88evH37FoaGhnBwcEBAQAB3nIaGBq5evYoVK1bg5MmT2Lt3LwwNDdG7d29ulSlVVVVERkZi0aJF2Lt3L7KystCmTRuEhISIbfIjLXNzc3h7eyMiIgK//fYbFBUV0bZtWxw9elRsInlAQACSkpKwYcMGZGdnw9XVtcqGhZ6eHk6ePAl/f3988803sLS0RGBgIJ48eSLWsACA1atXw9LSEj/99BOWLl0KNTU1dOzYEePHj69WDBMmTICamhrWrVuHhQsXQl1dHUOGDMH69evF9rCoCS9fvhSL82Of07Bo3rw5rl+/joULF+Knn35CQUEBOnbsiP/7v/9rML0uhJD6R09PD2fOnMG8efOwbNky6OrqYty4cejdu3eFcwHrmqOjI86fP4/58+dj+fLlMDc3x+rVq/Hw4UOpVq2Sp+3bt8PR0RE7duzAkiVLoKioCIFAgHHjxqFbt27yDo98BoatT81vQgghhBBSbV5eXnjw4AGePHki71BIE0TjBAghhBBCGqD8/Hyx10+ePMG5c+fg5uYmn4BIk0c9FoQQQgghDZCxsTEmTJgAKysrJCUlYdu2bSgsLMTdu3fRqlUreYdHmiCaY0EIIYQQ0gB5enri0KFDSEtLg7KyMlxcXLB27VpqVBC5oR4LQgghhBBCyGejORaEEEIIIYSQz0YNC0IIIYQQQshnozkW1SQSifDq1StoamqCYRh5h0MIITWKZVlkZ2fDxMSENhqsAtUHhJDGTJb6gBoW1fTq1SuYm5vLOwxCCKlVL1684DafJJJRfUAIaQqkqQ+oYVFNmpqaAEo/ZC0tLTlHU3/k5ubCxMQEQGllq66uLueICCHVkZWVBXNzc+67jlSM6gPJqD4gpHGQpT6ghkU1lXV3a2lpUUXyEQUFBe65lpYWVSSENHA0tKdqVB9IRvUBIY2LNPUBDZwlhBBCCCGEfDZqWBBCCCGEEEI+GzUsCCGEEEIIIZ+N5liQGqWiooLLly9zzwkhhJQSCoUoLi6Wdxh16sqVK9zzgoICOUZSt5SUlMTmmBDSVFDDgtQoBQUFuLm5yTsMQgipN1iWRVpaGj58+CDvUOqcgYEBACA5OVnOkdQ9HR0dGBkZ0QIIpEmhhsVnys0F6KYEIaSxyc2VdwQNUAUVQtqbN/iQmwtDAwOoqarSD81GjmVZ5OXnI+P1a6CoCMb6+vIOiZDPI0OFQA2Lz/S/JboJpxjAzv89/wqAkhxjIYSQOiShQhCqq+PDgQMwNDWFXlKSHIKSHxGAN/97ro+mNalT9X//n/HkCQzHjIFCXp5c4yGkrjSlf+ekThQBmPm/R5GcYyGEEPkq1tMD+HyoyTsQOWABJP/vwco5FnlQAwA+H8XUY0GaEOqx+EyvXgG0H9K/cnOB5s1Ln6enA7QfEiENU1YW9cjKTFKFUFgIpKaCEQiApraghUgE3LtX+tzODuA1rXuZTEEBoKoK3L0LKCvLOxxCqk+GCoEaFp9JXZ1+PFeEPhtCGi6hUN4RNECSvvQUFEp/UCsoNO0JeWWfQVNS9rdXU2t6jUrSuMhQITSt2weEEEIatODgYAgEAqioqMDZ2Rm3bt2qMO+DBw8wbNgwCAQCMAyDoKAgiflSUlIwbtw46OnpQVVVFba2trhz504tlYAQQhovalgQQghpEI4cOQJ/f3+sWLEC0dHRsLOzg4eHBzIyMiTmz8vLg5WVFdatWwcjIyOJed6/f49u3bpBSUkJ58+fR1xcHDZv3gxdXd3aLIrMhCIhIhMjcej+IUQmRkIoqv0upQkTJoBhGDAMAyUlJVhaWuKbb74R24+i7H2GYaCuro5WrVphwoQJiIqKEjtXZGQkGIaBrq5uuf0sbt++zZ3j0/wMw4DH40FbWxsODg745ptvkJqaWrsFJ4RUGzUsCCGENAjff/89pkyZgokTJ6J9+/bYvn071NTUsHv3bon5u3Tpgo0bN2L06NFQrmCM+/r162Fubo6QkBA4OTnB0tISffr0gbW1dW0WRSahD0Mh2CJAr729MCZ0DHrt7QXBFgFCH4bW+rU9PT2RmpqK58+f44cffsCOHTuwYsUKsTwhISFITU3FgwcPEBwcjJycHDg7O+O3334rdz5NTU2cPHlSLO3XX39FixYtJF4/Pj4er169wu3bt7Fw4UJcvHgRNjY2uH//fs0VkhBSY6hhQQghpN4rKipCVFQU3N3duTQejwd3d3fcuHGj2uc9ffo0OnfujBEjRsDQ0BAODg7YtWtXTYRcI0IfhmL40eF4mfVSLD0lKwXDjw6v9caFsrIyjIyMYG5uDi8vL7i7uyM8PFwsT9lGcAKBAH369MHx48cxduxYzJ49G1lZWWJ5fX19xRqC+fn5OHz4MHx9fSVe39DQEEZGRmjdujVGjx6Na9euwcDAANOnT6/5whJCPlu9aFjIMmYWAI4dO4a2bdtCRUUFtra2OHfuHPdecXExFi5cCFtbW6irq8PExAQ+Pj549eqV2DkeP36MwYMHQ19fH1paWujevTsuX75cK+VrSpSVlXHmzBmcOXOmwjuEhBAiqzdv3kAoFKJ52bJz/9O8eXOkpaVV+7zPnz/Htm3b0KpVK/zxxx+YPn06Zs+ejb1791Z4TGFhIbKyssQesmBZFrlFuVU+sgqyMPv8bLASFmstS/M774esgiypzseyn7foa2xsLK5fvw4+n19l3rlz5yI7OxtJSUlo2bIleP9bEWr8+PG4evUqtxP3iRMnIBAI0KlTJ6liUFVVxbRp03Dt2rUKh8ARQuRH7qtClY2Z3b59O5ydnREUFAQPDw/Ex8fD0NCwXP7r16/D29sbgYGBGDBgAA4ePAgvLy9ER0fDxsYGeXl5iI6OxvLly2FnZ4f379/Dz88PgwYNEpuMN2DAALRq1QqXLl2CqqoqgoKCMGDAADx79qzCsbikaoqKiujfv7+8wyCEEKmIRCJ07twZa9euBQA4ODggNjYW27dvr/AuemBgIFatWlXta+YV50EjUKPax5dhweJl9ktor9eWKn/O4hyo82Vbqu/MmTPQ0NBASUkJCgsLwePxsHXr1iqPa9u2LQDg9evX0NHR4eZPGBoaom/fvtizZw8CAgKwe/duTJo0SaaYys6dmJgo8XcCIUR+5N5jIeuY2S1btsDT0xMLFixAu3btsGbNGnTq1In7otPW1kZ4eDhGjhyJNm3a4IsvvsDWrVsRFRXF3SF58+YNnjx5gkWLFqFjx45o1aoV1q1bh7y8PMTGxtZZ2QkhhEhHX18fCgoKSE9PF0tPT0//rJtBxsbGaN++vVhau3btuPpCksWLFyMzM5N7vHjxotrXr+969eqFmJgY3Lx5E76+vpg4cSKGDRtW5XFlvSMfT8guM2nSJOzZswfPnz/HjRs3MHbsWJliquzchBD5kmuPRdmY2cWLF3NpVY2ZvXHjBvz9/cXSPDw8cOrUqQqvk5mZCYZhoKOjAwDQ09NDmzZtsG/fPnTq1AnKysrYsWMHDA0N4ejo+NnlasqKi4tx4MABAMDYsWOhpKQk54gIIY0Bn8+Ho6MjIiIi4OXlBaC0tyEiIgIzZ86s9nm7deuG+Ph4sbTHjx/DwsKiwmOUlZU/a6inmpIachbnVJnvz6Q/0e9gvyrznRtzDj0tekp1XVmpq6ujZcuWAIDdu3fDzs4Ov/76KyZPnlzpcQ8fPgRQWt++efMGIpGIe69v37746quvMHnyZAwcOBB6enoyxVR2boFAINNxhJDaJ9eGRWVjZh89eiTxmLS0NJnG2BYUFGDhwoXw9vaG1v92RGUYBhcvXoSXlxc0NTXB4/FgaGiIsLCwCpcYLCwsRGFhIfda1jG1TUVRUREmTpwIABgxYgQ1LAghNcbf3x++vr7o3LkznJycEBQUhNzcXO47x8fHB6ampggMDARQ+n0UFxfHPU9JSUFMTAw0NDS4H8tz585F165dsXbtWowcORK3bt3Czp07sXPnzlorB8MwUg1J6mPdB2ZaZkjJSpE4z4IBAzMtM/Sx7gMFXu1vPsfj8bBkyRL4+/tjzJgxUFVVrTBvUFAQtLS0YGlpicTERLH5HYqKivDx8cGGDRtw/vx5mWLIz8/Hzp070bNnTxgYGFS7LIQ0NUKREFeTryI1OxXGmsbo0aJHrXxvyH0oVG0qLi7GyJEjwbIstm3bxqWzLIsZM2bA0NAQV69exa1bt+Dl5YWBAwdWuD52YGAgtLW1uYe5uXldFYMQQgiAUaNGYdOmTQgICIC9vT1iYmIQFhbG3WxKTk4W+w5/9eoVHBwc4ODggNTUVGzatAkODg7473//y+Xp0qULTp48iUOHDsHGxgZr1qxBUFCQzMNzaoMCTwFbPLcAKG1EfKzsdZBnUJ00KsqMGDECCgoKCA4O5tI+fPiAtLQ0JCUlITw8HMOHD8fBgwcRHBwMTU1NiedZs2YNXr9+DQ8Pj0qvl5GRgbS0NDx58gSHDx9Gt27d8ObNG7E6nRBSubpcslquPRbVGTNrZGQkVf6yRkVSUhIuXbrE9VYAwKVLl3DmzBm8f/+eS//5558RHh6OvXv3YtGiReWuu3jxYrEhWFlZWdS4IISQOjZz5swKhz5FRkaKvRYIBFKthDRgwAAMGDCgJsKrcUPbDcXxkcfhF+YntuSsmZYZgjyDMLTd0DqNR1FRETNnzsSGDRu4JV/LeoxUVFRgamqK7t2749atW7Czs8Pdu3clnofP50NfX7/K67Vp0wYMw0BDQwNWVlbo06cP/P39aZEVQqRUtmT1p72eZUtWHx95vEa/R+TasKjOmFkXFxdERERgzpw5XFp4eDhcXFy412WNiidPnuDy5cvlxm/m5eUBALf8XRkejyc2DvRjnzumlhBCCKmOoe2GYnCbwXUyjOFje/bskZi+aNEi7gZcZQ03ofDf3cHd3Nwqzevl5SX2flX5CSFVE4qE8Avzq3DJagYM5oTNweA2g2vs+0Tuy83KOmbWz88Prq6u2Lx5M/r374/Dhw/jzp073HjY4uJiDB8+HNHR0Thz5gyEQiE3/6JZs2bg8/lwcXGBrq4ufH19ERAQAFVVVezatQsJCQm0VCohhJB6R4GnADeBm7zDIIQ0IFeTr5bbXPNjLFi8yHqBq8lXa+z7Re4Ni1GjRuH169cICAhAWloa7O3ty42Z/bhnoWvXrjh48CCWLVuGJUuWoFWrVjh16hRsbGwAACkpKTh9+jQAwN7eXuxaly9fhpubG/T19REWFoalS5fiyy+/RHFxMTp06IDff/8ddnZ2dVNwQgghhBBCaklqtuR5w9XNJw25NywA2cbMAqWTx0aMGCExv7Rjajt37ow//vhDpjgJIYQQQghpCIw1jWs0nzTqRcOCNB7Kyso4evQo95wQQkjTxOPxYGVlxT0nhNQtAzUD8BgeRKzk+cNlS1b3aNGjxq5JDQtSoxQVFSvsTSKEENJ0MAyDZs2ayTsMQpqkl1kv0fdAX65RwYARm8RdW0tW0y0EQgghhBBCGom3eW/R57c+eJH1Am302mD3oN0w1TIVy2OmZVbjS80C1GNBalhJSQlOnjwJABgyZAgUFek/MUIIaYpYlsX79+8BALq6umAYpoojCCGfK6coB/0O9sPDNw9hqmmKC+MvoIV2C/jY+dTJktX0q4/UqMLCQowcORIAkJOTQw0LQghpokQiEZ4/fw4AcHBwgIJC3e0QTkhTVCQswrCjw3Ar5RaaqTbjGhVA3S1ZTUOhCCGEEEIIacCEIiF8TvrgwrMLUFdSx7kx59DeoH2dx0ENC0IIIYQQQhoolmUx+/xsHHlwBEo8JYSOCoWzmbNcYqGGBSGEEEIkSktLw6xZs2BlZQVlZWWYm5tj4MCBiIiIAFC6dxTDMGAYBqqqqhAIBBg5ciQuXbokdp7ExEQwDAMFBQWkpKSIvZeamgpFRUUwDIPExESx/GUPTU1NdOjQATNmzMCTJ0/qpOyENBQrI1fi5zs/gwGD34b8hj7WfeQWCzUsCCGEEFJOYmIiHB0dcenSJWzcuBH3799HWFgYevXqhRkzZnD5Vq9ejdTUVMTHx2Pfvn3Q0dGBu7s71q5dW+6cpqam2Ldvn1ja3r17YWpqWi4vAFy8eBGpqam4d+8e1q5di4cPH8LOzo5r2BDS1P108yes/nM1ACC4XzBG2YySazw0s5YQQggh5Xz99ddgGAa3bt2Curo6l96hQwdMmjSJe62pqQkjIyMAQIsWLdCzZ08YGxtj5cqVaNeuHQQCAZfX19cXISEhWLx4MZcWEhICX19frFmzplwMenp63LmtrKwwcOBA9O7dG5MnT8azZ89oQjhp0g7eP4jZYbMBAKvcVmF6l+lyjoh6LAghhJA6xbJAbm7dP1i26tjKvHv3DmFhYZgxY4ZYo6KMjo5Opcf7+fmBZVn8+eefYumDBg3C+/fv8ddffwEA/vrrL7x//x4DBw6UKi4ejwc/Pz8kJSUhKipKusIQ0gidf3Ievqd8AQCznGZhec/lco6oFPVYkBrF5/MREhLCPSeEECIuLw/Q0Kj76+bkABLaCBI9ffoULMuibdu21bpWs2bNYGhoiJycHAgEAmRlZQEAlJSUMG7cOOzevRvdu3fH7t27MW7cOCgpKUl97rKYEhMT4eTkVK34CGnIbry4gWFHh6FEVIIxtmMQ5BlUb/aJoYYFqVFKSkqYMGGCvMMghBDyGVhZujcqOYeqqir09fWRk5PDpU+aNAldu3bF2rVrcezYMdy4cQMlJSUyx1ZffkgRUpceZDxA/4P9kV+SD8+WnggZHAIeU38GIFHDghBCCKlDamqlvQfyuK60WrVqBYZh8OjRo2pd6+3bt3j9+jUsLS3LvWdra4u2bdvC29sb7dq1g42NDWJiYqQ+98OHDwFA4rkJacwSPySiz/4+eF/wHi5mLjg+4jj4CvVrdAg1LEiNKikpwR9//AEA8PDwoJ23CSHkEwwj/ZAkeWnWrBk8PDwQHByM2bNnl5tn8eHDh0rnWWzZsgU8Hg9ffvklPnz4UK4HZNKkSfj666+xbds2meISiUT48ccfYWlpCQcHB5mOJaQhy8jNwH9++w9eZb9CB4MOODPmDNT59e+LhH71kRpVWFiIAQMGAABycnKoYUEIIQ1UcHAwunXrBicnJ6xevRodO3ZESUkJwsPDsW3bNq7nIDs7G2lpaSguLkZCQgL279+PX375Bd999x1EIhGePn0KXV1dsXNPmTIFI0aMqHIS+Nu3b5GWloa8vDzExsYiKCgIt27dwtmzZ2lFKNJkZBVmwXO/J56+ewoLbQv8Me4PNFNtJu+wJKJffYQQQggpx8rKCtHR0fjuu+8wb948pKamwsDAAI6OjmI9DQEBAQgICACfz4eRkRG++OILREREoGfPnrh7967EcysqKkJfX7/KGNzd3QEAampqsLCwQK9evbBz5060bNmyZgpJSD1XUFKAwYcH427aXRioGSB8fDhMtSTv+1IfUMOCEEIIIRIZGxtj69at2Lp1q8T3y3bKlkQoFHLPBQJBpRPC7e3txd6vKj8hTUGJqATeJ7wRmRgJTb4mwsaFoZVeK3mHVan6M42cEEIIIYQQApZlMe3MNJx6dArKCso47X0anYw7yTusKlHDghBCCCGEkHpkccRi/Hr3V/AYHg4PPww3gZu8Q5IKNSwIIYQQQgipJzZd34T119YDAHYN3AWvtl7yDUgG9aJhERwcDIFAABUVFTg7O+PWrVuV5j927Bjatm0LFRUV2Nra4ty5c9x7xcXFWLhwIWxtbaGurg4TExP4+Pjg1atX5c5z9uxZODs7Q1VVFbq6uvDy8qrpohFCCCGEECKVPTF7sCB8AQBgvft6THKYJOeIZCP3hsWRI0fg7++PFStWIDo6GnZ2dvDw8EBGRobE/NevX4e3tzcmT56Mu3fvwsvLC15eXoiNjQUA5OXlITo6GsuXL0d0dDRCQ0MRHx+PQYMGiZ3nxIkTGD9+PCZOnIh79+7h2rVrGDNmTK2Xt7Hj8/ncRD8+v35t2kIIIaTuMAyDFi1aoEWLFrRLNiFSOB1/Gv89/V8AwHyX+fim2zdyjkh2DCvnZRecnZ3RpUsXbsUJkUgEc3NzzJo1C4sWLSqXf9SoUcjNzcWZM2e4tC+++AL29vbYvn27xGvcvn0bTk5OSEpKQosWLVBSUgKBQIBVq1Zh8uTJ1Yo7KysL2trayMzMhJaWVrXOQQgh9RV9x0mvss+qoKAACQkJsLS0hIqKipwiJPJAf3siiyuJV+Cx3wOFwkJMtJ+IXwf9Wm8a5LLUB3LtsSgqKkJUVBS3TjUA8Hg8uLu748aNGxKPuXHjhlh+oHSH54ryA0BmZiYYhuE24omOjkZKSgp4PB4cHBxgbGyMvn37cr0ekhQWFiIrK0vsQQghhBBCiCyEIiEiEyNx6P4hRCZG4k7KHQw6PAiFwkIMbjMYOwfurDeNClnJdR+LN2/eQCgUonnz5mLpzZs3x6NHjyQek5aWJjF/WlqaxPwFBQVYuHAhvL29uVbW8+fPAQArV67E999/D4FAgM2bN8PNzQ2PHz9Gs2bldzMMDAzEqlWrZC5jUyMUCnH16lUAQI8ePWhnVEIIaaJYlkVOTg4AQENDo8H+UCKkJoU+DIVfmB9eZr3k0ngMDyJWhJ4WPXFo2CEo8hruNnNyn2NRm4qLizFy5EiwLCu2S6hIJAIALF26FMOGDYOjoyNCQkLAMAyOHTsm8VyLFy9GZmYm93jx4kWdlKGhKSgoQK9evdCrVy8UFBTIOxxCCCFyIhKJEB8fj/j4eK7eJaQpC30YiuFHh4s1KgBAxJb++/ivw3+hqqQqj9BqjFwbFvr6+lBQUEB6erpYenp6OoyMjCQeY2RkJFX+skZFUlISwsPDxcaEGRsbAwDat2/PpSkrK8PKygrJyckSr6usrAwtLS2xByGEEEIIIVURioTwC/MDC8lTmxkwWHppKYQiocT3GwqZGhYlJSVYvXo1Xr58WXVmKfD5fDg6OiIiIoJLE4lEiIiIgIuLi8RjXFxcxPIDQHh4uFj+skbFkydPcPHiRejp6Ynld3R0hLKyMuLj48WOSUxMhIWFRU0UjRBCCGmwJkyYAIZhyj08PT3rLIaVK1fC3t5eqnxl8SkqKkJfXx89e/ZEUFAQCgsLxfK6ubmBYRisW7eu3Hn69+8PhmGwcuXKcvkZhoGysjJMTU0xcOBAhIaGfm7xSBNzNflquZ6Kj7Fg8SLrBa4mX63DqGqeTA0LRUVFbNy4ESUlJTUWgL+/P3bt2oW9e/fi4cOHmD59OnJzczFx4kQAgI+PDxYvXszl9/PzQ1hYGDZv3oxHjx5h5cqVuHPnDmbOnAmgtIEwfPhw3LlzBwcOHIBQKERaWhrS0tJQVFQEANDS0sK0adOwYsUKXLhwAfHx8Zg+fToAYMSIETVWNkIIIaSh8vT0RGpqqtjj0KFD8g5Log4dOiA1NRXJycm4fPkyRowYgcDAQHTt2hXZ2dliec3NzbFnzx6xtJSUFERERHAjGj42ZcoUpKam4tmzZzhx4gTat2+P0aNH46uvvqrNIpFGJjU7tUbz1Vcyzw758ssvceXKFQgEghoJYNSoUXj9+jUCAgKQlpYGe3t7hIWFcRO0k5OTweP92/7p2rUrDh48iGXLlmHJkiVo1aoVTp06BRsbGwClXw6nT58GgHJ3Oi5fvgw3NzcAwMaNG6GoqIjx48cjPz8fzs7OuHTpEnR1dWukXIQ0NCzLoqSkBEJhw+6GJdJRUFCAoqIiTaglFVJWVq5wWHJkZCT69OmDiIgI9OjRAwCwYcMGbNq0Cffv30fz5s0RFhaGpUuX4tmzZ+Dz+XBxccGWLVtgbW3Nnefly5dYsGAB/vjjDxQWFqJdu3YIDg7Gw4cPuQVTyv4bDQkJwYQJEyTGo6ioyMVqYmICW1tb/Oc//4GdnR3Wr1+Pb7/9lss7YMAAHD16FNeuXUO3bt0AAHv37kWfPn0kDodWU1Pjzm1mZoYvvvgCbdu2xaRJkzBy5MhyK1USIkllvRUfM9Ys37htSGRuWPTt2xeLFi3C/fv34ejoCHV1dbH3P92IThozZ87kehw+FRkZWS5txIgRFfYsCAQCSLM1h5KSEjZt2oRNmzbJFCshjVFRURFSU1ORl5cn71BIHVJTU4OxsTFtZlnXWBaQx781NTWghhqSbm5umDNnDsaPH4979+7h+fPnWL58OY4dO8bdGMzLy8OYMWPQqlUrtGjRAqtWrcKQIUMQExMDHo+HnJwcuLq6wtTUFKdPn4aRkRGio6MhEokwatQoxMbGIiwsDBcvXgQAaGtryxRj27Zt0bdvX4SGhoo1LPh8PsaOHYuQkBCuYbFnzx5s2LBBbBhUZXx9fTFv3jyEhoZSw4JU6kPBB8z7Yx52x+yuNB8DBmZaZujRokcdRVY7ZG5YfP311wCA77//vtx7DMPQ3U5CGhiRSISEhAQoKCjAxMQEfD6f7mI3cizLoqioCK9fv0ZCQgJatWol1jNcnwUHB2Pjxo1IS0uDnZ0dfvrpJzg5OUnM++DBAwQEBCAqKgpJSUn44YcfMGfOnArPvW7dOixevBh+fn4ICgqqnQIApY0KDY3aO39FcnKAT24GVubMmTPQ+CTOJUuWYMmSJQCAb7/9FuHh4fjqq68QGxsLX19fsZuLQ4cOxd27dwGUjiDYvXs3DAwMEBcXBxsbGxw8eBCvX7/G7du3uWXeW7ZsyR2voaEh1hNRHW3btsWFCxfKpU+aNAk9evTAli1bEBUVhczMTAwYMEDqhgWPx0Pr1q2RmJhY7dhI43c6/jSmnZmG1JxUMGDQr1U/nHtyDgDEJnEzKK1zgzyDoMBr2Mv0y9ywoCXjSGWUlJSwYcMG7jmp/4qKirgd79XU1OQdDqkjqqqqUFJSQlJSEoqKihrEzsBHjhyBv78/tm/fDmdnZwQFBcHDwwPx8fEwNDQslz8vLw9WVlYYMWIE5s6dW+m5b9++jR07dqBjx461FX6D06tXL7Gl2gGI7fPE5/Nx4MABdOzYERYWFvjhhx/E8j59+hTfffcdoqOj8f79e+73Q3JyMmxsbBATEwMHBweJe0fVFJZlJd4osbOzQ6tWrXD8+HFcvnwZ48ePh6KibD+JKjo3IW/y3mD2+dk4FFs6J6m1XmvsHrQb3Vp0k7iPhZmWGYI8gzC03VB5hVxjGu4OHKRe4vP5WLBggbzDINXQUO5Yk5rT0P7m33//PaZMmcIt7rF9+3acPXsWu3fvxqJFi8rl79KlC7p06QIAEt8vk5OTg7Fjx2LXrl1iQ2ZqjZpaae9BXZPxxoG6urpYD4Ik169fBwC8e/cO7969ExsePXjwYFhYWGD37t0wMTGBSCSCjY0Nt5CKqmrtr9f/8OFDWFpaSnxv0qRJCA4ORlxcHG7duiXTeYVCIZ48ecL990UIUNrYPBZ3DDPPzcTrvNfgMTws6LoAK1xXcPtTDG03FIPbDMbV5KtIzU6FsaYxerTo0eB7KspUq1a5cuUKBg4ciJYtW6Jly5YYNGgQt9syIYQQUtOKiooQFRUlNp6dx+PB3d0dN27c+Kxzz5gxA/3796+7sfIMUzokqa4fNXx3/dmzZ5g7dy527doFZ2dn+Pr6cr0Sb9++RXx8PJYtW4bevXujXbt2eP/+vdjxHTt2RExMDN69eyfx/Hw+/7OGVz969AhhYWEYNmyYxPfHjBmD+/fvw8bGRmxfK2ns3bsX79+/r/DcpOlJy0nDsKPDMOr4KLzOew1bQ1vc/O9NrHNfV27TOwWeAtwEbvC29YabwK3RNCqAavRY7N+/HxMnTsTQoUMxe/ZsAMC1a9fQu3dv7NmzB2PGjKnxIEnDIRQKER0dDQDo1KkTFBQazz8WQoj8vHnzBkKhkJsYXKZ58+Z49OhRtc97+PBhREdH4/bt21IfU1hYKLY/QlZWVrWvX58VFhYiLS1NLK1snwihUIhx48bBw8MDEydOhKenJ2xtbbF582YsWLAAurq60NPTw88//wxtbW28fv1abOl4APD29sbatWvh5eWFwMBAGBsb4+7duzAxMYGLiwsEAgESEhIQExMDMzMzaGpqQllZWWKsJSUlSEtLg0gkwtu3bxEZGYlvv/0W9vb2Ffai6+rqIjU1tcphu3l5eUhLS0NJSQlevnyJkydP4ocffsD06dPRq1cvGT5R0hixLIvf/vkNc8Lm4H3BeyjyFLG0x1Is6bEEfIWmtzCGzD0W3333HTZs2IAjR45g9uzZmD17No4cOYJ169ZhzZo1tREjaUAKCgrg5OQEJycnFBQUyDscUseEIiEiEyNx6P4hRCZG1voOoh9v4qWkpARLS0t88803Yv/tfby5l7q6Olq1aoUJEyYgKipK7FyRkZFgGAa6urrl/tu9ffs2d45P8zMMAx6PB21tbTg4OOCbb75BamrDXoe8qXjx4gX8/Pxw4MABmeaYBAYGQltbm3uYm5vXYpTyExYWBmNjY7FH9+7dAZT+FkhKSsKOHTsAAMbGxti5cyeWLVuGe/fugcfj4cCBA7h58ya6dOkCf39/bNy4Uez8fD4fFy5cgKGhIfr16wdbW1usW7eOuyE1bNgweHp6olevXjAwMKh0D40HDx7A2NgYLVq0gJubG44ePYrFixfj6tWr5Sagf0xHR6fc6paf2rVrF4yNjWFtbY2hQ4ciLi4OR44cwc8//yzV50garxeZL9D/YH/4nvLF+4L36GTcCVFfRWGl28om2agAALAy4vP57JMnT8qlP3nyhFVWVpb1dA1WZmYmC4DNzMyUdyj1Sk5ODguABcDm5OTIOxwihfz8fDYuLo7Nz8//rPOciDvBmn1vxmIluIfZ92bsibgTNRRpeb6+vqynpyebmprKJicnsydPnmS1tLTYb775hssDgA0JCWFTU1PZhIQE9o8//mCHDRvGKigosHv37uXyXb58mQXAmpubswcPHhS7ztSpU9kWLVqwH39lluWPj49nU1NT2fj4ePbQoUOsg4MD26xZM/aff/6ptXLXlMr+9vXtO66wsJBVUFBgT548KZbu4+PDDho0qMrjLSws2B9++EEs7eTJkywAVkFBgXsAYBmGYRUUFNiSkhKJ5yooKGAzMzO5x4sXLyr8rGrq31dDVFJSwt6+fZu9fft2hZ9lY9aU//aNnVAkZLff3s5qrtVksRKs8hplNvBqIFssLJZ3aLVClvpA5h4Lc3NzRERElEu/ePFio71rQwipXOjDUAw/OrzcBkApWSkYfnQ4Qh+G1tq1yzbxMjc3h5eXF9zd3REeHi6WR0dHB0ZGRhAIBOjTpw+OHz+OsWPHYubMmeXGffv6+mL37n/XG8/Pz8fhw4fh6+sr8fqGhoYwMjJC69atMXr0aFy7dg0GBgaYPn16zRe2CePz+XB0dBSrf0QiESIiIuDi4lKtc/bu3Rv3799HTEwM9+jcuTPGjh2LmJiYCodyKisrQ0tLS+xBCGkanr9/Dvd97ph2dhqyi7LhYuaCmGkxWNR9ERR5tCaSzJ/AvHnzMHv2bMTExKBr164ASudY7NmzB1u2bKnxAAkhdY9lWeQVS7eBl1AkxOzzs8XW5ObOAxYMGPid94O7pbtUE9TUlNSqvYRjbGwsrl+/DgsLiyrzzp07F/v27UN4eDhGjhzJpY8fPx4bN25EcnIyWrRogRMnTkAgEKBTp05SxaCqqopp06Zh7ty5yMjIkLgMKqkef39/+Pr6onPnznByckJQUBByc3O5VaJ8fHxgamqKwMBAAKUTvuPi4rjnKSkpiImJgYaGBlq2bAlNTU3Y2NiIXUNdXR16enrl0gkhTZtQJMTWW1ux5NIS5BXnQVVRFYG9AzHTaWajmnz9uWRuWEyfPh1GRkbYvHkzjh49CgBo164djhw5gsGDB9d4gISQupdXnAeNwJrZwIsFi5fZL6G9Xrpdc3MW50CdL/smXiUlJSgsLASPx8PWrVurPK5t27YAUG6DK0NDQ/Tt2xd79uxBQEAAdu/ejUmTJkkdz6fnpoZFzRk1ahRev36NgIAApKWlwd7eHmFhYdyE7uTkZLEldF+9egUHBwfu9aZNm7Bp0ya4uroiMjKyrsMnhDRQj948wuTTk3H9Renyyr0EvbBr4C5YN7OWc2T1j0wNi5KSEqxduxaTJk3CX3/9VVsxEUKI1Mo28crNzcUPP/wARUVFqZaAZNnSHhZJvSOTJk2Cn58fxo0bhxs3buDYsWMyLald2bnJ55k5cyZmzpwp8b1PGwsCgYD7W0iLGhyEND1CkVDivhIlohJsvr4ZKyJXoFBYCE2+Jjb+ZyOmOE4Bj2lY+wDVFZkaFoqKitiwYQN8fHxqKx5CSD2gpqSGnMXSbeD1Z9Kf6HewX5X5zo05h54WPaW6tiw+3sRr9+7dsLOzw6+//orJkydXetzDhw8BQOLmWX379sVXX32FyZMnY+DAgdDT05MpprJzCwQCmY4jhBBStyraCdv/C38cuH8AUamlKwh6tvTEjgE70EK7hbxCbRBkHgrVu3dvXLlyhSpMIpGSkhJWrFjBPScNE8MwUg9H6mPdB2ZaZkjJSpE4z4IBAzMtM/Sx7lPr41B5PB6WLFkCf39/jBkzptKdfYOCgqClpSVxUzRFRUX4+Phgw4YNOH/+vEwx5OfnY+fOnejZsycMDAxkLgMhjQXDMDAxMeGeE1LflC088mnd9TLrJfwv+AMAdFR0EOQRBB87H/rvWAoyNyz69u2LRYsW4f79+3B0dCy3/vOgQYNqLDjS8PD5fKxcuVLeYZA6pMBTwBbPLRh+dDgYMGJf0AxKv4SDPIPqbHLbiBEjsGDBAgQHB2P+/PkAgA8fPiAtLQ2FhYV4/PgxduzYgVOnTmHfvn3Q0dGReJ41a9ZgwYIFVfZWZGRkoKCgANnZ2YiKisKGDRvw5s0bhIbW3kpYhDQEPB6Pa1gQUt8IRUL4hflJvCFWRlVRFfen3YeZtlkdRtawydyw+PrrrwEA33//fbn3GIaBUFi7G2IRQuqfoe2G4vjI4xK7k4M8gzC03dA6i0VRUREzZ87Ehg0buCVfy1YNUlFRgampKbp3745bt25VutITn8+Hvr5+lddr06YNGIaBhoYGrKys0KdPH/j7+8PIyKhmCkQIIaTGXU2+Wm6J9E/ll+Tj6fun1LCQgcwNC5FIVBtxkEZCJBJx48vbtWsntkILadyGthuKwW0GS5wAV1v27NkjMX3RokVYtGgRAEg9edfNza3SvF5eXmLvV5WfkKaOZVluF3sVFRUaRkLqldTs1BrNR0rJ9KuvuLgYioqKiI2Nra14SAOXn58PGxsb2NjYID8/X97hkDqmwFOAm8AN3rbecBO40dreRExRURHi4+NRUlIi71BINbm5uWHOnDlS5RWJRAgODkbr1q2hqKgo9XHSYBgGp06dqrHzkabHWNO4RvORUjI1LJSUlNCiRQsa7kQIIURqeXl5mDx5MtTU1NChQwckJycDAGbNmoV169bJOTpSmwIDA/Hll18iMTERa9asqZVrJCYmgmEYxMTE1Mr5SePEgKl0yVgGDMy1zNGjRY86jKrhk3mcytKlS7FkyRK8e/euNuIhhBDSyCxevBj37t1DZGQkVFRUuHR3d3ccOXJEjpGR2pSTk4N3797BxcUFJiYm0NTUlHdIhAAA9t3bhz77+0DElg7vL1topIw8Fh5pLGRuWGzduhV//vknTExM0KZNG3Tq1EnsQQghhHzs1KlT2Lp1K7p37y42zr5Dhw549uyZHCMjlcnNzYWPjw80NDRgbGyMzZs3i71fWFiI+fPnw9TUFOrq6nB2duY2GIyMjORWXJs+fToUFRURGRmJt2/fwtvbG6amplBTU4OtrS0OHTokdl6BQICgoCCxNHt7+wpXHCzbi8bBwQEMw8DNze1zi04aKRErwtKIpfA95YsiYRGGtRuGg0MPwlTLVCyfmZYZjo88XqcLjzQWMk/e9vLyqvEggoODsXHjRqSlpcHOzg4//fQTnJycKsx/7NgxLF++HImJiWjVqhXWr1+Pfv1KN+gqLi7GsmXLcO7cOTx//hza2tpwd3fHunXrJC57V1hYCGdnZ9y7dw93796Fvb19jZePEEKastevX8PQ0LBcem5ubpOe0Jubm1vhewoKCmK9O5Xl5fF4Ynu2SMr76dLw0liwYAGuXLmC33//HYaGhliyZAmio6O5enLmzJmIi4vD4cOHYWJigpMnT8LT0xP3799H165dERcXh/bt22P9+vUYO3YsDAwM8Pr1azg6OmLhwoXQ0tLC2bNnMX78eFhbW1da71fm1q1bcHJywsWLF9GhQwfw+fxqnYc0bnnFefA56YMTD08AAJZ0X4I1X64Bj+FhZIeRdbrwSGMmc8OibPOzmnLkyBH4+/tj+/btcHZ2RlBQEDw8PBAfHy+xIrp+/Tq8vb0RGBiIAQMG4ODBg/Dy8kJ0dDRsbGyQl5eH6OhoLF++HHZ2dnj//j38/PwwaNAg3Llzp9z5vvnmG5iYmODevXs1Wi5CCCGlOnfujLNnz2LWrFkA/t0s7ZdffoGLi4s8Q5MrDQ2NCt/r168fzp49y702NDREXl6exLyurq5cTwFQesf/zZs3YnlkXcEsJycHv/76K/bv34/evXsDAPbu3Qszs9JlN5OTkxESEoLk5GTupt38+fMRFhaGkJAQrF27lqvDtbW1YWRkBAUFBZiamnL7ywCl82z++OMPHD16tNoNi7KNKPX09GiZZyLRq+xXGHRoEKJSo8BX4OOXgb9gvN147v2yhUfI55O6YXHr1i04OjpCQUFyC66wsBC///47Ro4cKVMA33//PaZMmcKtM799+3acPXsWu3fv5paL/NiWLVvg6emJBQsWACjdxCo8PBxbt27F9u3boa2tjfDwcLFjtm7dCicnJyQnJ6NFi3+3Yj9//jwuXLiAEydOyLy7LiGEEOmsXbsWffv2RVxcHEpKSrBlyxbExcXh+vXruHLlirzDIxI8e/YMRUVFcHZ25tKaNWuGNm3aAADu378PoVCI1q1bix1XWFhY6aaSQqEQa9euxdGjR5GSkoKioiIUFhZCTU2tdgpCmrzo1GgMOjQIKdkp0FfTx8lRJ9G9RXd5h9VoSd2wcHFxQWpqKncHQktLCzExMbCysgJQurOtt7e3TA2LoqIiREVFYfHixVwaj8eDu7s7bty4IfGYGzduwN/fXyzNw8Oj0mXnMjMzwTCM2A676enpmDJlCk6dOkVfaDVISUmJuxulpKQk52gIIfVB9+7dERMTg3Xr1sHW1hYXLlxAp06dcOPGDdja2so7PLnJycmp8L1Pb+JlZGRUmPfT/YISExM/Ky5p5OTkQEFBAVFRUeViLeuJKeuZ0tXV5Z5v3LgRW7ZsQVBQEGxtbaGuro45c+agqKiIO57H45XrYSkuLq7N4pBG6tSjUxgbOhZ5xXlop98OZ8acgZWulbzDatSkblh8+o9cUreqrF2tb968gVAoRPPmzcXSmzdvjkePHkk8Ji0tTWL+tLQ0ifkLCgqwcOFCeHt7Q0tLi4tzwoQJmDZtGjp37izVl3BhYSEKCwu511lZWVUe0xTx+Xxs3LhR3mEQQuoZa2tr7Nq1S95h1CuyzHuorbwVsba2hpKSEm7evMn19L9//x6PHz+Gq6srHBwcIBQKkZGRgR49JC/HWdbgMTQ05J5fu3YNgwcPxrhx4wCU7nXx+PFjtG/fnjvOwMAAqan/bkqWlZWFhISECmMtm1NBS+GTMizLYsO1DVgcsRgsWPSx7oOjw49CW0Vb3qE1ejLPsahMfZuEV1xcjJEjR4JlWWzbto1L/+mnn5CdnS3WU1KVwMBArFq1qjbCJISQJiEjIwMZGRkQiURi6R07dpRTRKQiGhoamDx5MhYsWAA9PT0YGhpi6dKlXAOhdevWGDt2LHx8fLB582Y4ODjg9evXiIiIQMeOHdG/f3+J523VqhWOHz+O69evQ1dXF99//z3S09PFGhZffvkl9uzZg4EDB0JHRwcBAQEVDsMGShsuqqqqCAsLg5mZGVRUVKCtTT8gm6oiYRGmnZmGkJgQAMCMLjMQ5BkERV6N/uQlFZB5udmapK+vDwUFBaSnp4ulp6enVzgBy8jISKr8ZY2KpKQkhIeHc70VAHDp0iXcuHEDysrKUFRURMuWLQGUTjD09fWVeN3FixcjMzOTe7x48ULm8jYFIpEIiYmJSExMLPfjgZDakJaWhlmzZsHKygrKysowNzfHwIEDERERAaB0IivDMGAYBqqqqhAIBBg5ciQuXbokdp6yTbYUFBSQkpIi9l5qaioUFRXBMAzXw1mWv+yhqamJDh06YMaMGXjy5EmdlL2hiIqKgo2NDYyNjdGxY0fY29tzDwcHB3mHRyqwceNG9OjRAwMHDoS7uzu6d+8OR0dH7v2QkBD4+Phg3rx5aNOmDby8vHD79m2uh6NsFENRURH3fNmyZejUqRM8PDzg5uYGIyOjcqtNLl68GK6urhgwYAD69+8PLy8vWFtbVxinoqIifvzxR+zYsQMmJiYYPHhwDX8SpKF4k/cG//ntPwiJCQGP4eGnvj9ha7+t1KioS6yUGIZhL1++zN67d4+9d+8eq66uzp49e5Z7HRERwfJ4PGlPx3FycmJnzpzJvRYKhaypqSkbGBgoMf/IkSPZAQMGiKW5uLiwU6dO5V4XFRWxXl5ebIcOHdiMjIxy50hKSmLv37/PPf744w8WAHv8+HH2xYsXUsWdmZnJAmAzMzOlyt9U5OTksABYAGxOTo68wyFSyM/PZ+Pi4tj8/Hx5hyKzhIQE1sTEhG3fvj17/PhxNj4+no2NjWU3b97MtmnThmVZlrWwsGBXr17NpqamsklJSeyVK1fYKVOmsAzDsN9++63YuQCw5ubm7Nq1a8WuExgYyLZo0YIFwCYkJIjlv3jxIpuamso+e/aMPXXqFNurVy9WVVWVvXjxYp19DtVV2d++Jr/jOnbsyA4ZMoT9+++/2YSEBDYxMVHs0dBV9lk15H9fn6ukpIS9ffs2e/v2bbakpETe4dS5pvy3l4eHrx+y1lusWawEqxWoxZ5/cl7eITUastQHMjXhevfuLTaPYsCAAQBKh0CxLFutoVD+/v7w9fVF586d4eTkhKCgIOTm5nKrRPn4+MDU1BSBgYEAAD8/P7i6umLz5s3o378/Dh8+jDt37mDnzp0ASnsqhg8fjujoaJw5cwZCoZCbf9GsWTPw+XyxlaGAfyeaWVtbc0vpEULqv6+//hoMw+DWrVti48o7dOiASZMmca81NTW5Xs0WLVqgZ8+eMDY2RkBAAIYPH86tdAMAvr6+CAkJERsqGRISAl9fX6xZs6ZcDB8vcWllZYWBAweid+/emDx5Mp49e1bpEI6m4vnz5zhx4gTXO0wIITXp4vOLGH50ODILMyHQEeCM9xl0MOwg77CaJKmHQiUkJOD58+dISEgo9yhLf/78ucwBjBo1Cps2bUJAQADs7e0RExODsLAwboJ2cnKy2CSurl274uDBg9i5cyfs7Oxw/PhxnDp1CjY2NgCAlJQUnD59Gi9fvoS9vT2MjY25x/Xr12WOj5CmiGWB3Fz5PKRdA+Ldu3cICwvDjBkzJE5W/XgVOEn8/PzAsix+//13sfRBgwbh/fv3+OuvvwAAf/31F96/f4+BAwdKFRePx4Ofnx+SkpIQFRUlXWEaud69e9NeQYSQWrH9znZ47vdEZmEmupl3w63/3qJGhRxJ3WNhYWFRa0HMnDkTM2fOlPjex5v+lBkxYgRGjBghMb9AIJB5darqHENIY5aXB1Syd1etyskBpFnU5unTp2BZFm3btq3WdZo1awZDQ8Nyq8IpKSlh3Lhx2L17N7p3747du3dj3LhxMi2fXBZTYmJitTf9akx++eUX+Pr6IjY2FjY2NuU+y0GDBskpMkJIQyUUCTHvwjxsubkFADCu4zj8MvAXKCsqyzmypo1msxBCGqSauBlQ0RDOSZMmoWvXrli7di2OHTuGGzduoKSkRObY6ttKefJy48YNXLt2TeJGpAzD0DKhhBCZZBVmwfuEN849OQcA+LbXt1jSYwl959YD1LAghJSjplbacyCva0ujVatWYBimwj1vqvL27Vu8fv0alpaW5d6ztbVF27Zt4e3tjXbt2sHGxgYxMTFSn/vhw4cAIPHcTdGsWbMwbtw4LF++vNw+RE0F9Yo3PfQ3rx2JHxIx8NBAxGbEQlVRFfuG7MPw9sPlHRb5H2pYEELKYRjphiPJU7NmzeDh4YHg4GDMnj273DyLDx8+VDrPYsuWLeDxeOWWuiwzadIkfP3112J74EhDJBLhxx9/hKWlJS2l+j9v377F3Llzm2SjomzYV15eHlRVVeUcDalLeXl5ACDTMEpSuRsvbsDriBcycjNgpGGE06NPo4tpF3mHRT5CDQtSoxQVFfH1119zzwmpTcHBwejWrRucnJywevVqdOzYESUlJQgPD8e2bdu4noPs7GykpaWhuLgYCQkJ2L9/P3755RcEBgZWuFLRlClTMGLEiCongb99+xZpaWnIy8tDbGwsgoKCcOvWLZw9e5ZWhPqfoUOH4vLly5XuRdBYKSgoQEdHBxkZGQAANTW1JjNcQyQSQVdXFwBQWFjIba7X2LEsi7y8PGRkZEBHR4e+B2QkFAlxNfkqUrNTYaxpjB4tekCBp4CD9w9i0u+TUCgshL2RPU6PPg1zbXN5h0s+Ua1ffiUlJYiMjMSzZ88wZswYaGpq4tWrV9DS0uKWbiVNk7KyMoKDg+UdBmkirKysEB0dje+++w7z5s1DamoqDAwM4OjoKNbTEBAQgICAAPD5fBgZGeGLL75AREQEevXqVeG5FRUVoa+vX2UM7u7uAEp/MFpYWKBXr17YuXMnLa36kdatW2Px4sX466+/YGtrW+4O7uzZs+UUWd0oW464rHHRFCUlJck7hDqno6NT4Wa/RLLQh6HwC/PDy6yXXJqZlhlczFxwLO4YAGBwm8HYP3Q/NPj0e7M+YlgZBwEmJSXB09MTycnJKCwsxOPHj2FlZQU/Pz8UFhZi+/bttRVrvZKVlQVtbW1kZmaK7epNSENTUFCAhIQEWFpaQkVFRd7hkDpU2d++Jr/jKptrwjBMtZYqr0+k/ayEQiGKi4vrMDIiL0pKStRTIaPQh6EYfnQ4WFT8s/Sbrt8g0D0QPKZp9H7VF7LUBzL3WPj5+aFz5864d+8e9PT0uPQhQ4ZgypQpskdLGhWWZfHmzRsAgL6+fpPp8ieEVCwhIUHeIdQLCgoKTerHJtUHRFpCkRB+YX6VNiqaqTTD2t5rqVFRz8ncsLh69SquX78OPp8vli4QCJCSklJjgZGGKS8vD4aGhgCAnJwciRuXEUIIafyoPiDSupp8VWz4kyTvCt7havJVuAnc6iYoUi0yNyxEIpHENcdfvnwJTU3NGgmKEEJIw+bv7481a9ZAXV0d/v7+leb9/vvv6ygqQkh9lJqdWqP5iPzI3LDo06cPgoKCsHPnTgCl42NzcnKwYsUK9OvXr8YDJIQQ0vDcvXuXm09w9+5dOUdDCKmvXmS+wP89/j+p8hprGtdyNORzydyw2Lx5Mzw8PNC+fXsUFBRgzJgxePLkCfT19XHo0KHaiJEQQkgDc/nyZYnPCSEEAP5++TeC/g7C8bjjELLlR8J8jAEDMy0z9GjRo46iI9Ul8wwYMzMz3Lt3D0uWLMHcuXPh4OCAdevW4e7du9xYSkIIIaTMpEmTkJ2dXS49NzcXkyZNkkNEhBB5KBYW49D9Q3D+xRkuv7rgyIMjELJC9BL0wqJui8D8738fK3sd5BkEBV7TWfygoZK5x6KgoAAqKioYN25cbcRDCCGkkdm7dy/WrVtXbh5efn4+9u3bh927d8spMkJIXXib9xY7o3Yi+HYwUrJLF/rhK/Ax1nYs/Jz9YGdkBwDoYtpF4j4WQZ5BGNpuqFxiJ7KRuWFhaGiIIUOGYNy4cejdu3eT2UmTEEKIbLKyssCyLFiWRXZ2ttheGUKhEOfOnaOebkIasQcZD/DjzR+x7599KCgpAAA0V2+OGV1mYGrnqTBUF//3P7TdUAxuM1jiztukYZC5YbF3714cPHgQgwcPhra2NkaNGoVx48ahc+fOtREfaWAUFRXh6+vLPSeENF06OjpgGAYMw6B169bl3mcYBqtWrZJDZKQuUH3QNIlYEcKehiHo7yCEPw/n0h2MHDD3i7kY2WEklBWVKzxegadAS8o2YDL/Sx8yZAiGDBmC7OxsHD9+HIcOHcIXX3wBKysrjBs3DgEBAbURJ2kglJWVsWfPHnmHQQipBy5fvgyWZfHll1/ixIkTaNasGfcen8+HhYUFTExM5BghqU1UHzQtOUU52HdvH7bc3ILHbx8DAHgMD15tvTDHeQ66t+hOmyQ2AdUex6SpqYmJEyfiwoUL+Oeff6Curk53ngghdWrChAncHfGPH56ennUWw8qVK2Fvby9VvrL4FBUVoa+vj549eyIoKAiFhYVied3c3MAwDNatW1fuPP379wfDMFi5cmW5/AzDQFlZGaamphg4cCBCQ0M/t3ifxdXVFW5ubkhISMDgwYPh6urKPVxcXKrVqAgODoZAIICKigqcnZ1x69atCvM+ePAAw4YNg0AgAMMwCAoKKpcnMDAQXbp0gaamJgwNDeHl5YX4+HiZ4yKksRKKhIhMjMSh+4cQmRgJoUh8BaekD0lYcGEBzH8wx4xzM/D47WNoKWthnss8PJv9DCdGnkAPix7UqGgiqt03WVBQgNOnT+PgwYMICwtD8+bNsWDBgpqMjTRALMsiLy8PAKCmpkZfJKTWeXp6IiQkRCxNWbnibnZ56tChAy5evAiRSIS3b98iMjIS3377LX777TdERkaKTW42NzfHnj17sGjRIi4tJSUFERERMDYuv5b7lClTsHr1apSUlODly5c4efIkRo8ejQkTJnD7DsmLhYUFPnz4gFu3biEjIwMikUjsfR8fH6nOc+TIEfj7+2P79u1wdnZGUFAQPDw8EB8fL3GuRl5eHqysrDBixAjMnTtX4jmvXLmCGTNmoEuXLigpKcGSJUvQp08fxMXF0U7Rn4nqg4Yv9GGo5MnUHkEw0jBC0M0ghD4MhYgt/TfdsllL+Dn7wdfOF5rKtGlyk8TKKCwsjPXx8WG1tLTYZs2asV999RV75coVWU/T4GVmZrIA2MzMTHmHUq/k5OSwAFgAbE5OjrzDIVLIz89n4+Li2Pz8fHmHIjNfX1928ODBFb5/+fJlVklJif3zzz+5tPXr17MGBgZsWloay7Ise/78ebZbt26strY226xZM7Z///7s06dPxc7z4sULdvTo0ayuri6rpqbGOjo6sn///TcbEhLC/fde9ggJCZEYy4oVK1g7O7ty6Q8fPmT5fD67dOlSLs3V1ZWdPn06q6enx/71119c+nfffccOHDiQtbOzY1esWCGW38/Pr9y5d+/ezQJgw8PDJcZU2d++Jr/jTp8+zWpqarIMw7Da2tqsjo4O99DV1ZX6PE5OTuyMGTO410KhkDUxMWEDAwOrPNbCwoL94YcfqsyXkZHBApCpXqP6QDKqDxq2E3EnWGYlw2Ilqny473Nn/y/+/1ihSCjvsEktkOU7TuahUEOGDOGWCExLS8OOHTvQs2fPmmnlEELqB5YFcnPl82DZGiuGm5sb5syZg/HjxyMzMxN3797F8uXL8csvv6B58+YASvdS8Pf3x507dxAREQEej4chQ4Zwd9VzcnLg6uqKlJQUnD59Gvfu3cM333wDkUiEUaNGYd68eejQoQNSU1ORmpqKUaNGyRRj27Zt0bdv33LDlvh8PsaOHSvWG7Nnzx6Z9n3w9fWFrq6u3IdEzZs3D5MmTUJOTg4+fPiA9+/fc493795JdY6ioiJERUXB3d2dS+PxeHB3d8eNGzdqLNbMzEwAEJsPQkhTIxQJ4RfmBxaVfx9Psp+E+9PvI3x8OAa0HgAeQyuFNnUyD4VKT08vtxY5IaSRycsDNDTkc+2cHECGIShnzpyBxiexLlmyBEuWLAEAfPvttwgPD8dXX32F2NhY+Pr6YtCgQVzeYcOGiR27e/duGBgYIC4uDjY2Njh48CBev36N27dvcz82W7ZsyeXX0NCAoqIijIyMZC5qmbZt2+LChQvl0idNmoQePXpgy5YtiIqKQmZmJgYMGCA2v6IyPB4PrVu3RmJiYrVjqwkpKSmYPXs21NTUqn2ON2/eQCgUcg3CMs2bN8ejR48+N0QAgEgkwpw5c9CtWzfY2NhUmK+wsFBsXkxWVlaNXJ+Q+uJq8lWx4U8VGW83HjaGFf9bIU2PVE3Lj780WZZFVlZWhY/qkGUyHgAcO3YMbdu2hYqKCmxtbXHu3DnuveLiYixcuBC2trZQV1eHiYkJfHx88OrVKy5PYmIiJk+eDEtLS6iqqsLa2horVqxAUVFRteInhMhPr169EBMTI/aYNm0a9z6fz8eBAwdw4sQJFBQU4IcffhA7/smTJ/D29oaVlRW0tLQgEAgAAMnJyQCAmJgYODg41OodbJZlJY4/t7OzQ6tWrXD8+HHs3r0b48ePl3nZzorOXZc8PDxw584ducYgjRkzZiA2NhaHDx+uNF9gYCC0tbW5h7m5eR1FSEjte5//HrvvSrdpZWp2ai1HQxoaqWooXV1dpKamwtDQkFuX/FNllZdQKJRwhorJOhnv+vXr8Pb2RmBgIAYMGICDBw/Cy8sL0dHRsLGxQV5eHqKjo7F8+XLY2dnh/fv38PPzw6BBg7iK7dGjRxCJRNixYwdatmyJ2NhYTJkyBbm5udi0aZNM8RPSKKmplfYcyOvaMlBXVxfrQZDk+vXrAIB3797h3bt3YpNyBw4cCAsLC+zatQsmJiYQiUSwsbHhbjSoqqrKWADZPXz4EJaWlhLfmzRpEoKDgxEXF1flTZdPCYVCPHnyBF26dKmJMKutf//+WLBgAeLi4mBrawslJSWx9z/uQaqIvr4+FBQUkJ6eLpaenp7+Wb1FZWbOnIkzZ87gzz//hJmZWaV5Fy9eDH9/f+51VlYWNS5Ig8ayLP5++Te2R23H0QdHuc3sqmKsWX4hCdK0SdWwuHTpEne37vLlyzUawPfff48pU6Zg4sSJAIDt27fj7Nmz2L17t9hqKGW2bNkCT09PbgWqNWvWIDw8HFu3bsX27duhra2N8PBwsWO2bt0KJycnJCcno0WLFvD09BRbjtLKygrx8fHYtm0bNSwIAQCGkWk4Un327NkzzJ07F7t27cKRI0fg6+uLixcvgsfj4e3bt4iPj8euXbvQo0cPAMBff/0ldnzHjh3xyy+/4N27dxJ7Lfh8vsw3VD726NEjhIWFYfHixRLfHzNmDObPnw87Ozu0b99epnPv3bsX79+/Lzfcq65NmTIFALB69epy70l7Q4rP58PR0RERERHw8vICUDp0KSIiAjNnzqx2bCzLYtasWTh58iQiIyMrbOB9TFlZud6uPEaILDILMrH/n/3YEbUD9zPuc+kdDTsiOSsZmQWZEudZMGBgpmWGHi161GW4pAGQqmHh6urKPbe0tIS5uXm5XguWZfHixQuZLl42Ge/jCrWqyXg3btwQu1MElHaznzp1qsLrZGZmgmEY6OjoVJqHJusR0vAUFhYiLS1NLK1snwihUIhx48bBw8MDEydOhKenJ2xtbbF582YsWLAAurq60NPTw86dO2FsbIzk5ORyNzS8vb2xdu1aeHl5ITAwEMbGxrh79y5MTEzg4uICgUCAhIQExMTEwMzMDJqamhX+6CwpKUFaWlq55Wbt7e0rXK67rMf407v8n8rLy0NaWprYcrM//PADpk+fjl69esnwida8T5eXrS5/f3/4+vqic+fOcHJyQlBQEHJzc7kbUz4+PjA1NUVgYCCA0jomLi6Oe56SkoKYmBhoaGhwvVwzZszAwYMH8fvvv0NTU5P7b0lbW7tOeqsIkYc7r+5g+53tOBR7CHnFpUsCqyqqYpTNKEx1nApnU2ecfHQSw48OBwNGrHHBoPT3X5BnEBR4CnKJn9RfMk/etrS05IZFfezdu3ewtLSU6c5ddSbjpaWlScz/6Q+LMgUFBVi4cCG8vb2hpaUlMc/Tp0/x008/VdpbQZP1pKOgoIDhw4dzzwmpbWFhYeX2dWjTpg0ePXqE7777DklJSThz5gwAwNjYGDt37oS3tzf69OkDOzs7HD58GLNnz4aNjQ3atGmDH3/8EW5ubty5+Hw+Lly4gHnz5qFfv34oKSlB+/btERwcDKB08ndoaCh69eqFDx8+ICQkBBMmTJAY64MHD2BsbAwFBQVoa2ujffv2WLx4MaZPn17pHfDKboqU2bVrF3bt2gU+nw89PT04OjriyJEjGDJkSJXHNhSjRo3C69evERAQgLS0NNjb23P7KAGl82J4vH+nDr569QoODg7c602bNmHTpk1wdXVFZGQkAGDbtm0AIPY3B1Dp35FIpynUB0KREFeTryI1OxXGmsbo0aJHvf2xnV2YjUOxh7AjageiU6O59PYG7THNcRrG242HjooOlz603VAcH3lc8j4WnkEY2m5oXYZPGgiGZWVb25HH4yE9PR0GBgZi6UlJSWjfvj1yc3OlPterV69gamqK69evw8XFhUv/5ptvcOXKFdy8ebPcMXw+H3v37oW3tzeX9vPPP2PVqlXlxt4WFxdj2LBhePnyJSIjIyU2LFJSUrjdYX/55ZcKY125cqXEncUzMzMrbLAQ0hAUFBQgISEBlpaWUFFRkXc4pA5V9rfPysqCtrZ2jXzHSRoC9bGAgIDPOr+81eRnRRqOijaP2+K5pV796I5Ji8GOOzuw//5+5BSVzp1TVlDGiA4jMNVxKrqZd6t0gYeG1HgitUOW7zipeyzKhh8xDIPly5eLLRsoFApx8+ZN2NvbyxRodSbjGRkZSZW/uLgYI0eORFJSEi5duiTxg3j16hV69eqFrl27VrkzLU3WI4SQ6jl58qTY6+LiYiQkJEBRURHW1tYNvmFBmp7Qh6EYfnR4ufkHKVkpGH50OI6PPF5rjQtpfujnFefhSOwRbI/ajlsp/y760FqvNaY6ToWvnS/01PSkup4CTwFuAreaLAJpxKRuWNy9exdA6VyK+/fvg8/nc+/x+XzY2dlh/vz5Ml28OpPxXFxcEBERgTlz5nBp4eHhYj0eZY2KJ0+e4PLly9DTK/+PJyUlBb169YKjoyNCQkLEus8locl6hBBSPWX1x8eysrIwYcKERjVUi8hfXdxdr2zzOBYsGDCYEzYHg9sMrvFrV9VLEpsRix13duC3f35DZmHpZo9KPCUMbTcUUx2nwk3gJvflp0njJnXDomw1qIkTJ2LLli011t0r62Q8Pz8/uLq6YvPmzejfvz8OHz6MO3fucD0OxcXFGD58OKKjo3HmzBkIhUJu/kWzZs3A5/ORkpICNzc3WFhYYNOmTXj9+jUXT00sW9iU5ebmcpuV5eTkiC3rSQghZbS0tLBq1SoMHDgQ48ePl3c4pBbUdX1QW0OTWJZFVmEWUrJT8DLrJSKeR1S6eRwLFi+yXmDW+Vn4wuwL6KnqQV9Nn3toKWtV68d9Zb0kw44OQ1u9tnj09t/5qVa6Vviq01eY6DARhurll+8npDbIPHk7JCSkRgOQdTJe165dcfDgQSxbtgxLlixBq1atcOrUKW6X1JSUFJw+fRoAyg3Nunz5Mtzc3BAeHo6nT5/i6dOn5dYrl3HKCSGEkGrKzMxEZmamvMMgjUB1hyaJWBEycjPwMuslUrJKGw4p2SlcI6IsLbdY+vmjZbbd2YZtd7aVS1fkKXKNDT21/zU6VPXFX6vpizVI1JXUK+0lAYBHbx+BBx682nlhquNUuFu5g8dItQ8yITVG5snbAHDnzh0cPXoUycnJ5XarDg0NrbHg6jOarCcZ9Vg0PDR5u+mqq8nbP/74o9hrlmWRmpqK3377DT179sShQ4c+6/zyRvWBZHVVHwhFQgi2CCrtRdBT1cM33b7Bq+xXpQ2H/zUYUnNSUSIqkeo6Oio6MNMyg6qiKm6/ul1l/i8FX0JRQRFv8t7gTd4bvM17W60GCgDwGB5EbNXLNh8fcRzD2st33xrS+NTK5O0yhw8fho+PDzw8PHDhwgX06dMHjx8/Rnp6Oo2VJYQQUs4PP/wg9prH48HAwAC+vr4VbgxIiLSuJl+ttFEBAG/z32LhxYUS3+MxPBhpGMFU0xSmWqYw0zQr/X8tMy7NVNMU6vzShlFZQyYlK6XSzeMujL9Qbo5FfnE+3ua/5RoaXKMj/9/nn77OK86TqlEBAEXCoqozEVKLZG5YrF27Fj/88ANmzJgBTU1NbNmyBZaWlpg6dWq5teQJIYSQhISEcmkFBQUIDg5Gq1atKtyHiJCqvM9/j/339kuVt6t5V3Qz78Y1GMy0ShsQRhpGUORJ/3NIgaeALZ5bqrV5nKqSKsyUzGCmZVbuvYrkF+fjzOMzGHl8ZJV5jTXpdxiRL5kbFs+ePUP//v0BlK7qlJubC4ZhMHfuXHz55ZcS93oghBDS9BQWFmLlypUIDw+HsrIyFixYAC8vL4SEhGDZsmVQUFDA3Llz5R0maWAKSwpx9slZ7P9nP84+OSv1XfrvvvyuxpZNrcvN41SVVDG03VCYaZlV2UvSo0WPGrsuIdUhc8NCV1cX2dnZAABTU1PExsbC1tYWHz58QF5eXo0HSAghpGEKCAjAjh074O7ujuvXr2PEiBGYOHEi/v77b2zevBkjRoxotDsyk5olYkW4lnwN+//Zj6NxR/Gh4AP3XkfDjkjKTEJWYVad/uge2m4oBrcZXCebx31OLwkhdUnmhkXPnj0RHh4OW1tbjBgxAn5+frh06RLCw8PRu3fv2oiRNCAKCgro168f95yQuubm5gZ7e3sEBQVJlf/UqVOYP38+EhISMGvWLKmPqwrDMDh58iS3R09TdOzYMezbtw+DBg1CbGwsOnbsiJKSEty7d4/W0m8CaqI+ePTmEfb/sx8H7h9A4odELt1U0xRjbcdiXMdxsG1uy60KVdc/uuty87i67CUhpLpkblhs3boVBQUFAIClS5dCSUkJ169fx7Bhw7Bs2bIaD5A0LCoqKjh79qy8wyBEalOnTsXEiRMxe/ZsaGpq1so1EhMTYWlpibt375ZbBrsxe/nyJRwdHQEANjY2UFZWxty5c6lR0URUtz5Iz0nH4djD2H9/P+68usOla/I1Mbz9cIzrOA6uFq5iDYWm8qO7LntJCKkOmRsWzZo1457zeDwsWrSoRgMihJC6kpOTg4yMDHh4eMDExETe4TQ6QqEQfD6fe62oqMgtP0oaP1l2wc4rzsOpR6ew/5/9uPDsAoSsEEDpng+eLT0xznYcBrYZCDUltQqv11R+dNdlLwkhspKqYZGVlSX1CWkNb0JIXcnNzcX06dMRGhoKTU1NzJ8/X+z9wsJCLF26FIcOHcKHDx9gY2OD9evXw83NDZGRkejVqxcA4MsvvwRQuommra0tZs6ciT///BPv37+HtbU1lixZAm9vb+68AoEAc+bMwZw5c7g0e3t7eHl5YeXKleXitLS0BAA4ODgAAFxdXREZGVmDn0T9xLIsJkyYAGVlZQClK0FNmzat3H4GTWX/o6ZEml2whSIhLiVcwv77+xH6MBQ5RTlcXmdTZ4zrOA6jOoyCgbqB1NelH92EyJdUDQsdHZ0qu65ZlgXDMBAKhTUSGGmYcnNzYWhoCADIyMigDfIauNzcijdzUlBQENtUrbK8PB4PqqqqVeaV9b+XBQsW4MqVK/j9999haGiIJUuWIDo6mhtuNHPmTMTFxeHw4cMwMTHByZMn4enpifv376Nr166Ij49HmzZtcOLECXTt2hXNmjXD69ev4ejoiIULF0JLSwtnz57F+PHjYW1tDScnJ5niK3Pr1i04OTnh4sWL6NChg9hd/MbM19dX7PW4cePkFAmpS9wu2EUssPF/iQv+3QV74382IjUnFQfvH0RqTip3nJWuFcbZjsPYjmPRWq+1fIInhHwWqRoWly9fru04SCNCq4M1HpUNW+nXr5/Y+GlDQ8MK//af3qEXCAR48+ZNuXwsW35Fl4rk5OTg119/xf79+7mFI/bu3Qszs9L14ZOTkxESEoLk5GRumNP8+fMRFhaGkJAQrF27lmsEN2vWDEZGRgBKV7v7uOdj1qxZ+OOPP3D06NFqNywMDErvuOrp6XHXaQpCQkLkHQKpY0KREH5hfv9OoC7+972ytPnh//77aqbaDKM6jMK4juPgYuZC828IaeCkali4urrWdhyEECKTZ8+eoaioCM7Ozlxas2bN0KZNGwDA/fv3IRQK0bq1+J3PwsJC6OnpVXheoVCItWvX4ujRo0hJSUFRUREKCwuhplbx2G5CSClpdsEGgJ4WPeH/hT/6tuoLvkLT6MEjpCmQefI2AFy9ehU7duzA8+fPcezYMZiamuK3336DpaUlunfvXtMxEkLkJCcnp8L3Pl0+MiMjo8K8PB5P7HViYuJnxSWNnJwcKCgoICoqqlyslfXEbNy4EVu2bEFQUBBsbW2hrq6OOXPmoKjo3024eDxeud6V4uLiT09FSJOTmp1adSYA0xynYXDbwbUcDSGkrsncsDhx4gTGjx+PsWPHIjo6GoWFhQCAzMxMrF27FufOnavxIAkh8iHLnIfaylsRa2trKCkp4ebNm2jRogUA4P3793j8+DFcXV3h4OAAoVCIjIwM9Ogh/cZY165dw+DBg7n5ACKRCI8fP0b79u25PAYGBkhN/fcHVFZWFhISEio8Z9mcCpqDRhq75hrNpcpnrGlcy5EQQuSBV3UWcd9++y22b9+OXbt2QUlJiUvv1q0boqOjazQ4QgipiIaGBiZPnowFCxbg0qVLiI2NxYQJE7jekdatW2Ps2LHw8fFBaGgoEhIScOvWLQQGBla6tn6rVq0QHh6O69ev4+HDh5g6dSrS09PF8nz55Zf47bffcPXqVdy/fx++vr6VbgBmaGgIVVVVhIWFIT09HZmZmTXzIRBSjzx68wgBlwMqzcOAgbmWeY3vgk0IqR9kbljEx8ejZ8+e5dK1tbXx4cOHmoiJEEKksnHjRvTo0QMDBw6Eu7s7unfvzm3IBpROHvbx8cG8efPQpk0beHl54fbt21wPhyTLli1Dp06d4OHhATc3NxgZGZXbPXvx4sVwdXXFgAED0L9/f3h5ecHa2rrCcyoqKuLHH3/Ejh07YGJigsGDaQgIaTyKhEX49s9vYbfdDtdeXIOygrLEfLW9CzYhRP4YVpZlWABYWVlh586dcHd3h6amJu7duwcrKyvs27cP69atQ1xcXG3FWq9kZWVBW1sbmZmZtHfHR/Lz89G3b18AwPnz58WWGCX1U0FBARISEmBpaSm2fCxp/Cr729N3nPSa8md18+VN/Pf//ovYjFgAQN+WfbGt/zZEpUZh9unZSNmWUppxHGCuZ96odsEmpKmQ5TtO5jkWU6ZMgZ+fH3bv3g2GYfDq1SvcuHED8+fPx/Lly6sdNGkcVFVVm8TGX4QQ0pTlFOVg2aVl+PHmj2DBQl9NHz96/ojRNqPBMAwsdCxKd8Ee1bh3wSaEiJO5YbFo0SKIRCL07t0beXl56NmzJ5SVlTF//nzMmjWrNmIkhBBCSD1x/sl5TDs7DcmZyQAAHzsfbO6zGfpq+mL5aBdsQpoemRsWDMNg6dKlWLBgAZ4+fYqcnBy0b98eGhoayM/Pp6EvhBBCSCP0Ovc15v4xFwfuHwAACHQE2DFgB/pY95FzZISQ+kLmydtl+Hw+2rdvDycnJygpKeH777+HpaVlTcZGGqDc3FwYGBjAwMAAubm58g6HEELIZ2JZFvv/2Y92we1w4P4B8Bge/L/wR+z02EobFVQfENL0SN1jUVhYiJUrVyI8PBx8Ph/ffPMNvLy8EBISgqVLl0JBQQFz586tzVhJA/HmzRt5h0AIIaQGJH5IxLQz0/DHsz8AAB2bd8QvA39BF9MuUh1P9QEhTYvUPRYBAQHYtm0bBAIBEhMTMWLECHz11Vf44Ycf8P333yMxMRELFy6sVhDBwcEQCARQUVGBs7Mzbt26VWn+Y8eOoW3btlBRUYGtra3YpnzFxcVYuHAht2OuiYkJfHx88OrVK7FzvHv3DmPHjoWWlhZ0dHQwefLkSncZJqSxk3GBONII0N+cVEQoEiLo7yB0+LkD/nj2B5QVlPHdl9/hzpQ7UjcqCCFNj9QNi2PHjmHfvn04fvw4Lly4AKFQiJKSEty7dw+jR4+udHOoyhw5cgT+/v5YsWIFoqOjYWdnBw8PD2RkZEjMf/36dXh7e2Py5Mm4e/cuvLy84OXlhdjY0qXu8vLyEB0djeXLlyM6OhqhoaGIj4/HoEGDxM4zduxYPHjwAOHh4Thz5gz+/PNPfPXVV9UqAyENWdlGl3l5eXKOhNS1sr/5x5udEvJP+j9w+dUFc/+Yi7ziPPS06Il70+5hSY8lUFKg/1YIIRWTeh8LPp+PhIQEmJqaAihdVvTWrVuwtbX9rACcnZ3RpUsXbN26FQAgEolgbm6OWbNmYdGiReXyjxo1Crm5uThz5gyX9sUXX8De3h7bt2+XeI3bt2/DyckJSUlJaNGiBR4+fIj27dvj9u3b6Ny5MwAgLCwM/fr1w8uXL2FiYlJl3E153fLK5ObmQkNDAwCQk5MDdXV1OUdEpJGamooPHz7A0NAQampqYBhG3iGRWsSyLPLy8pCRkQEdHR0YGxuXy0PfcdJrLJ9VQUkBvv3zW6y/th4lohJoKWth43824r+d/gseI/uUTKoPCGkcamUfC6FQCD6f/++BiorcF0Z1FRUVISoqCosXL+bSeDwe3N3dcePGDYnH3LhxA/7+/mJpHh4eOHXqVIXXyczMBMMw0NHR4c6ho6PDNSoAwN3dHTweDzdv3sSQIUPKnaOwsBCFhYXc66ysLGmKSEiDYGRkBAAV9hSSxklHR4f725Om7c+kPzHl/6bg8dvHAIAhbYdga7+tMNGs+kYbIYSUkbphwbIsJkyYAGVlZQClO7ZOmzat3B2I0NBQqS/+5s0bCIVCNG/eXCy9efPmePTokcRj0tLSJOZPS0uTmL+goAALFy6Et7c318pKS0uDoaGhWD5FRUU0a9aswvMEBgZi1apVUpWLkIaGYRgYGxvD0NAQxcXF8g6H1AElJaVqD2ElDZNQJMTVZPEN63KKcrDw4kLsiNoBADDSMEJwv2DaHZsQUi1SNyx8fX3FXo8bN67Gg6lpxcXFGDlyJFiWxbZt2z7rXIsXLxbrKcnKyoK5ufnnhtjo8Hg8rieIx6v2asZEThQUFOjHJiGNUOjDUPiF+eFl1ksuTU9VD0JWiA8FHwAAUzpNwYb/bICOik6NXJPqA0KaHqkbFiEhITV+cX19fSgoKCA9PV0sPT09vcLueSMjI6nylzUqkpKScOnSJbExYUZGRuWGfJSUlODdu3cVXldZWZnrrSEVU1VVxe3bt+UdBiGEkP8JfRiK4UeHg4X4lMq3+W8BAMYaxjg47GCN75JN9QEhTY9cbyHw+Xw4OjoiIiKCSxOJRIiIiICLi4vEY1xcXMTyA0B4eLhY/rJGxZMnT3Dx4kXo6emVO8eHDx8QFRXFpV26dAkikQjOzs41UTRCCCFE7oQiIfzC/Mo1Kj6mwFNAjxY96jAqQkhjJfe+SX9/f+zatQt79+7Fw4cPMX36dOTm5mLixIkAAB8fH7HJ3X5+fggLC8PmzZvx6NEjrFy5Enfu3MHMmTMBlDYqhg8fjjt37uDAgQMQCoVIS0tDWloaioqKAADt2rWDp6cnpkyZglu3buHatWuYOXMmRo8eLdWKUIQQQkhDcDX5qtjwJ0leZr3E1eSrdRQRIaQxk3ooVG0ZNWoUXr9+jYCAAKSlpcHe3h5hYWHcBO3k5GSxsZldu3bFwYMHsWzZMixZsgStWrXCqVOnYGNjAwBISUnB6dOnAQD29vZi17p8+TLc3NwAAAcOHMDMmTPRu3dv8Hg8DBs2DD/++GPtF7iRy8vLQ/v27QEAcXFxUFNTk3NEhBDSdKVmp9ZoPllQfUBI0yP1PhZEXGNZt7ym0brlhDQO9B0nvfr8WV1OuIwv931ZdT7fyzU+x4LqA0IaB1m+4+Q+FIoQQgiRVnBwMAQCAVRUVODs7Ixbt25VmPfBgwcYNmwYBAIBGIZBUFDQZ5+zIWFZFicfnaw0DwMG5lrmNMeCEFIjqGFBCCGkQThy5Aj8/f2xYsUKREdHw87ODh4eHhVu7JiXlwcrKyusW7euwhX/ZD1nQ8GyLOb+MRc/3fqJS2PAiOUpex3kGQQFHi0zTQj5fNSwIIQQ0iB8//33mDJlCiZOnIj27dtj+/btUFNTw+7duyXm79KlCzZu3IjRo0dXuFy4rOdsCFiWxZywOdhycwsAYOeAnTgx8gRMtUzF8plpmeH4yOO0GR4hpMbIffI2IYQQUpWioiJERUWJrRLI4/Hg7u6OGzdu1Ok5CwsLUVhYyL3Oysqq1vVrQ1mj4sdbpYuR7Bq4C//t9F8AwOA2g8vtvE09FYSQmkQNC0IIIfXemzdvIBQKuRUDyzRv3hyPHj2q03MGBgZi1apV1bpmbWJZFn5hftzwp48bFUDpfhU1PUGbEEI+Rg0LUqMYhuGWF2QYporchBDS8CxevBj+/v7c66ysLJibm8sxIvFGBQMGuwbuwuROk+UaE9UHhDQ91LAgNUpNTQ0PHjyQdxiEkEZGX18fCgoKSE9PF0tPT0+vcGJ2bZ1TWVm5wjkb8sCyLGafn42tt7eCAYNfBv2CSQ6T5B0W1QeENEE0eZsQQki9x+fz4ejoiIiICC5NJBIhIiICLi4u9eacdY1lWcw6P6veNSoIIU0T9VgQQghpEPz9/eHr64vOnTvDyckJQUFByM3NxcSJEwEAPj4+MDU1RWBgIIDSydlxcXHc85SUFMTExEBDQwMtW7aU6pz1WVmjIvh2MBgw+HXQr5joUP/jJoQ0XtSwIDUqLy8PXbp0AQDcvn0bampqco6IENJYjBo1Cq9fv0ZAQADS0tJgb2+PsLAwbvJ1cnIyeLx/O+JfvXoFBwcH7vWmTZuwadMmuLq6IjIyUqpz1lcsy2LmuZn4+c7P9bZRQfUBIU0Pw7IsK+8gGiJZtjdvSnJzc6GhoQEAyMnJgbq6upwjIoRUB33HSa+uPyuWZTHj3Axsu7MNDBjsHrwbE+wn1Pp1ZUX1ASGNgyzfcTTHghBCCGkgRKxIrFERMjikXjYqCCFNEzUsCCGEkAZAxIow89xMsUaFr72vvMMihBAOzbEghBBC6jkRK8KMszOwPWo7NSoIIfUWNSwIIYSQekzEivD12a+xI2oHGDDY47UHPnY+8g6LEELKoYYFIYQQUk992qjY67UX4+3GyzssQgiRiBoWpEYxDAMLCwvuOSGEkOoRsSJMPzMdO6N3ggGDfUP2YVzHcfIOS2pUHxDS9FDDgtQoNTU1JCYmyjsMQghp0D5uVPAYHvZ67W1QjQqA6gNCmiJqWBBCCCH1iIgVYdqZadgVvQs8hod9XvswtuNYeYdFCCFVooYFIYQQUk+IWBGm/t9U/HL3F2pUEEIaHLnvYxEcHAyBQAAVFRU4Ozvj1q1bleY/duwY2rZtCxUVFdja2uLcuXNi74eGhqJPnz7Q09MDwzCIiYkpd460tDSMHz8eRkZGUFdXR6dOnXDixImaLFaTlZ+fjy5duqBLly7Iz8+XdziEENJgfNqo+G3Ibw26UUH1ASFNj1wbFkeOHIG/vz9WrFiB6Oho2NnZwcPDAxkZGRLzX79+Hd7e3pg8eTLu3r0LLy8veHl5ITY2lsuTm5uL7t27Y/369RVe18fHB/Hx8Th9+jTu37+PoUOHYuTIkbh7926Nl7GpEYlEuHPnDu7cuQORSCTvcAghpF4SioSITIzEofuHEJkYiWJhcblGxRjbMfIO87NQfUBI08OwLMvK6+LOzs7o0qULtm7dCqD0S8jc3ByzZs3CokWLyuUfNWoUcnNzcebMGS7tiy++gL29PbZv3y6WNzExEZaWlrh79y7s7e3F3tPQ0MC2bdswfvy/S/bp6elh/fr1+O9//ytV7FlZWdDW1kZmZia0tLSkLXKjl5ubCw0NDQBATk4O1NXV5RwRIaQ66DtOerJ+VqEPQ+EX5oeXWS+5NHUldeQW54LH8LB/yH5423rXZsh1guoDQhoHWb7j5NZjUVRUhKioKLi7u/8bDI8Hd3d33LhxQ+IxN27cEMsPAB4eHhXmr0jXrl1x5MgRvHv3DiKRCIcPH0ZBQQHc3NxkLgchhBAirdCHoRh+dLhYowIAcotzAQCznWY3ikYFIaRpklvD4s2bNxAKhWjevLlYevPmzZGWlibxmLS0NJnyV+To0aMoLi6Gnp4elJWVMXXqVJw8eRItW7as8JjCwkJkZWWJPQghhBBpCUVC+IX5gUXFAwVOPDwBoUhYh1ERQkjNkfvkbXlYvnw5Pnz4gIsXL+LOnTvw9/fHyJEjcf/+/QqPCQwMhLa2NvcwNzevw4gJIYQ0dFeTr5brqfjUi6wXuJp8tY4iIoSQmiW35Wb19fWhoKCA9PR0sfT09HQYGRlJPMbIyEim/JI8e/YMW7duRWxsLDp06AAAsLOzw9WrVxEcHFxurkaZxYsXw9/fn3udlZVFjQtCCCFSS81OrdF8hBBS38itx4LP58PR0RERERFcmkgkQkREBFxcXCQe4+LiIpYfAMLDwyvML0leXh6A0vkcH1NQUKh01QplZWVoaWmJPYhk+vr60NfXl3cYhBBSrxhrGtdovoaA6gNCmha5bpDn7+8PX19fdO7cGU5OTggKCkJubi4mTpwIoHRZWFNTUwQGBgIA/Pz84Orqis2bN6N///44fPgw7ty5g507d3LnfPfuHZKTk/Hq1SsAQHx8PIDS3g4jIyO0bdsWLVu2xNSpU7Fp0ybo6enh1KlTCA8PF1ttilSPuro6Xr9+Le8wCCGk3unRogfMtMyQkpUicZ4FAwZmWmbo0aKHHKKreVQfENL0yHWOxahRo7Bp0yYEBATA3t4eMTExCAsL4yZoJycnIzX13y7hrl274uDBg9i5cyfs7Oxw/PhxnDp1CjY2Nlye06dPw8HBAf379wcAjB49Gg4ODtwQJyUlJZw7dw4GBgYYOHAgOnbsiH379mHv3r3o169fHZaeEEJIU6LAU8AWzy0AShsRHyt7HeQZBAWeQp3HRgghNUGu+1g0ZLTGOyGkMaPvOOnVxD4W5lrmCPIMwtB2Q2szVEIIkZks33FyHQpFGp/8/Hz07dsXAHD+/HmoqqrKOSJCCKlfhrYbisFtBuNq8lWkZqfCWNMYPVr0aHQ9FVQfENL0UMOC1CiRSIQrV65wzwkhhJSnwFOAm8BN3mHUKqoPCGl6muQ+FoQQQgghhJCaRQ0LQgghhBBCyGejoVB1SCgS1vmY2rq+plAk5J7/mfQn+rTtU+vXawqfKZWx4V+zKZSREEJI00YNizoiaRUQMy0zbPHcUmurgNT1NUMfhmLW77O41/0O9IOZfu1eryl8plTGmkdlpJWHCCGE1DxabraaZFl6K/RhKIYfHV5uQ6SydcuPjzxe4xV9XV+Tu14RC6z9X+ISgOHX8vWawmdKZayx68njmg21jLTcrPTos5IsNzcXGhoaAICcnByoq6vLOSJCSHXI8h1HDYtq4j7kV68q/ZCFIiHaBbdDSvYrie8zAEw1TRE3I67GhijU9TU/vh5bBOSX7v8EVT+A4dfu9SRpbJ9pXVxPHteU9nqxX8dy1yv7uvr4B7MsaUKREA47HPAq59+NNz+9prGGMW5NuQUFnkK580hzrY9fi0QidNvdDWm56RVez0jDCJG+keAx/055+/RcFV2zojL+Z/9/kJ6bUeE1pfk7ZmVlQdvEhH4sS6GsPnj1ij6rj+Xm5sLS0hAAkJCQQQ0LQhqorKwsmJhQw6JWcQ0LAFSNEEIamywA2gA1LKRQVh+AagRCSKNUWiNIUx/QqlCEEEIIIYSQz0aTtz/Xq1dAJa23P5P+RN8D/ao8zUT7CbDWteZel42FZhhGLN/Hrz/NU/b62ftn2BG1s8przujyNVo2a1nheT59XVGe+DfxCLq5pcrrzf9iHtoatK0y/qpeP3rzCN/9tRZVCei5HDaGNhWeS9rrAkBsRiyWXFpa5TXXu6+DXXM7mcv06euYtBjM+WNuldfb2vcndDLuJPFvJev1o1KjMOX/vqrymr8O/AXOZs5Sn7+i926+vImxJ8dVeb3DQw/BpYVLhWWSJe1G8g0MPTasymv+PuoUult0l6qMleW5mnxVqn//58eeQ0+LnlXmk4a03zlVXjMrCzAxqZGYmooqqgNCCGmQZKkOaChUNUk7kUUoEkKwRYCUrJRyEymB0h8gZlpmSPBLqNGx8nV5TbHrFbPA0f+9MRKAUi1fryl8plRGKqMcrkkTkqVHn5VkBQUFGDastCF/4sQJqKioyDkiQkh1yPIdR0OhapkCTwFbPEvv5ld0NznIM6hG15av62t+fD2wAJ7878HW/vWawmdKZaQy1vdrEiKJUCjEuXPncO7cOQiFwqoPIIQ0eNSwqAND2w3F8ZHHYaplKpZupmVWK0tNyuOaZdcz0RTvK6vt6zWFz5TKWLOojLVzTUIIIYSGQlVTdbq+m8LOu1nZWdDW0gYAnHtwjnbeboDXk8c1qYz175o0vEd69FlJRvtYENI40D4WdYAqEsmoIiGkcaDvOOnRZyUZ1QeENA40x4IQQgghhBBSp6hhQQghhBBCCPlstI9FNZWNIMvKypJzJPVLbm4u9zwrK4tWAiGkgSr7bqPRslWj+kAyqg8IaRxkqQ+oYVFN2dnZAABzc3M5R1J/mdDmWoQ0eNnZ2dDW1pZ3GPUa1QdVo/qAkIZPmvqAJm9Xk0gkwqtXr6CpqVlud+zKZGVlwdzcHC9evGi0k/yojI0DlbFxqG4ZWZZFdnY2TExMwOPRqNnKUH1QMSpj40BlbBzqoj6gHotq4vF4MDMzq/bxWlpajfY/3DJUxsaBytg4VKeM1FMhHaoPqkZlbByojI1DbdYHdBuKEEIIIYQQ8tmoYUEIIYQQQgj5bNSwqGPKyspYsWIFlJWV5R1KraEyNg5UxsahKZSxoWoKfxsqY+NAZWwc6qKMNHmbEEIIIYQQ8tmox4IQQgghhBDy2ahhQQghhBBCCPls1LAghBBCCCGEfDZqWNSx4OBgCAQCqKiowNnZGbdu3ZJ3SNX2559/YuDAgTAxMQHDMDh16pTY+yzLIiAgAMbGxlBVVYW7uzuePHkin2CrITAwEF26dIGmpiYMDQ3h5eWF+Ph4sTwFBQWYMWMG9PT0oKGhgWHDhiE9PV1OEctu27Zt6NixI7emtYuLC86fP8+939DLJ8m6devAMAzmzJnDpTX0cq5cuRIMw4g92rZty73f0MvXWFF9QPVBfUL1QamGXk551wfUsKhDR44cgb+/P1asWIHo6GjY2dnBw8MDGRkZ8g6tWnJzc2FnZ4fg4GCJ72/YsAE//vgjtm/fjps3b0JdXR0eHh4oKCio40ir58qVK5gxYwb+/vtvhIeHo7i4GH369EFubi6XZ+7cufi///s/HDt2DFeuXMGrV68wdOhQOUYtGzMzM6xbtw5RUVG4c+cOvvzySwwePBgPHjwA0PDL96nbt29jx44d6Nixo1h6Yyhnhw4dkJqayj3++usv7r3GUL7GhuoDqg/qG6oPSjWGcsq1PmBJnXFycmJnzJjBvRYKhayJiQkbGBgox6hqBgD25MmT3GuRSMQaGRmxGzdu5NI+fPjAKisrs4cOHZJDhJ8vIyODBcBeuXKFZdnS8igpKbHHjh3j8jx8+JAFwN64cUNeYX42XV1d9pdffml05cvOzmZbtWrFhoeHs66urqyfnx/Lso3j77hixQrWzs5O4nuNoXyNEdUHVB80BFQfNLxyyrs+oB6LOlJUVISoqCi4u7tzaTweD+7u7rhx44YcI6sdCQkJSEtLEyuvtrY2nJ2dG2x5MzMzAQDNmjUDAERFRaG4uFisjG3btkWLFi0aZBmFQiEOHz6M3NxcuLi4NLryzZgxA/379xcrD9B4/o5PnjyBiYkJrKysMHbsWCQnJwNoPOVrTKg+oPqgvqP6oGGXU571gWKNnIVU6c2bNxAKhWjevLlYevPmzfHo0SM5RVV70tLSAEBiecvea0hEIhHmzJmDbt26wcbGBkBpGfl8PnR0dMTyNrQy3r9/Hy4uLigoKICGhgZOnjyJ9u3bIyYmplGUDwAOHz6M6Oho3L59u9x7jeHv6OzsjD179qBNmzZITU3FqlWr0KNHD8TGxjaK8jU2VB+Ae90Q/xuk+uBfDa18ANUHtV0+algQIoUZM2YgNjZWbJxiY9GmTRvExMQgMzMTx48fh6+vL65cuSLvsGrMixcv4Ofnh/DwcKioqMg7nFrRt29f7nnHjh3h7OwMCwsLHD16FKqqqnKMjJDGh+qDhovqg9qvD2goVB3R19eHgoJCuZn36enpMDIyklNUtaesTI2hvDNnzsSZM2dw+fJlmJmZcelGRkYoKirChw8fxPI3tDLy+Xy0bNkSjo6OCAwMhJ2dHbZs2dJoyhcVFYWMjAx06tQJioqKUFRUxJUrV/Djjz9CUVERzZs3bxTl/JiOjg5at26Np0+fNpq/Y2NC9QG41w2tvFQffBDL39DKR/VB7f8dqWFRR/h8PhwdHREREcGliUQiREREwMXFRY6R1Q5LS0sYGRmJlTcrKws3b95sMOVlWRYzZ87EyZMncenSJVhaWoq97+joCCUlJbEyxsfHIzk5ucGUURKRSITCwsJGU77evXvj/v37iImJ4R6dO3fG2LFjueeNoZwfy8nJwbNnz2BsbNxo/o6NCdUHVB80FFQfNMxyfqzO64MamQJOpHL48GFWWVmZ3bNnDxsXF8d+9dVXrI6ODpuWlibv0KolOzubvXv3Lnv37l0WAPv999+zd+/eZZOSkliWZdl169axOjo67O+//87+888/7ODBg1lLS0s2Pz9fzpFLZ/r06ay2tjYbGRnJpqamco+8vDwuz7Rp09gWLVqwly5dYu/cucO6uLiwLi4ucoxaNosWLWKvXLnCJiQksP/88w+7aNEilmEY9sKFCyzLNvzyVeTjVUBYtuGXc968eWxkZCSbkJDAXrt2jXV3d2f19fXZjIwMlmUbfvkaI6oPqD6ob6g+KNXQyynv+oAaFnXsp59+Ylu0aMHy+XzWycmJ/fvvv+UdUrVdvnyZBVDu4evry7Js6RKDy5cvZ5s3b84qKyuzvXv3ZuPj4+UbtAwklQ0AGxISwuXJz89nv/76a1ZXV5dVU1NjhwwZwqampsovaBlNmjSJtbCwYPl8PmtgYMD27t2bq0RYtuGXryKfViQNvZyjRo1ijY2NWT6fz5qamrKjRo1inz59yr3f0MvXWFF9QPVBfUL1QamGXk551wcMy7JszfR9EEIIIYQQQpoqmmNBCCGEEEII+WzUsCCEEEIIIYR8NmpYEEIIIYQQQj4bNSwIIYQQQgghn40aFoQQQgghhJDPRg0LQgghhBBCyGejhgUhhBBCCCHks1HDghBCCCGEEPLZqGFBCAEAREZGgmEYfPjwAQCwZ88e6OjoyDUmQgghdY/qA1Jd1LAgTdKLFy8wadIkmJiYgM/nw8LCAn5+fnj79q28Q6s3Ro0ahcePH8s7DEIIqVVUH1SN6gMiLWpYkCbn+fP/b+/eQ6La2jCAP1NNeBtMy8y0dEozMdFQlFHCgkSlIruQhYTV2IUEk8o/MmjMSxiUFqVEGko6qZQFBUFiiN1BS1G7qtONoiIzM4u89J6/zj7ffNWXHzNZB58fDLj2WrPWcov74XVmtiaEhISgvb0dFRUV6OjowLFjx3D58mXodDq8e/ful609MDDwy+a2NltbW0yePPl3b4OI6JdhHgwP84CGi4UFjTrJyckYP348ampqEBkZienTpyM2Nha1tbV48eIFdu/ejfT0dISFhX3z3MDAQGRmZirt4uJi+Pn5wcbGBrNnz0ZhYaHS9+TJE6hUKlRVVSEyMhI2NjYwGo14+vQplixZAicnJ9jb28Pf3x8XL14EAAwNDUGv10Or1cLW1ha+vr44fPiw2R7WrVuHuLg47Nu3D66urpgwYQIyMzMxODiItLQ0ODs7w8PDAyUlJd/spbKyEuHh4bCxscGcOXNQX1//w/P03y99Z2RkICgoCGVlZfDy8oKjoyNWr16N3t5eZUxvby8SEhJgb28PNzc35OfnY/78+UhNTR32z4eIaKQwD5gHZGVCNIp0dXWJSqWSffv2fbd/48aN4uTkJG1tbQJAOjo6lL6/j7W3t4uISHl5ubi5uUl1dbWYTCaprq4WZ2dnKS0tFRGRx48fCwDx8vJSxrx8+VIWLVokUVFR0tLSIp2dnXLhwgWpr68XEZH+/n7Zs2ePNDQ0iMlkkvLycrGzs5OqqiplH4mJiaLRaCQ5OVkePHggJ06cEAASHR0tOTk58ujRI8nKyhK1Wi3Pnz8324uHh4ecOXNG7t27J0lJSaLRaOTt27ciIlJXVycApLu7W0RESkpKxNHRUVnXYDCIg4ODLF++XFpbW+XKlSsyZcoUSU9PV8YkJSWJp6en1NbWSmtrqyxbtkw0Go1s27bNsh8cEZGVMQ+YB2R9LCxoVLl165YAkHPnzn23Py8vTwDI69evJTAwUDIzM5W+Xbt2SVhYmNKeOXOmnDp1yuz5WVlZotPpROSfi/ehQ4fMxgQEBEhGRsaw95ycnCwrVqxQ2omJieLp6SlDQ0PKMV9fX5k3b57SHhwcFHt7e6moqDDbS25urjJmYGBAPDw8ZP/+/SIyvCCxs7OTDx8+KMfS0tKUc/LhwwdRq9Vy+vRppf/9+/diZ2fHICGiPw7zgHlA1se3QtGoJCI/HZOQkIBTp04p4ysqKpCQkAAA6OvrQ2dnJ/R6PRwcHJRHdnY2Ojs7zeYJCQkxa6ekpCA7OxsREREwGAxoaWkx6y8oKEBwcDBcXFzg4OCA48eP49mzZ2Zj/P39MWbMP7++rq6uCAgIUNpjx47FxIkT8ebNG7Pn6XQ65etx48YhJCQE9+/f/+m5+JuXlxc0Go3SdnNzU9YwmUwYGBhAaGio0u/o6AhfX99hz09ENNKYB8wDsh4WFjSqeHt7Q6VS/fDief/+fTg5OcHFxQVr1qzBw4cPcefOHdy4cQPPnz9HfHw8AODjx48AgKKiIjQ3NyuPtrY23Lp1y2xOe3t7s3ZSUhJMJhPWrl2L1tZWhISE4MiRIwCAyspK7Ny5E3q9HjU1NWhubsb69evR399vNodarTZrq1Sq7x77+vXr/3mG/reRWIOIaCQwDyzDPKDvYWFBo8rEiRMRFRWFwsJCfP782azv1atXMBqNiI+Ph0qlgoeHByIjI2E0GmE0GhEVFaXcFcPV1RVTp06FyWSCt7e32UOr1f50H9OmTcOWLVtw9uxZ7NixA0VFRQCA69evIzw8HFu3bsXcuXPh7e39zV+8LPGfITc4OIjbt2/Dz8/PKnPPmDEDarUaDQ0NyrGenh7eopCI/kjMA+YBWd+4370BopF29OhRhIeHIzo6GtnZ2dBqtbh79y7S0tLg7u6OnJwcZWxCQgIMBgP6+/uRn59vNs/evXuRkpICR0dHxMTE4MuXL2hsbER3dze2b9/+w/VTU1MRGxuLWbNmobu7G3V1dcrF3MfHBydPnsSlS5eg1WpRVlaGhoaGYYXTcBQUFMDHxwd+fn7Iz89Hd3c3NmzYYJW5NRoNEhMTlTuRTJ48GQaDAWPGjIFKpbLKGkRE1sQ8YB6QdfEVCxp1fHx80NjYiBkzZmDVqlWYOXMmNm3ahAULFuDmzZtwdnZWxq5cuRJdXV349OkT4uLizOZJSkpCcXExSkpKEBAQgMjISJSWlv70oj80NITk5GT4+fkhJiYGs2bNUm5LuHnzZixfvhzx8fEICwtDV1cXtm7darXvPTc3F7m5uQgMDMS1a9dw/vx5TJo0yWrz5+XlQafTYfHixVi4cCEiIiKU2y8SEf1pmAfMA7IulQznU0tE9K/25MkTaLVaNDU1ISgoaMTW7evrg7u7Ow4ePAi9Xj9i6xIR0fcxD+hX4luhiMhqmpqa8ODBA4SGhqKnp0f551FLly79zTsjIqKRxDwYnVhYEJFVHThwAA8fPsT48eMRHByMq1evWvXldSIi+ndgHow+fCsUERERERFZjB/eJiIiIiIii7GwICIiIiIii7GwICIiIiIii7GwICIiIiIii7GwICIiIiIii7GwICIiIiIii7GwICIiIiIii7GwICIiIiIii7GwICIiIiIii/0F6uo0gtyNbzIAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Plot experiment results!\n", + "plt.figure(figsize=(8, 3))\n", + "\n", + "# Plot error vs. oversampling.\n", + "plt.subplot(1, 2, 1)\n", + "plt.plot(oversampling_values, oversampling_error, \"-o\", c=\"g\", label=\"RDMD\")\n", + "plt.axhline(y=cdmd_error, c=\"b\", label=\"CDMD\")\n", + "plt.axhline(y=dmd_error, c=\"r\", label=\"Exact DMD\")\n", + "plt.axvline(x=oversampling_default, ls=\"--\", c=\"k\", label=\"default\")\n", + "plt.title(\"Reconstruction Error\")\n", + "plt.xlabel(\"Oversampling\")\n", + "plt.ylabel(\"Relative Error\")\n", + "plt.legend()\n", + "\n", + "# Plot runtime vs. oversampling.\n", + "plt.subplot(1, 2, 2)\n", + "plt.plot(oversampling_values, oversampling_times, \"-o\", c=\"g\", label=\"RDMD\")\n", + "plt.axhline(y=cdmd_time, c=\"b\", label=\"CDMD\")\n", + "plt.axhline(y=dmd_time, c=\"r\", label=\"Exact DMD\")\n", + "plt.axvline(x=oversampling_default, ls=\"--\", c=\"k\", label=\"default\")\n", + "plt.title(\"Training Time\")\n", + "plt.xlabel(\"Oversampling\")\n", + "plt.ylabel(\"Runtime\")\n", + "plt.legend()\n", + "plt.tight_layout()\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "93117ef8", + "metadata": {}, + "source": [ + "## Randomized DMD: Varying Power Iterations\n", + "\n", + "Another major RDMD parameter is the number of **power iterations** used during the randomized QB decomposition process. The use of power iterations is a data preprocessing step that promotes faster singular value decay and hence promotes better basis approximations. Thus similar to the oversampling parameter, increasing the number of power iterations tends to lead to increased accuracy with the drawback of increased runtime due to the need to pass through the data at each power iteration. In general, as little as $1$ or $2$ power iterations often suffice [1].\n", + "\n", + "The number of power iterations used may also be toggled upon the initialization of an `RDMD` model via the `power_iters` argument, which is `2` by default. Here, we run through the same RDMD experiments as before, only this time we examine power iteration values within the range $[0, 20]$." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "b5b4652b", + "metadata": {}, + "outputs": [], + "source": [ + "# Define the default PyDMD power_iter value.\n", + "power_iter_default = 2\n", + "\n", + "# Define the power iteration values to investigate.\n", + "power_iter_values = np.arange(0, 21, 2)\n", + "\n", + "# Initialize the error and runtime metrics.\n", + "power_iter_error = np.zeros(len(power_iter_values))\n", + "power_iter_times = np.zeros(len(power_iter_values))\n", + "\n", + "for i, power_iters in enumerate(power_iter_values):\n", + " for _ in range(num_trials): # Perform multiple trials...\n", + " # Fit an RDMD model.\n", + " t0 = time.time()\n", + " rdmd = RDMD(svd_rank=3, power_iters=power_iters).fit(\n", + " snapshots_matrix_noisy\n", + " )\n", + " t1 = time.time()\n", + " # Incorporate this trial's results into the running averages.\n", + " power_iter_error[i] += (\n", + " compute_error(snapshots_matrix, rdmd.reconstructed_data)\n", + " / num_trials\n", + " )\n", + " power_iter_times[i] += (t1 - t0) / num_trials" + ] + }, + { + "cell_type": "markdown", + "id": "c380edcd", + "metadata": {}, + "source": [ + "As expected, we observe that the time required to train an RDMD model tends to increase as one increases the power iterations. Yet again, as long as this parameter isn't too large, an RDMD model can on average be trained in less time than an exact DMD model, and in about the same amount of time as a CDMD model for this particular data set. However this time, notice that on average, introducing as little as 2 power iterations results in a noticeable improvement in RDMD accuracy. Here, we omit the CDMD error so that we can better observe this phenomenon." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "13c5243a", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxYAAAEiCAYAAABkykQ1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAACXbElEQVR4nOzdd1hT1/8H8HcSIGyUPTWAiAMFFKU4ioOC1r1nwVHbOlGqVVuLo620rmKrFe3P2RYXjvqto3WBsw4E68QForJVVliSnN8fNLfGMBIIBOTzep48knvPPfeTa3KSc8/iMcYYCCGEEEIIIaQG+JoOgBBCCCGEENLwUcWCEEIIIYQQUmNUsSCEEEIIIYTUGFUsCCGEEEIIITVGFQtCCCGEEEJIjVHFghBCCCGEEFJjVLEghBBCCCGE1BhVLAghhBBCCCE1RhULQgghhBBCSI1RxYIQUq7o6GjweDxER0drOhRCCGkwJkyYAJFIVK1jlyxZAh6Pp96A1EwkEmHChAmaDoPUU1SxIPXKtm3bwOPxuIeWlhbs7OwwYcIEPHv2TNPhqd1PP/2Ebdu2NfoY3tSjRw+598Hrj1atWmk6PEJIA1RRmfLmo7HdTJHdRFLmQUhVeIwxpukgCJHZtm0bJk6ciGXLlsHR0RFFRUX4+++/sW3bNohEIty8eRO6urqaDlNt3NzcYG5urtEvsopikEqlKCkpgY6ODvj8ur0H0aNHDzx8+BBhYWEK+0xMTDBgwIA6jYcQ0vD9+uuvcs937NiB48eP45dffpHb/t5778HKyqra53n16hWkUimEQqHKx5aWlqK0tLROv+fS09Nx/PhxuW0LFy6EoaEhvvjiC7nt48ePR3FxMfh8PrS1tessRtJwaGk6AELK07dvX3h5eQEAPvzwQ5ibm+O7777DoUOHMHLkSA1HpxlisRgGBgZ1dj4+n6/RSpyJiQnGjx+v8nEVXSfGGIqKiqCnp1ftmIqKijRS0SKE1Nyb5cnff/+N48ePV1nOFBQUQF9fX+nz1OQHt5aWFrS06vanmZWVlcI1+Pbbb2Fubl7utalOhYk0HvTtSBqE7t27AwAePnwot/3u3bsYPnw4TE1NoaurCy8vLxw6dEjh+OzsbMyZMwcikQhCoRD29vYIDAxEVlYWlyYjIwOTJ0+GlZUVdHV14e7uju3bt8vlk5SUBB6Ph1WrVmHTpk1wdnaGUChEp06dcOXKFbm0aWlpmDhxIuzt7SEUCmFjY4NBgwYhKSkJQFk/1Vu3biEmJoZrZu7RoweA/7qExcTEYNq0abC0tIS9vT2AivvvVtQ399dff0Xnzp2hr6+Ppk2b4t1338Vff/1VZQwVjbHYu3cvOnbsCD09Pe6L581uahMmTIChoSGePXuGwYMHw9DQEBYWFpg7dy4kEolCjNUle823b9/G2LFj0bRpU3Tr1o17bf3798eff/4JLy8v6OnpYePGjQCAR48eYcSIETA1NYW+vj7eeecdHD58WC5v2evftWsXFi1aBDs7O+jr6yM3N1dt8RNC6pcePXrAzc0NsbGxePfdd6Gvr4/PP/8cAPD777+jX79+sLW1hVAohLOzM7766iuFMu3NMlqV743yynEej4cZM2bg4MGDcHNzg1AoRNu2bXHs2DGF+KOjo+Hl5QVdXV04Oztj48aNah+38eYYC9n31blz5zBr1ixYWFigSZMm+Pjjj1FSUoLs7GwEBgaiadOmaNq0KT777DO82VlGKpUiPDwcbdu2ha6uLqysrPDxxx/j5cuXaoub1A1qsSANguzHeNOmTbltt27dQteuXWFnZ4cFCxbAwMAAe/bsweDBg7Fv3z4MGTIEAJCfn4/u3bvjzp07mDRpEjp06ICsrCwcOnQIT58+hbm5OQoLC9GjRw88ePAAM2bMgKOjI/bu3YsJEyYgOzsbwcHBcvFERkYiLy8PH3/8MXg8HlasWIGhQ4fi0aNH3N2qYcOG4datW5g5cyZEIhEyMjJw/PhxJCcnQyQSITw8HDNnzpRrbn6z+X3atGmwsLBAaGgoxGKxytdt6dKlWLJkCbp06YJly5ZBR0cHly5dwqlTp+Dv769UDK+TdVXr1KkTwsLCkJ6ejrVr1+L8+fOIi4tDkyZNuLQSiQQBAQHw9vbGqlWrcOLECaxevRrOzs6YOnVqlbFLJBK5ip+Mnp6eQovEiBEj4OLiguXLl8t9YSUkJGDMmDH4+OOPMWXKFLi6uiI9PR1dunRBQUEBZs2aBTMzM2zfvh0DBw5EVFQU976R+eqrr6Cjo4O5c+eiuLgYOjo6VcZOCGm4nj9/jr59+2L06NEYP348VyZu27YNhoaGCAkJgaGhIU6dOoXQ0FDk5uZi5cqVVearzPdGRc6dO4f9+/dj2rRpMDIywg8//IBhw4YhOTkZZmZmAIC4uDj06dMHNjY2WLp0KSQSCZYtWwYLC4uaXxQlzJw5E9bW1li6dCn+/vtvbNq0CU2aNMGFCxfQrFkzLF++HEeOHMHKlSvh5uaGwMBA7tiPP/6Y+36ZNWsWEhMTsW7dOsTFxeH8+fPU7aohYYTUI1u3bmUA2IkTJ1hmZiZ78uQJi4qKYhYWFkwoFLInT55waXv37s3atWvHioqKuG1SqZR16dKFubi4cNtCQ0MZALZ//36F80mlUsYYY+Hh4QwA+/XXX7l9JSUlzMfHhxkaGrLc3FzGGGOJiYkMADMzM2MvXrzg0v7+++8MAPvf//7HGGPs5cuXDABbuXJlpa+3bdu2zNfXt8Lr0K1bN1ZaWiq3LygoiDVv3lzhmMWLF7PXP9L3799nfD6fDRkyhEkkknJfd2UxnD59mgFgp0+f5q6HpaUlc3NzY4WFhVy6P/74gwFgoaGhcjECYMuWLZPL09PTk3Xs2FHhXG/y9fVlAMp9fPzxxwqvecyYMQp5NG/enAFgx44dk9s+e/ZsBoCdPXuW25aXl8ccHR2ZSCTirpXs9Ts5ObGCgoIqYyaENCzTp09nb/4MkpU9ERERCunLKwc+/vhjpq+vL/c99GYZrez3BmOK5ThjjAFgOjo67MGDB9y269evMwDsxx9/5LYNGDCA6evrs2fPnnHb7t+/z7S0tBTyrEpF3wuMlZWtQUFB3HPZ91VAQIDcd4uPjw/j8Xjsk08+4baVlpYye3t7ubzPnj3LALDffvtN7jzHjh0rdzup36grFKmX/Pz8YGFhAQcHBwwfPhwGBgY4dOgQ1x3oxYsXOHXqFEaOHIm8vDxkZWUhKysLz58/R0BAAO7fv891z9m3bx/c3d0V7kQD4JqHjxw5Amtra4wZM4bbp62tjVmzZiE/Px8xMTFyx40aNUqu9UTWVevRo0cAyu6q6+joIDo6ukZNuVOmTIFAIKjWsQcPHoRUKkVoaKjCmIDqNItfvXoVGRkZmDZtmtzYi379+qFVq1YKXYkA4JNPPpF73r17d+4aVUUkEuH48eMKj9mzZ1d5HhlHR0cEBATIbTty5Ag6d+7MdZkCAENDQ3z00UdISkrC7du35dIHBQXVaFwGIaRhEQqFmDhxosL218sB2fdO9+7dUVBQgLt371aZb1XfG5Xx8/ODs7Mz97x9+/YwNjbmjpVIJDhx4gQGDx4MW1tbLl2LFi3Qt2/fKvNXh8mTJ8t9t3h7e4MxhsmTJ3PbBAIBvLy85F7z3r17YWJigvfee4/7Ls/KykLHjh1haGiI06dP10n8RD2oKxSpl9avX4+WLVsiJycHW7ZswZkzZ+QGjD148ACMMXz55Zf48ssvy80jIyMDdnZ2ePjwIYYNG1bp+R4/fgwXFxeFH+CtW7fm9r+uWbNmcs9lXxaySoRQKMR3332HTz/9FFZWVnjnnXfQv39/BAYGwtraWokrUMbR0VHptG96+PAh+Hw+2rRpU+08Xie7Bq6urgr7WrVqhXPnzslt09XVVWiCb9q0qdIVLQMDA/j5+SmVtqLrVN72x48fw9vbW2H76//Xbm5uVeZNCHk72dnZldvl8datW1i0aBFOnTqlMNYqJyenynyr+t5Q5VjZ8bJjMzIyUFhYiBYtWiikK29bbXgzRhMTEwCAg4ODwvbXX/P9+/eRk5MDS0vLcvPNyMhQc6SkNlHFgtRLnTt35maFGjx4MLp164axY8ciISEBhoaGkEqlAIC5c+cq3JGWqc3CtKJWBPZa//7Zs2djwIABOHjwIP788098+eWXCAsLw6lTp+Dp6anUecq7U15Ra4M6B0WrQ3VbWqqjohYFdbQ0UGsFIY1LeZ/57Oxs+Pr6wtjYGMuWLYOzszN0dXVx7do1zJ8/n/tOqowy3xu1cWxdqSjG8ra/HrdUKoWlpSV+++23co+vqzEiRD2oYkHqPYFAgLCwMPTs2RPr1q3DggUL4OTkBKCsu1JVd7WdnZ1x8+bNStM0b94c//zzD6RSqVyrhax5u3nz5tWK3dnZGZ9++ik+/fRT3L9/Hx4eHli9ejU3n3p1uiQ1bdoU2dnZCtvfbFVxdnaGVCrF7du34eHhUWF+ysYguwYJCQno1auX3L6EhIRqX6O61rx5cyQkJChsr+n/NSHk7RUdHY3nz59j//79ePfdd7ntiYmJGozqP5aWltDV1cWDBw8U9pW3rT5xdnbGiRMn0LVrV7qR8xagMRakQejRowc6d+6M8PBwFBUVwdLSEj169MDGjRuRmpqqkD4zM5P7e9iwYbh+/ToOHDigkE521+T9999HWloadu/eze0rLS3Fjz/+CENDQ/j6+qoUb0FBAYqKiuS2OTs7w8jICMXFxdw2AwODcisJlXF2dkZOTg7++ecfbltqaqrC6xs8eDD4fD6WLVumcDft9btFysbg5eUFS0tLREREyL2Go0eP4s6dO+jXr59Kr0NT3n//fVy+fBkXL17ktonFYmzatAkikUhtXccIIW8P2V3318vOkpIS/PTTT5oKSY5AIICfnx8OHjyIlJQUbvuDBw9w9OhRDUZWtZEjR0IikeCrr75S2FdaWqrydyTRLGqxIA3GvHnzMGLECGzbtg2ffPIJ1q9fj27duqFdu3aYMmUKnJyckJ6ejosXL+Lp06e4fv06d1xUVBRGjBiBSZMmoWPHjnjx4gUOHTqEiIgIuLu746OPPsLGjRsxYcIExMbGQiQSISoqCufPn0d4eDiMjIxUivXevXvo3bs3Ro4ciTZt2kBLSwsHDhxAeno6Ro8ezaXr2LEjNmzYgK+//hotWrSApaWlQmvAm0aPHo358+djyJAhmDVrFgoKCrBhwwa0bNkS165d49K1aNECX3zxBb766it0794dQ4cOhVAoxJUrV2Bra8utaq1sDNra2vjuu+8wceJE+Pr6YsyYMdx0syKRCHPmzFHpGlUlJydHYaVcmeosnCezYMEC7Ny5E3379sWsWbNgamqK7du3IzExEfv27aPF7wghCrp06YKmTZsiKCgIs2bNAo/Hwy+//FKvuiItWbIEf/31F7p27YqpU6dCIpFg3bp1cHNzQ3x8vKbDq5Cvry8+/vhjhIWFIT4+Hv7+/tDW1sb9+/exd+9erF27FsOHD9d0mERJVLEgDcbQoUPh7OyMVatWYcqUKWjTpg2uXr2KpUuXYtu2bXj+/DksLS3h6emJ0NBQ7jhDQ0OcPXsWixcvxoEDB7B9+3ZYWlqid+/e3CxTenp6iI6OxoIFC7B9+3bk5ubC1dUVW7dulVsISFkODg4YM2YMTp48iV9++QVaWlpo1aoV9uzZIzeQPDQ0FI8fP8aKFSuQl5cHX1/fKisWZmZmOHDgAEJCQvDZZ5/B0dERYWFhuH//vlzFAgCWLVsGR0dH/Pjjj/jiiy+gr6+P9u3b44MPPqhWDBMmTIC+vj6+/fZbzJ8/HwYGBhgyZAi+++47uTUs1OHp06dycb6uJhULKysrXLhwAfPnz8ePP/6IoqIitG/fHv/73/8aTKsLIaRumZmZ4Y8//sCnn36KRYsWoWnTphg/fjx69+5d4Ti/utaxY0ccPXoUc+fOxZdffgkHBwcsW7YMd+7cUWrWKk2KiIhAx44dsXHjRnz++efQ0tKCSCTC+PHj0bVrV02HR1TAY/Wpuk0IIYQQQtRm8ODBuHXrFu7fv6/pUEgjQG3+hBBCCCFvgcLCQrnn9+/fx5EjR9CjRw/NBEQaHWqxIIQQQgh5C9jY2GDChAlwcnLC48ePsWHDBhQXFyMuLg4uLi6aDo80AjTGghBCCCHkLdCnTx/s3LkTaWlpEAqF8PHxwfLly6lSQeoMtVgQQgghhBBCaozGWBBCCCGEEEJqjCoWhBBCCCGEkBqjMRYaJJVKkZKSAiMjI/B4PE2HQwghKmGMIS8vD7a2trSwYBWovCeENFQqlfVMw9atW8eaN2/OhEIh69y5M7t06VKl6ffs2cNcXV2ZUChkbm5u7PDhw3L79+3bx9577z1mamrKALC4uDi5/YmJiQxAuY89e/Zw6WbOnMk6dOjAdHR0mLu7e7mxXL9+nXXr1o0JhUJmb2/PvvvuO5Ve+5MnTyqMhR70oAc9GsrjyZMnKpV9jRGV9/SgBz0a+kOZsl6jLRa7d+9GSEgIIiIi4O3tjfDwcAQEBCAhIQGWlpYK6S9cuIAxY8YgLCwM/fv3R2RkJAYPHoxr167Bzc0NACAWi9GtWzeMHDkSU6ZMUcjDwcEBqampcts2bdqElStXom/fvnLbJ02ahEuXLuGff/5RyCc3Nxf+/v7w8/NDREQEbty4gUmTJqFJkyb46KOPlHr9RkZGAIAnT57A2NhYqWPqmlgshq2tLQAgJSUFBgYGGo6IEFJf5ObmwsHBgSvLSMXqe3lPZT0hpCKqlPUanRXK29sbnTp1wrp16wCUNRU7ODhg5syZWLBggUL6UaNGQSwW448//uC2vfPOO/Dw8EBERIRc2qSkJDg6OiIuLg4eHh6VxuHp6YkOHTpg8+bNCvuWLFmCgwcPIj4+Xm77hg0b8MUXXyAtLQ06OjoAgAULFuDgwYO4e/euMi8fubm5MDExQU5OTr38ogHKvmwMDQ0BAPn5+fRlQwjhNIQyrL6o79eKynpCSEVUKb801im2pKQEsbGx8PPz+y8YPh9+fn64ePFiucdcvHhRLj0ABAQEVJheGbGxsYiPj8fkyZNVOu7ixYt49913uUqFLJaEhAS8fPmy3GOKi4uRm5sr9yCEEEIIIeRtoLGKRVZWFiQSCaysrOS2W1lZIS0trdxj0tLSVEqvjM2bN6N169bo0qWLSsdVFItsX3nCwsJgYmLCPRwcHKoXNCGEEEIIIfVMo57Go7CwEJGRkSq3VlTXwoULkZOTwz2ePHmich4SqQTRSdHYeWMnopOiIZFKaiFSQgghhBBCVKOxwdvm5uYQCARIT0+X256eng5ra+tyj7G2tlYpfVWioqJQUFCAwMBAlY+tKBbZvvIIhUIIhULVA/3X/jv7EXwsGE9zn3Lb7I3tsbbPWgxtPbTa+VZGV1cXp0+f5v4mbweJRIJXr15pOgxSz2lra0MgEGg6jEZFk5/NmJgY7u+ioiKNxECqRp9LUp9prGKho6ODjh074uTJkxg8eDCAssHbJ0+exIwZM8o9xsfHBydPnsTs2bO5bcePH4ePj0+1Yti8eTMGDhwICwsLlY/18fHBF198gVevXkFbW5uLxdXVFU2bNq1WPJXZf2c/hu8ZDgb5sfbPcp9h+J7hiBoZVSuVC4FAgB49eqg9X6IZjDGkpaUhOztb06GQBqJJkyawtramtRdqWX34bMq+C5OTkzUWA1EOfS5JfaXR6WZDQkIQFBQELy8vdO7cGeHh4RCLxZg4cSIAIDAwEHZ2dggLCwMABAcHw9fXF6tXr0a/fv2wa9cuXL16FZs2beLyfPHiBZKTk5GSkgIASEhIAFDWivB6S8KDBw9w5swZHDlypNzYHjx4gPz8fKSlpaGwsJCbFapNmzbQ0dHB2LFjsXTpUkyePBnz58/HzZs3sXbtWnz//fdqv04SqQTBx4IVKhUAwMDAAw+zj83GINdBEPDpLgapmOyHi6WlJfT19elLiVSIMYaCggJkZGQAAGxsbDQc0VtCLAbKuduclpWFbLEYlhYW0NfTo88mKRdjDAWFhcjIzARKSmBjbq7pkEhjIBYrnVSjFYtRo0YhMzMToaGhSEtLg4eHB44dO8YNgk5OTpZb4a9Lly6IjIzEokWL8Pnnn8PFxQUHDx7k1rAAgEOHDnEVEwAYPXo0AGDx4sVYsmQJt33Lli2wt7eHv79/ubF9+OGHcs3Cnp6eAIDExESIRCKYmJjgr7/+wvTp09GxY0eYm5sjNDRU6TUsVHE2+axc96c3MTA8yX2Cs8ln0UPUQ63nfvXqFVdx++ijj7jWGdLwSCQSrlJhZmam6XBIA6CnpwcAyMjIgKWlJXW/UId/14p4ncTAANm//QZLOzuYPX6sgaAAKYCsf/82RyMfgFnP6f37b8b9+7AcOxaCggKNxkPI6zS6jkVjp+y8wDtv7MTY/WOrzC9yaCTGtBujzhBpbvO3SFFREVcxlv1gJKQqhYWF3LpAb46zqu9rM9Qn3LUC8OaVKmrWDIkRERBZWEBTn0wJgLh///YEQFXI+q0QQFJmJhw/+QS61HWN1LJcACaAUmW9RlssiHJsjJTrgqBsOtK4URcLogp6v6hZSgrw5hdzcTGQmgqeSARoapIMqRS4fr3sb3d3gE9tFvUZr6gI0NMD4uKAGkwKQ4hScnPLbW0tD1UsGoDuzbrD3tgez3KflTvOggce7I3t0b1Zdw1ERwghRGkGBmWP1wkEZT/kBYJyx1/UOVkspP6SvWf09TVXGSWNh0T5pQ3olkQDIOALsLbPWgBllYjXyZ6H9wmngduEEAJg/fr1EIlE0NXVhbe3Ny5fvlxh2lu3bmHYsGEQiUTg8XgIDw8vN92zZ88wfvx4mJmZQU9PD+3atcPVq1dr6RUQQkjDRBWLBmJo66GIGhkFO2M7ue12xna1NtUsIRWp64UaJ0yYAB6PBx6PB21tbTg6OuKzzz6Tm2tftp/H48HAwAAuLi6YMGECYmNj5fKKjo4Gj8dD06ZNFebqv3LlCpfHm+l5PB74fD5MTEzg6emJzz77DKmpqbX6uonqdu/ejZCQECxevBjXrl2Du7s7AgICuNmt3lRQUAAnJyd8++23Fa5B9PLlS3Tt2hXa2to4evQobt++jdWrV9fK1OI1oYkFVOmzSQh5HVUsGpChrYciKTgJpwJPQU+rbIjf/0b/jyoVpE7tv7MforUi9NzeE2P3j0XP7T0hWivC/jv7a/W8ffr0QWpqKh49eoTvv/8eGzduxOLFi+XSbN26Fampqbh16xbWr1+P/Px8eHt7Y8eOHQr5GRkZ4cCBA3LbNm/ejGbNmpV7/oSEBKSkpODKlSuYP38+Tpw4ATc3N9y4cUN9L5LU2Jo1azBlyhRMnDgRbdq0QUREBPT19bFly5Zy03fq1AkrV67E6NGjK1zA9LvvvoODgwO2bt2Kzp07w9HREf7+/nB2dq7Nl6ISTX0uAfpsEkL+QxWLBkbAF6CnY0+0s2oHAHjw8oGGIyKNiWyhxjenP5Yt1FibP2KEQiGsra3h4OCAwYMHw8/PD8ePH5dLI1s0SiQSwd/fH1FRURg3bhxmzJiBly9fyqUNCgqS+7FZWFiIXbt2ISgoqNzzW1pawtraGi1btsTo0aNx/vx5WFhYYOrUqep/saRaSkpKEBsbCz8/P24bn8+Hn58fLl68WO18Dx06BC8vL4wYMQKWlpbw9PTEzz//rI6Q1UKTn0uAPpuEkP9QxaKBcjVzBQAkZCXU6nmEQiH++OMP/PHHHxXezSMNF2MM4hKxUo/colzMOjqrwoUaASD4aDByi3KVyq8mM13fvHkTFy5cgI6OTpVp58yZg7y8PIUfOh988AHOnj3LrTK8b98+iEQidOjQQakY9PT08Mknn+D8+fMVdrMhdSsrKwsSiYRbC0nGysoKaWlp1c730aNH2LBhA1xcXPDnn39i6tSpmDVrFrZv317hMcXFxcjNzZV7KEsTn8vC0kLYNLeBs7Oz3PpRqqLPJiGNG80K1UBxFYvntVux0NLSQr9+/Wr1HERzCl4VwDDMUC15MTA8zXsKk+9MlEqfvzAfBjrKr4vyxx9/wNDQEKWlpSguLgafz8e6deuqPK5Vq1YAgKSkJLntlpaW6Nu3L7Zt24bQ0FBs2bIFkyZNUjqeN/O2tLRU6VjScEilUnh5eWH58uUAyhZMvXnzJiIiIiq8ix4WFoalS5dW63ya/lyqOsUwfTYJITLUYtFAuZrXTcWCkPqiZ8+eiI+Px6VLlxAUFISJEydi2LBhVR4naxkp78fSpEmTsG3bNjx69AgXL17EuHHjVIqpsrxJ3TM3N4dAIEB6errc9vT09AoHZivDxsYGbdq0kdvWunVr7o56eRYuXIicnBzu8eTJk2qfv76jzyYhRIZaLBqo17tCMcZqrfB89eoVfvvtNwDAuHHjoK2tXSvnIZqhr62P/IX5SqU98/gM3o98v8p0R8YewbvN31Xq3KowMDBAixYtAABbtmyBu7s7Nm/ejMmTJ1d63J07dwAAjo6OCvv69u2Ljz76CJMnT8aAAQNgZmamUkyyvEUikUrHkdqho6ODjh074uTJkxg8eDCAstaGkydPYsaMGdXOt2vXrkhIkL+Jc+/ePTRv3rzCY4RCYbW7j2ricymVSvHi5QsU5BRAz0xPpe5Q9NkkhMhQxaKBamHaAjzwkFOcg8yCTFga1E5Tb0lJCSZOnAgAGDFiBFUs3jI8Hk/p7kj+zv5KLdTo7+xf62uq8Pl8fP755wgJCcHYsWOhp6dXYdrw8HAYGxvLDeiV0dLSQmBgIFasWIGjR4+qFENhYSE2bdqEd999FxYWFiq/BlI7QkJCEBQUBC8vL3Tu3Bnh4eEQi8VcORYYGAg7OzuEhYUBKCvjbt++zf397NkzxMfHw9DQkPuxPGfOHHTp0gXLly/HyJEjcfnyZWzatAmbNm2qldegic+lRCJBwrOyypOpqWn1Agd9Nglp7KgrVAOlp62HZiZlU+/V9gBuQoD6t1DjiBEjIBAIsH79em5bdnY20tLS8PjxYxw/fhzDhw9HZGQkNmzYgCZNmpSbz1dffYXMzEwEBARUer6MjAykpaXh/v372LVrF7p27YqsrCxs2LBBnS+L1NCoUaOwatUqhIaGwsPDA/Hx8Th27Bg3oDs5OVlujYOUlBR4enrC09MTqampWLVqFTw9PfHhhx9yaTp16oQDBw5g586dcHNzw1dffYXw8HCVu+fUhvr2uQTos0lIY0YtFg2Yq7krHuc8RsLzBHRv3l3T4ZBGQLZQY/CxYLmpLe2N7RHeJ7xO11TR0tLCjBkzsGLFCm5aSdldaV1dXdjZ2aFbt264fPlypbPJ6OjowNzcvMrzubq6gsfjwdDQEE5OTvD390dISEiN+u6T2jFjxowKuz5FR0fLPReJRErNUNa/f3/0799fHeGpXX36XAL02SSkMeOxmsz5SGokNzcXJiYmyMnJgbGxscrHzzo6Cz9e/hFzfeZipf/KWogQEIvFMDQsm50kPz8fBgbKz+JD6peioiIkJibC0dERurq6NcpLIpXgbPJZpOalwsbIBt2bda/TO6Kk7lT2vqlpGdaYVHat1PXZrMnnUiKRIC4uDkDZrFcCAX2e6zN1lueEVEWVsp5aLBqwuppylpA3CfgC9BD10HQYhJDX0OeSEKJpNMaiAaMpZwkhhBBCSH1BFYsGTNZi8ejlI7ySvNJwNIQQQgghpDGjrlANmJ2xHfS09FBYWojE7ES0NGup9nMIhULs2bOH+5sQQsjbh8/nw8nJifubEEKqgyoWDRifx0dLs5a4nn4dCVkJtVKx0NLSwogRI9SeLyGEkPqDx+PVaP0KQggBqCtUg0fjLAghhBBCSH1ALRYNHDczVC0tkldaWooDBw4AAIYMGQItLXrLEELI24YxhpcvXwIAmjZtCh6PV8URhBCiiH4lNnC1PeVscXExRo4cCaBsHQuqWBBCyNtHKpXi0aNHAGgdC0JI9VFXqAaOukIRQgghhJD6gCoWDZxswHaGOAPZRdmaDYYQQgghhDRaVLFo4IyFxrA2tAYA3Ht+T8PREPL24vF4OHjwoFLpZA8DAwO4uLhgwoQJiI2NlUsXHR0NHo+Hpk2boqioSG7flStXuDzeTM/j8cDn82FiYgJPT0989tlnSE1NVctrJKQ60tLSMHPmTDg5OUEoFMLBwQEDBgzAyZMnAQAikYh77+rp6UEkEmHkyJE4deqUXD5JSUng8XgQCAR49uyZ3L7U1FRoaWmBx+MhKSlJLr3sYWRkhLZt22L69Om4f/9+nbx2Qog8qli8BWp7ADchRDVbt25Famoqbt26hfXr1yM/Px/e3t7YsWOHQlojIyNuggSZzZs3o1mzZuXmnZCQgJSUFFy5cgXz58/HiRMn4Obmhhs3btTKayGkMklJSejYsSNOnTqFlStX4saNGzh27Bh69uyJ6dOnc+mWLVuG1NRUJCQkYMeOHWjSpAn8/PzwzTffKORpZ2en8FnZvn077Ozsyo3hxIkTSE1NxfXr17F8+XLcuXMH7u7uXMWGEFJ3qGLxFqjtAdyEaJpUKkVYWBgcHR2hp6cHd3d3REVFASibzcbPzw8BAQFgjAEAXrx4AXt7e4SGhgIAJBIJJk+ezB3v6uqKtWvXKpxny5YtaNu2LYRCIWxsbDBjxgwAZXdcgbKZ0Xg8Hve8Ik2aNIG1tTVEIhH8/f0RFRWFcePGYcaMGdzMOzJBQUHYsmUL97ywsBC7du1CUFBQuXlbWlrC2toaLVu2xOjRo3H+/HlYWFhg6tSpVV9IQtRs2rRp4PF4uHz5MoYNG4aWLVuibdu2CAkJwd9//82lMzIygrW1NZo1a4Z3330XmzZtwpdffonQ0FAkJMh/dwUFBWHr1q1y27Zu3VrhZ8LMzAzW1tZwcnLCoEGDcOLECXh7e2Py5MmQSCTqf9GEkApRxeItQAO4SbUxBojFmnn8WwlQRlhYGHbs2IGIiAjcunULc+bMwfjx4xETEwMej4ft27fjypUr+OGHHwAAn3zyCezs7LiKhVQqhb29Pfbu3Yvbt28jNDQUn3/+ObeqPABs2LAB06dPx0cffYQbN27g0KFDaNGiBYCyrknAfy0RsueqmDNnDvLy8nD8+HG57R988AHOnj2L5ORkAMC+ffsgEonQoUMHpfLV09PDJ598gvPnzyMjI0PluEj9o6mPZWEhX5WPJV68eIFjx45h+vTpMDAwUNjfpEmTSo8PDg4GYwy///673PaBAwfi5cuXOHfuHADg3LlzePnyJQYMGKBUXHw+H8HBwXj8+LFCF0RCSO2iuUPfArXZFUpHR4e7c6Sjo6P2/ImGFRQAhoaaOXd+PlDOj5E3FRcXY/ny5Thx4gR8fHwAAE5OTjh37hw2btwIX19f2NnZYePGjQgMDERaWhqOHDmCuLg4bnpkbW1tLF26lMvT0dERFy9exJ49e7jplL/++mt8+umnCA4O5tJ16tQJAGBhYQHgv5aI6mjVqhUAcP3DZSwtLdG3b19s27YNoaGh2LJlCyZNmlTtvC0tLasVH6k/NPOxFADogKSkLKXXsHjw4AEYY9z7T1WmpqawtLRU+Exoa2tj/Pjx2LJlC7p164YtW7Zg/Pjx0NbWVjrv1z8TnTt3rlZ8hBDVUcXiLSBrsbj/4j6kTAo+T30NUdra2pgwYYLa8iNEVQ8ePEBBQQHee+89ue0lJSXw9PTkno8YMQIHDhzAt99+iw0bNsDFxUUu/fr167FlyxYkJyejsLAQJSUl8PDwAABkZGQgJSUFvXv3rrXXIeumVd6PtkmTJiE4OBjjx4/HxYsXsXfvXpw9e1YteROiCnNzc/CV/AphqjRvVJJHRZ+JLl26YPny5di7dy8uXryI0tJSlfIF6DNBSF2jisVbQNREBG2+NopKi/Ak5wmaN2mu6ZBIQ6GvX9ZyoKlzKyH/3/gOHz6sMHhTKBRyfxcUFCA2NhYCgUBhRphdu3Zh7ty5WL16NXx8fGBkZISVK1fi0qVLAMq6E9W2O3fuAChrLXlT37598dFHH2Hy5MkYMGAAzMzMqpV3VWM/SMPQAD6WAAAXFxfweDzcvXu3Wud6/vw5MjMzy/1MtGvXDq1atcKYMWPQunVruLm5IT4+Xum8K/u8EUJqj8bHWKxfvx4ikQi6urrw9vbG5cuXK02/d+9etGrVCrq6umjXrh2OHDkit3///v3w9/eHmZkZeDyeQkH05vR0rz/27t3LpUtOTka/fv2gr68PS0tLzJs3T+FuyW+//QZ3d3fo6+vDxsYGkyZNwvPnz2t2QapBi68FZ1NnAOofZ1FaWorDhw/j8OHDKt0tIg0Ej1fWHUkTDyXvJLZp0wZCoRDJyclo0aKF3MPBwYFL9+mnn4LP5+Po0aP44Ycf5KayPH/+PLp06YJp06bB09MTLVq0wMOHD7n9RkZGEIlElc4io62tXaOBoOHh4TA2Noafn5/CPi0tLQQGBiI6OlrlblCFhYXYtGkT3n33Xa7LFmnYNPGx1NdnePUqGzk52Uq3RJiamiIgIADr16+HWCxW2J+dnV3p8WvXrgWfz8fgwYPL3T9p0qRqfSakUil++OEHODo6yrVqEkJqn0YrFrt370ZISAgWL16Ma9euwd3dHQEBARUOQLxw4QLGjBmDyZMnIy4uDoMHD8bgwYNx8+ZNLo1YLEa3bt3w3XfflZuHg4MDUlNT5R5Lly6FoaEh+vbtC6BsBpl+/fqhpKQEFy5cwPbt27n+zzLnz59HYGAgJk+ejFu3bmHv3r24fPkypkyZosYrpLzaGmdRXFyM/v37o3///iguLlZr3oQow8jICHPnzsWcOXOwfft2PHz4ENeuXcOPP/6I7du3AyhrzdiyZQt+++03vPfee5g3bx6CgoK4GZhcXFxw9epV/Pnnn7h37x6+/PJLhQHYS5YswerVq/HDDz/g/v373DlkZBWPtLQ0hZmd3pSdnY20tDQ8fvwYx48fx/DhwxEZGYkNGzZUOKD1q6++QmZmJgICAirNOyMjA2lpabh//z527dqFrl27IisrCxs2bKjqUhJSIalUigcPHuDBgweQSqVKH7d+/XpIJBJ07twZ+/btw/3793Hnzh388MMP3JgoAMjLy0NaWhqePHmCM2fO4KOPPsLXX3+Nb775hpsk4U1TpkxBZmYmPvzww0pjeP78OdLS0vDo0SMcOnQIfn5+uHz5MjZv3gyBQKD0ayGEqAHToM6dO7Pp06dzzyUSCbO1tWVhYWHlph85ciTr16+f3DZvb2/28ccfK6RNTExkAFhcXFyVcXh4eLBJkyZxz48cOcL4fD5LS0vjtm3YsIEZGxuz4uJixhhjK1euZE5OTnL5/PDDD8zOzq7K88nk5OQwACwnJ0fpYyry2V+fMSwBm354etWJVZCfn88AMAAsPz9frXmTulVYWMhu377NCgsLNR2KyqRSKQsPD2eurq5MW1ubWVhYsICAABYTE8MyMjKYlZUVW758OZe+pKSEdezYkY0cOZIxxlhRURGbMGECMzExYU2aNGFTp05lCxYsYO7u7nLniYiI4M5hY2PDZs6cye07dOgQa9GiBdPS0mLNmzevMFbZ5wUA09XVZc7OziwoKIjFxsbKpTt9+jQDwF6+fFluPgcOHGCvF9Gy9AAYj8djRkZGzN3dnc2bN4+lpqYqeSVVV9n7Rp1l2NuusmtVHz6bpaWl7MqVK+zKlSustLRUpWNTUlLY9OnTWfPmzZmOjg6zs7NjAwcOZKdPn2aMMda8eXPuvaujo8OaNWvGRo4cyU6dOiWXT1Xf23FxcQwAS0xMlEsve+jr67PWrVuzadOmsfv376t6CRqU+vCeIY2HKmW9xioWxcXFTCAQsAMHDshtDwwMZAMHDiz3GAcHB/b999/LbQsNDWXt27dXSKtsxeLq1asMADt//jy37csvv1T4wfHo0SMGgF27do0xxti5c+eYtrY2O3z4MJNKpSwtLY29++67bMqUKRWeq6ioiOXk5HCPJ0+eqO1LefO1zQxLwPx2+NU4r9dRxeLtQV9EpDqoYqEeb3PFgtS9+vCeIY2HKmW9xrpCZWVlQSKRwMrKSm67lZUV0tLSyj0mLS1NpfTK2Lx5M1q3bo0uXbpUeR7ZPgDo2rUrfvvtN4waNQo6OjqwtraGiYkJ1q9fX+G5wsLCYGJiwj1e7x9eU7T6NiGEEEII0SSND97WpMLCQkRGRmLy5MkqH3v79m0EBwcjNDQUsbGxOHbsGJKSkvDJJ59UeMzChQuRk5PDPZ48eVKT8OXIppx9kvsEBa8K1JYvIYQQQgghytDYdLPm5uYQCARIT0+X256enl7hAlTW1tYqpa9KVFQUCgoKEBgYqHCeN2enkp1Xdq6wsDB07doV8+bNAwC0b98eBgYG6N69O77++mvY2NgonE8oFMpNj6lO5vrmMNUzxYvCF7j//D7crd1r5TyEEEIIIYSUR2MtFjo6OujYsaPc9I5SqRQnT56Um0nidT4+PgrTQR4/frzC9FXZvHkzBg4cqDBFo4+PD27cuCE3O9Xx48dhbGyMNm3aACibM5//xipCstknmBoWDaqOlmYtAah/yllCCCGEEEKqotEF8kJCQhAUFAQvLy907twZ4eHhEIvFmDhxIgAgMDAQdnZ2CAsLAwAEBwfD19cXq1evRr9+/bBr1y5cvXoVmzZt4vJ88eIFkpOTkZKSAgBISCj7kW1tbS3XsvHgwQOcOXNGYR0MAPD390ebNm3wwQcfYMWKFUhLS8OiRYswffp0rsVhwIABmDJlCjZs2ICAgACkpqZi9uzZ6Ny5M2xtbWvnglXB1cwVfz/9W63jLHR0dLBu3Trub0IIIW8fHo+HZs2acX8TQkh1aLRiMWrUKGRmZiI0NBRpaWnw8PDAsWPHuIHSycnJcq0CXbp0QWRkJBYtWoTPP/8cLi4uOHjwINzc3Lg0hw4d4iomADB69GgAwOLFi7FkyRJu+5YtW2Bvbw9/f3+FuAQCAf744w9MnToVPj4+MDAwQFBQEJYtW8almTBhAvLy8rBu3Tp8+umnaNKkCXr16lXh+hl1gRvArcYWC21tbUyfPl1t+RFCCKl/+Hw+LC0tNR0GIaSB4zFN9dshyM3NhYmJCXJycmBsbFzj/Pbf2Y9he4bBy9YLV6ZcqfoA0qgUFRUhMTERjo6O0NXV1XQ4pIGo7H2j7jLsbVbZtaLPJlEVvWdIXVKlrNdoiwVRr9ennGWMqaU5WyKR4OzZswCA7t270yqmhBDyFmKMIT8/HwBgaGhI3aEIIdVCFYu3SAvTFuCBh7ySPKSL02FtWL3Zsl5XVFSEnj17AgDy8/NhYGBQ4zwJIYTUL1KplBuT6OnpSTeRCCHV0qjXsXjbCLWEEDURAaCF8sjbr0ePHpg9e7ZKxxw8eBAtWrSAQCBQ+djK8Hg8HDx4UG35KWvbtm1o0qRJnZ+XEEIIKY9KFYvS0lIsW7YMT58+ra14SA3JFsqjKWcJUfTxxx9j+PDhePLkCb766qtaOUdSUhJ4PB7i4+NrJX9CyH+UrdTzeDzuYWBgABcXF0yYMAGxsbFy6aKjo8Hj8dC0aVMUFRXJ7bty5QqXx5vpeTwe+Hw+TExM4Onpic8++wypqalqeY2ENCQqVSy0tLSwcuVKlJaW1lY8pIZeH2dBCPlPfn4+MjIyEBAQAFtbWxgZGWk6JEJIHdq6dStSU1Nx69YtrF+/Hvn5+fD29saOHTsU0hoZGeHAgQNy2zZv3sxNyfumhIQEpKSk4MqVK5g/fz5OnDgBNzc33Lhxo1ZeCyH1lcpdoXr16oWYmJjaiIWoQW1MOUuIponFYgQGBsLQ0BA2NjZYvXq1Qpri4mLMnTsXdnZ2MDAwgLe3N6KjowGU3VWUVSR69eoFHo+H6OhoPH/+HGPGjIGdnR309fXRrl077Ny5Uy5fkUiE8PBwuW0eHh5y01e/ztHREUBZP3Uej4cePXoopJFKpbC3t8eGDRvktsfFxYHP5+Px48cAgDVr1qBdu3YwMDCAg4MDpk2bxg2wLc+ECRMwePBguW2zZ8+Wi0EqlSIsLAyOjo7Q09ODu7s7oqKiKsyTkIpU9l5ijMHPzw8BAQHcorEvXryAvb09QkNDAZRNDjJ58mTueFdXV6xdu1bhPFu2bEHbtm0hFAphY2ODGTNmACj7bALAkCFDwOPxuOcVadKkCaytrSESieDv74+oqCiMGzcOM2bMwMuXL+XSBgUFYcuWLdzzwsJC7Nq1C0FBQeXmbWlpCWtra7Rs2RKjR4/G+fPnYWFhgalTp1Z9IQl5i6g8eLtv375YsGABbty4gY4dOyoM5h04cKDagiOqo65QpDrEYnGF+wQCgdx0hpWl5fP50NPTqzKtqpMAzJs3DzExMfj9999haWmJzz//HNeuXYOHhweXZsaMGbh9+zZ27doFW1tbHDhwAH369MGNGzfQpUsXJCQkwNXVFfv27UOXLl1gamqKzMxMdOzYEfPnz4exsTEOHz6MDz74AM7OzujcubNKMcpcvnwZnTt3xokTJ9C2bdtyF5bk8/kYM2YMIiMj5X54/Pbbb+jatSuaN2/Opfvhhx/g6OiIR48eYdq0afjss8/w008/VSs2AAgLC8Ovv/6KiIgIuLi44MyZMxg/fjwsLCzg6+tb7XyJGjEGFBTU7TklEvALCyFVYerSqt5L27dvR7t27fDDDz8gODgYn3zyCezs7LiKhayCvXfvXpiZmeHChQv46KOPYGNjg5EjRwIANmzYgJCQEHz77bfo27cvcnJycP78eQBlXZMsLS2xdetW9OnTp1oDzufMmYMdO3bg+PHj3DkB4IMPPsDKlSuRnJyMZs2aYd++fRCJROjQoYNS+erp6eGTTz7BnDlzkJGRQWuEkMaDqYjH41X44PP5qmbXqOXk5DAALCcnR215Ps15yrAETLBUwIpLi2ucX35+PgPAALD8/Hw1REg0pbCwkN2+fZsVFhYq7JP9H5f3eP/99+XS6uvrV5jW19dXLq25uXm56VSRl5fHdHR02J49e7htz58/Z3p6eiw4OJgxxtjjx4+ZQCBgz549kzu2d+/ebOHChYwxxl6+fMkAsNOnT1d6vn79+rFPP/2Ue968eXP2/fffy6Vxd3dnixcv5p4DYAcOHGCMMZaYmMgAsLi4uErPExcXx3g8Hnv8+DFjjDGJRMLs7OzYhg0bKjxm7969zMzMjHu+detWZmJiwj0PCgpigwYNkjsmODiY+38pKipi+vr67MKFC3JpJk+ezMaMGVPuOSt739RGGaYO69atY82bN2dCoZB17tyZXbp0qcK0N2/eZEOHDmXNmzdnABT+r98UFhbGAHDvPWVVdq0UrnF+PmNl1Ys6f8SeOcNKS0urfD3Kvpf27NnDdHV12YIFC5iBgQG7d+9epflOnz6dDRs2jHtua2vLvvjiiwrTv/7Zq0xF6QoLCxkA9t133zHGGDt9+jQDwF6+fMkGDx7Mli5dyhhjrGfPnmzt2rXswIEDcmXY6+nfdPToUQag0vdfdVX2uSRE3VQp61VusZBKpaoeQuqQrZEtDLQNIH4lxqOXj9DKvFWN8tPW1saKFSu4vwmpaw8fPkRJSQm8vb25baampnB1deWe37hxAxKJBC1btpQ7tri4GGZmZhXmLZFIsHz5cuzZswfPnj1DSUkJiouLoa+vr/4X8gYPDw+0bt0akZGRWLBgAWJiYpCRkYERI0ZwaU6cOIGwsDDcvXsXubm5KC0tRVFREQoKCqoV44MHD1BQUID33ntPbntJSQk8PT1r/Jrqg927dyMkJAQRERHw9vZGeHg4AgICkJCQUO5d44KCAjg5OWHEiBGYM2dOpXlfuXIFGzduRPv27WsrfI2zs7NTag0LZd9LI0aMwIEDB/Dtt99iw4YNcHFxkUu/fv16bNmyBcnJySgsLERJSQnXEpmRkYGUlBT07t275i+sAuzfblrlveZJkyYhODgY48ePx8WLF7F3715uXaea5k3I24rWsXjL8Hg8tDRribi0OCRkJdS4YqGjo4N58+apKTpSX1XWb//N7gUZGRkVpuXz5YdtJSUl1SguZeXn50MgECA2NlYhXkNDwwqPW7lyJdauXYvw8HBuLMPs2bNRUlLCpeHz+dwPBJlXr16pJe5x48ZxFYvIyEj06dOHqwglJSWhf//+mDp1Kr755huYmpri3LlzmDx5MkpKSsqtWFQVq+z/+fDhw7Czs5NLJxQK1fKaNG3NmjWYMmUKJk6cCACIiIjA4cOHsWXLFixYsEAhfadOndCpUycAKHe/TH5+PsaNG4eff/4ZX3/9de0EL6OvD1TymaxNVvr6gBI/hJV9LxUUFHCfy/v378ul27VrF+bOnYvVq1fDx8cHRkZGWLlyJS5dugQAct0qa8udO3cA/Dc26nV9+/bFRx99hMmTJ2PAgAGV3qSoLO+qxn4Q8japVsUiJiYGq1at4j40bdq0wbx589C9e3e1Bkeqx9XctaxiQeMsiJJUGfNQW2kr4uzsDG1tbVy6dImbkeXly5e4d+8eNybA09MTEokEGRkZKpVD58+fx6BBgzB+/HgAZS2y9+7dQ5s2bbg0FhYWctNG5ubmIjExscI8ZWMqJBJJlecfO3YsFi1ahNjYWERFRSEiIoLbFxsbC6lUitWrV3MVtj179lSan4WFBW7evCm3LT4+nmttbNOmDYRCIZKTk9/K8RQlJSWIjY3FwoULuW18Ph9+fn64ePFijfKePn06+vXrBz8/v9qvWPB4QD1fjFTZ99Knn34KPp+Po0eP4v3330e/fv3Qq1cvAGWfvy5dumDatGlc+ocPH3J/GxkZQSQS4eTJk9xCrW/S1tZW6rNWkfDwcBgbG8PPz09hn5aWFgIDA7FixQocPXpUpXwLCwuxadMmvPvuu7CwsKh2fIQ0NCpXLH799VdMnDgRQ4cOxaxZswCUFQ69e/fGtm3bMHbsWLUHSVSjzilnJRIJrl27BgDo0KEDrcZK6pyhoSEmT56MefPmwczMDJaWlvjiiy/kWkdatmyJcePGITAwEKtXr4anpycyMzNx8uRJtG/fHv369Ss3bxcXF0RFReHChQto2rQp1qxZg/T0dLmKRa9evbBt2zYMGDAATZo0QWhoaKWfA0tLS+jp6eHYsWOwt7eHrq4uTExMyk0rEonQpUsXTJ48GRKJRG7yixYtWuDVq1f48ccfMWDAAJw/f16u4lGeXr16YeXKldixYwd8fHzw66+/4ubNm1zXFCMjI8ydOxdz5syBVCpFt27duMGwxsbGFc5401BkZWVBIpHAyspKbruVlRXu3r1b7Xx37dqFa9eu4cqVK0ofU1xcjOLiYu55bm5utc9fFxhjKPh3wLi+vn6V3XeUeS/JWoouXryIDh06YN68eQgKCsI///yDpk2bwsXFBTt27MCff/4JR0dH/PLLL7hy5Ypc68GSJUvwySefwNLSEn379kVeXh7Onz+PmTNnAgBX8ejatSuEQiGaNm1aYczZ2dlIS0tDcXEx7t27h40bN+LgwYPYsWNHhQtNfvXVV1zZU5mMjAwUFRUhLy8PsbGxWLFiBbKysrB///5KjyPkraPqAI5WrVqxNWvWKGxfvXo1a9WqlarZNWq1NfAx8p9IhiVgXTd3rXFeNHj77dGQB/vl5eWx8ePHM319fWZlZcVWrFjBfH195QbQlpSUsNDQUCYSiZi2tjazsbFhQ4YMYf/88w9jrPzB28+fP2eDBg1ihoaGzNLSki1atIgFBgbKDYDOyclho0aNYsbGxszBwYFt27at0sHbjDH2888/MwcHB8bn8xUGtL/pp59+YgBYYGCgwr41a9YwGxsbpqenxwICAtiOHTvkBoq+OXibMcZCQ0OZlZUVMzExYXPmzGEzZsyQi0EqlbLw8HDm6urKtLW1mYWFBQsICGAxMTHlxteQBm8/e/aMAVAYUDxv3jzWuXPnKo8vb6B+cnIys7S0ZNevX+e2vfneK8/ixYvLnbhAqcHbGlBaWsquXLnCrly5otTgbcYqfy9lZGQwKysrtnz5ci59SUkJ69ixIxs5ciRjrGwA+IQJE5iJiQlr0qQJmzp1KluwYAFzd3eXO09ERAR3DhsbGzZz5kxu36FDh1iLFi2YlpYWa968eYWxvv5/oKury5ydnVlQUBCLjY2VS1fZYGzGWIWDtwEwHo/HjIyMmLu7O5s3bx5LTU1V6jpWR314z5DGQ5WynsfYGx1yqyAUCnHr1i20aNFCbvuDBw/g5uamsFIlqVhubi5MTEyQk5MDY2NjteV7LfUaOm7qCHN9c2TOy6xRXmKxmOujnp+fr5auLUQzioqKkJiYCEdHR7npYwmpTGXvm9oqw6pLNvYkKipKbj2PoKAgZGdn4/fff6/0eJFIhNmzZ2P27NnctoMHD2LIkCFyrVQSiYRbabm4uLjcFqzyWiwcHBzKvVb14bMpkUgQFxcHoKxrIbVO12/14T1DGg9VynqVF8hzcHDAyZMnFbafOHECDg4OqmZHakFLs7KZcbIKsvCi8IWGoyGEkLqho6ODjh07yn1HSaVSnDx5Ej4+PtXKs3fv3rhx4wbi4+O5h5eXF8aNG4f4+PgKf4ALhUIYGxvLPQgh5G2n8hiLTz/9FLNmzUJ8fDy6dOkCoGyMxbZt28pdMZPUPUMdQ9gZ2eFZ3jPce34P79i/o+mQCCGkToSEhCAoKAheXl7o3LkzwsPDIRaLuVmiAgMDYWdnh7CwMABlrRy3b9/m/n727Bni4+NhaGiIFi1awMjICG5ubnLnMDAwgJmZmcJ2Qghp7FSuWEydOhXW1tZYvXo1N0NJ69atsXv3bgwaNEjtAZLqaWnWEs/yniEhK4EqFoSQRmPUqFHIzMxEaGgo0tLS4OHhgWPHjnEDupOTk+UG/qekpMitu7Bq1SqsWrUKvr6+iI6OruvwCSGkQVOpYlFaWorly5dj0qRJOHfuXG3FRNTA1cwVp5NO05SzhJBGZ8aMGZgxY0a5+96sLIhEIoW1P6pCFQ5CCCmfSmMstLS0sGLFCpSWltZWPERNXM3/nXKWKhaEEEIIIaQOqNwVqnfv3oiJiaGVJOs5da1loa2tjcWLF3N/k4ZPKpVqOgTSgND7pXHg8XiwtbXl/iaEkOpQuWLRt29fLFiwADdu3EDHjh0Vph99fYEnojmyFosHLx5AIpVAwK/e1IE6OjpYsmSJGiMjmqKjowM+n4+UlBRYWFhAR0eHfkCQCjHGUFJSgszMTPD5fG5FcfJ24vP5XMWCEEKqS+WKxbRp0wAAa9asUdjH4/EgkUhqHhWpseYmzSEUCFEsKUZyTjIcmzpWfRB5q/H5fDg6OiI1NRUpKSmaDoc0EPr6+mjWrJncgGdCCCGkPCpXLKhZvGEQ8AVoYdoCtzJvIeF5QrUrFlKpFHfu3AFQNvsX/bho2HR0dNCsWTOUlpbSTQBSJYFAAC0tLWrZagQYY9wCt7q6uvR/TgipFpUqFq9evYKenh7i4+Np/u4GoKVZy7KKRVYC+rToU608CgsLuf9rWnn77cDj8aCtrU1jZki9VFJSgsTERDg7O0NLS+V7X6SapFIpbt26BaBmK2/36NEDHh4eCA8PV/qYgwcPYu7cuUhMTMTMmTNVOrYyPB4PBw4ckFuFvS5s27YNs2fPRnZ2dp2el5D6QKXbz9ra2mjWrBnd6WwguAHcNDMUIaSeKygowOTJk6Gvr4+2bdsiOTkZADBz5kx8++23Go6O1KaPP/4Yw4cPx5MnT/DVV1/VyjmSkpLA4/EQHx9fK/kTQsqo3K/liy++wOeff44XL17URjxEjWjKWUJIQ7Fw4UJcv34d0dHR0NXV5bb7+flh9+7dGoyM1Kb8/HxkZGQgICAAtra2MDIy0nRIhJAaULlisW7dOpw5cwa2trZwdXVFhw4d5B6k/lDXlLOEEFLbDh48iHXr1qFbt25y/fvbtm2Lhw8fajAyUhGxWIzAwEAYGhrCxsYGq1evVkhTXFyMuXPnws7ODgYGBvD29uYWGIyOjuYqEr169QKPx0N0dDSeP3+OMWPGwM7ODvr6+mjXrh127twpl69IJFLoMuXh4VHhLIaOjmXjDD09PcHj8dCjRw+FNFKpFPb29tiwYYPc9ri4OPD5fDx+/BhA2eQ17dq1g4GBARwcHDBt2jTk5+dXeJ0mTJig0B1r9uzZcjFIpVKEhYXB0dERenp6cHd3R1RUVIV5ElJfqdyBta77KpLqk7VYPMt7hvySfBjqGGo4IkIIKV9mZiYsLS0VtovF4kY7kFgsFle4TyAQyLXsVJaWz+dDT0+v0rTV6eI8b948xMTE4Pfff4elpSU+//xzXLt2DR4eHlyaGTNm4Pbt29i1axdsbW1x4MAB9OnTBzdu3ECXLl2QkJAAV1dX7Nu3D126dIGpqSkyMzPRsWNHzJ8/H8bGxjh8+DA++OADODs7o3PnzirHCQCXL19G586dceLECbRt27bc6ZP5fD7GjBmDyMhITJ06ldv+22+/oWvXrmjevDmX7ocffoCjoyMePXqEadOm4bPPPsNPP/1UrdgAICwsDL/++isiIiLg4uKCM2fOYPz48bCwsICvr2+18yWkrqlcsZAtlkbqP1M9U5jrmyOrIAv3n9+Hp42npkMihJByeXl54fDhw5g5cyaA/xZp+7//+z/4+PhoMjSNMTSs+GbQ+++/j8OHD3PPLS0tUVBQUG5aX19frpUAKLvbn5WVpZDuypUrSseWn5+PzZs349dff0Xv3r0BANu3b4e9vT2XJjk5GVu3bkVycjK3RsbcuXNx7NgxbN26FcuXL+cqk6amprC2tgYA2NnZYe7cuVw+M2fOxJ9//ok9e/ZUu2JhYWEBADAzM+POU55x48Zh9erVSE5ORrNmzSCVSrFr1y4sWrSISzN79mzub5FIhK+//hqffPJJtSsWxcXFWL58OU6cOMG9152cnHDu3Dls3LiRKhakQVG6YnH58mV07NixwpkiiouL8fvvv2PkyJFqC47UnKuZK7IKspDwPIEqFoSQemv58uXo27cvbt++jdLSUqxduxa3b9/GhQsXEBMTo+nwyBsePnyIkpISeHt7c9tMTU3h6urKPb9x4wYkEglatmwpd2xxcTHMzMwqzFsikWD58uXYs2cPnj17hpKSEhQXF0NfX1/9L+QNHh4eaN26NSIjI7FgwQLExMQgIyMDI0aM4NKcOHECYWFhuHv3LnJzc1FaWoqioiIUFBRUK8YHDx6goKAA7733ntz2kpISeHrS9zZpWJSuWPj4+CA1NZW7u2BsbIz4+Hg4OTkBALKzszFmzBiqWNQzLc1a4vyT89UeZ6Gtrc3dOaLpSQkhtaVbt26Ij4/Ht99+i3bt2uGvv/5Chw4dcPHiRbRr107T4WlEZf3237zJl5GRUWHaN9cfSkpKUkgjlUq56VHV1fUsPz8fAoEAsbGxCvFW1hqzcuVKrF27FuHh4dxYhtmzZ6OkpIRLw+fzwRiTO+7Vq1dqiXvcuHFcxSIyMhJ9+vThKkJJSUno378/pk6dim+++QampqY4d+4cJk+ejJKSknIrFlXFKvt/Pnz4MOzs7OTSCYVCtbwmQuqK0oO33/xQvPm8om1VWb9+PUQiEXR1deHt7Y3Lly9Xmn7v3r1o1aoVdHV10a5dOxw5ckRu//79++Hv7w8zM7Nyp5aTTTlX3mPv3r1cuuTkZPTr1w/6+vqwtLTEvHnzUFpaKpdXcXExvvjiCzRv3hxCoRAikQhbtmxR+RrUpppOOaujo4OVK1di5cqV5fZJJYQQdXF2dsbPP/+My5cv4/bt2/j1118bbaUCAAwMDCp8vD6+oqq0r4+vqCitkZERHBwc4ODgoNRCqM7OztDW1salS5e4bS9fvsS9e/e4556enpBIJMjIyECLFi3kHpV1Rzp//jwGDRqE8ePHw93dHU5OTnL5AmVdm1JTU7nnubm5SExMrDBP2feXMmNJxo4di5s3byI2NhZRUVEYN24cty82NhZSqRSrV6/GO++8g5YtWyIlJaXS/N6MFYDcb5M2bdpAKBQiOTlZ4To5ODhUGS8h9YlaVx9S9S7H7t27ERISgoiICHh7eyM8PBwBAQFISEgodxDfhQsXMGbMGISFhaF///6IjIzE4MGDce3aNW4RN7FYjG7dumHkyJGYMmWKQh4ODg4KH/BNmzZh5cqV6Nu3L4Cygqdfv36wtrbGhQsXkJqaisDAQGhra2P58uXccSNHjkR6ejo2b96MFi1aIDU1td6tTE5TzhJCGpKMjAxkZGQolKXt27fXUESkPIaGhpg8eTLmzZsHMzMzWFpa4osvvpCrlLRs2RLjxo1DYGAgVq9eDU9PT2RmZuLkyZNo3749+vXrV27eLi4uiIqKwoULF9C0aVOsWbMG6enpaNOmDZemV69e2LZtGwYMGIAmTZogNDS00kX9LC0toaenh2PHjsHe3h66urowMTEpN61IJEKXLl0wefJkSCQSDBw4kNvXokULvHr1Cj/++CMGDBiA8+fPIyIiotJr1atXL6xcuRI7duyAj48Pfv31V9y8eZPr5mRkZIS5c+dizpw5kEql6NatG3JycnD+/HkYGxsjKCio0vwJqVeYkng8HktPT+eeGxoasocPH3LP09LSGJ/PVzY7xhhjnTt3ZtOnT+eeSyQSZmtry8LCwspNP3LkSNavXz+5bd7e3uzjjz9WSJuYmMgAsLi4uCrj8PDwYJMmTeKeHzlyhPH5fJaWlsZt27BhAzM2NmbFxcWMMcaOHj3KTExM2PPnz6vMvyI5OTkMAMvJyal2HlW5nXGbYQmY4XJDJpVKVT5eIpGwxMRElpiYyCQSSS1ESAhpqNRZhl29epW1bduW8fl8xuPx5B6qfrfUR5Vdq8LCQnb79m1WWFiogcjKSKVSVlRUxIqKipT+rsjLy2Pjx49n+vr6zMrKiq1YsYL5+vqy4OBgLk1JSQkLDQ1lIpGIaWtrMxsbGzZkyBD2zz//MMYYe/nyJQPATp8+zR3z/PlzNmjQIGZoaMgsLS3ZokWLWGBgIBs0aBCXJicnh40aNYoZGxszBwcHtm3bNubu7s4WL17MpQHADhw4wD3/+eefmYODA+Pz+czX17fS1/bTTz8xACwwMFBh35o1a5iNjQ3T09NjAQEBbMeOHQwAe/nyJWOMsa1btzITExO5Y0JDQ5mVlRUzMTFhc+bMYTNmzJCLQSqVsvDwcObq6sq0tbWZhYUFCwgIYDExMeXGVx/eM6TxUKWs5zGmXP8lPp+PU6dOwdTUFADQpUsX7Nmzh5sBIisrC++9957SU9bJ+iJGRUXJTWEbFBSE7Oxs/P777wrHNGvWDCEhIXIzMixevBgHDx7E9evX5dImJSXB0dERcXFxclPfvSk2NhZeXl44f/48unTpAgAIDQ3FoUOH5JoqExMT4eTkhGvXrsHT0xPTpk3DvXv34OXlhV9++QUGBgYYOHAgvvrqK4VmZ5ni4mIUFxdzz3Nzc+Hg4ICcnBwYGxtXcrWqr0RSAv1v9CFhEjwLeQZbI1uVjheLxVxf2Pz8fBgYGNRGmISQBig3NxcmJiZqKcPc3d3h7OyM+fPnw8rKSqEFXDbVZ0NV2bUqKipCYmIiHB0dFbo41RWJRIK4uDgAZV2YKrv7TzSvPrxn6oJEKsHZ5LNIzUuFjZENujfrDgGf3pt1TZWyXqWuUL1795YbR9G/f38AZV2gGGMqdYXKysqCRCKBlZWV3HYrKyvcvXu33GPS0tLKTZ+Wlqb0ed+0efNmtG7dmqtUVHYe2T4AePToEc6dOwddXV0cOHAAWVlZmDZtGp4/f46tW7eWe66wsDAsXbq02rFWh45AB45NHfHgxQMkZCWoXLEghJC68OjRI+zbtw8tWrTQdCiEkHpg/539CD4WjKe5T7lt9sb2WNtnLYa2HqrByEhllK5YVDYoqqEqLCxEZGQkvvzyS5WPlUql4PF4+O2337h+mmvWrMHw4cPx008/ldtqsXDhQoSEhHDPZS0Wtc3VzLWsYvE8AT0de9b6+QghRFW9e/fG9evXqWJBCMH+O/sxfM9wMMh3qnmW+wzD9wxH1MgoqlzUU0pXLNTdDG1ubg6BQID09HS57enp6RXOFmFtba1S+qpERUWhoKAAgYGBCud5c3Yq2Xll57KxsYGdnZ3c4K/WrVuDMYanT5/CxcVF4XxCoVAjU8e1NGuJw/cPV3vKWUIIqW3/93//h6CgINy8eRNubm4K01u/PoCWEPL2kkglCD4WrFCpAAAGBh54mH1sNga5DqJuUfWQ0tPNqpuOjg46duyIkydPctukUilOnjxZ4SqrPj4+cukB4Pjx49VelXXz5s0YOHAgtyLn6+e5ceOG3Lzgx48fh7GxMTcrRdeuXZGSkiI3z/i9e/fA5/PlVh6tD2o65SwhhNS2ixcv4vz581i6dClGjBiBwYMHc48hQ4ZoOjxCSB05m3xWrvvTmxgYnuQ+wdnks3UYFVGWxioWABASEoKff/4Z27dvx507dzB16lSIxWJMnDgRABAYGIiFCxdy6YODg3Hs2DGsXr0ad+/exZIlS3D16lXMmDGDS/PixQvEx8fj9u3bAICEhATEx8crjMN48OABzpw5gw8//FAhLn9/f7Rp0wYffPABrl+/jj///BOLFi3C9OnTuRaHsWPHwszMDBMnTsTt27dx5swZzJs3D5MmTapw8Lam0JSzhJD6bubMmRg/fjw3bffrD2UnBWnolJxLhZC3+r2SmpdadSIV0pG6pdGKxahRo7Bq1SqEhobCw8MD8fHxOHbsGDdQOjk5WW7NiS5duiAyMhKbNm2Cu7s7oqKicPDgQW4NCwA4dOgQPD09ufmxR48eDU9PT4V5prds2QJ7e3v4+/srxCUQCPDHH39AIBDAx8cH48ePR2BgIJYtW8alMTQ0xPHjx5GdnQ0vLy+MGzcOAwYMwA8//KDWa6QOshaLpOwkFJcWV5GaEELq3vPnzzFnzhyFiTMaA1m3r4KCAg1HQhoK2XvlzS6DbwMbIxul0h28exDp+elVJyR1SunpZon6qXOqxsowxmDyrQnySvJwa9ottLFoU/VB/youLuYGnK9Zs0YjY0QIIfWTOsuwoKAgdO/evdxW5LdBVdcqNTUV2dnZsLS0hL6+vsoLztaUVCrlbuTZ2Ngotfo2qXuMMRQUFCAjIwNNmjSBjY1yP8IbkuzCbFittkKJpKTKtHpaevjE6xPM6zJP6QpJY1WTqXtrbbpZmdLSUkRHR+Phw4cYO3YsjIyMkJKSAmNjY27NA1J/8Hg8uJq74mrKVSRkJahUsRAKhVi/fn0tRkcIIWWrNC9cuBDnzp1Du3btFO7Ezpo1S0OR1Q3ZxCCvj+3TlMePH2s6BFKFJk2aVHvimvostzgX/Xb2q7BSwUNZhXth94U48egELj+7jO///h4brm7ARx0+wmddP4OdsV1dhtwg1OXUvSq3WDx+/Bh9+vRBcnIyiouLce/ePTg5OSE4OBjFxcVVLm1P/lNXLRYAMG7/OETeiERY7zAs6LagVs9FCGkc1FmGOTo6VriPx+Ph0aNHNcpf05S9VhKJBK9evarDyEhDo62t/VYuYJhTlIO+v/XFxacX0US3CRZ2W4gfL/8o92PYwdgB4X3CMbT1UDDG8NfDv7A0ZikuPr0IABAKhPiww4dY0G0B7I3r10Q6mlLR1L2ySpoyU/fWaotFcHAwvLy8cP36dZiZmXHbhwwZgilTpqiaHQEAsRio5ULCTd8R+iVA4rObZedTEmMMWVlZAMqmCK7r5nlCSD2mQllSlbdxraTqEAgEGvnRSGU90aScohwE/BqAS88uoaluU5wIPIEONh3wqc+nFXbf4fF4CGgRAH9nf5xMPImlMUtxLvkc1l9Zj5+v/YxJHpOwsPtCNDNppuFXpzmamLpX5RYLMzMzXLhwAa6urjAyMsL169fh5OSEpKQktGnThgafqYCrAQKo3faK6hMDkHVuywdgoMFYCCH1Sy4AE6BOWl0burpsoa4OsVjMdWXOz8+HgQGV9qRuZBdlw/8Xf1xJuQJTPVOc+OAEPG08Vc6HMYbopGgsjVmKmMcxAABtvjYmekzEwu4LIWoiUnPk9V90UjR6bq96YeTTQafRQ9Sjwv212mJR0dR/T58+hZGRkarZEUIIaaRCQkLw1VdfwcDAgJskoiJr1qypo6gIIXXlZeFLvPfLe4hNjYWZnhlOBp6Eu7V7tfLi8Xjo6dgTPR17IiYpBsvOLMOpxFPYdG0TtsRvQZB7ED7v/jmcmjqp+VVUX00GVL9JyqRIfJmIGxk3cDPjJm5m3MT55PNKHavOqXtVrlj4+/sjPDwcmzZtAlD2H5mfn4/Fixfj/fffV1tgjUpKClDLd7DEJWJYrvp3Gt/Zj2Gmb1bFEbIDxYBs+sf0dIDuYhFCZHJzAVvbah8eFxfHjSeIi4tTV1SEkAbgReELvPfLe7iWeg3m+uY4GXgS7a3aqyVvX5EvTopO4lzyOSyLWYbjj45jc9xmbIvfhg/cP8AX3b9AC9MWajlXdVV3QDVjDKn5qVzlQVaRuJ15GwWvqtdrSJ0zaqncFerp06cICAgAYwz379+Hl5cX7t+/D3Nzc5w5cwaWlpZqC+5tV9dN482+b4YnuU9wftJ5dHHootQx1DxOCKlIfe/eU5/U92tFZT2pS88LnsPvFz/Ep8XDQt8Cp4JOwc3SreoDq+nik4tYdmYZjj04BgDg8/gY124cFr27CC3NWnLp1NmCUBllB1S/LHyJW5m3cCP931aIzLLKxIvCF+XmKxQI0caiDdws3eBm6YY25m3w0R8fIS0/rdxxFjzwYG9sj8TgxEpfZ612hbK3t8f169exa9cu/PPPP8jPz8fkyZMxbty4erfiNJHnau6KJ7lPkJCVoHTFghBC6sKkSZOwdu1ahS61YrEYM2fOxJYtWzQUGSFEnbIKstB7R2/8k/4PLA0scSrwFNpatq3Vc/o4+ODouKO49PQSlp1ZhiP3j+CXf37Bbzd+w2i30VjUfRHuZN2pkylZqxpQDQDj9o2DqZ4pUvJTys2Dz+PDxdQF7azawc3CjatIOJs6Q4sv/9N+nXQdhu8ZDh54cueUVWLC+4SrtfKkcotFUVERdHV11RZAY1bXd7CmH56On67+hPld5+Nbv2+VOobuYhFCKqLOMkwgECA1NVWh1TsrKwvW1tYoLS2tUf6aRi0WhACZ4kz03tEbNzJuwNrQGqcCT6G1Res6j+NqylUsi1mG/937X6XplJmSlTGGglcFyC3ORV5JXtm/xWX/lrft3ot7+OvhX0rH2sykWVnFwcKtrCJh6YZW5q2gq6X8b/Hyul29PnVvVWq1xcLS0hJDhgzB+PHj0bt3b1qdswFxNXcFACQ8T9BwJIQQUiY3NxeMMTDGkJeXJ3fjSiKR4MiRI9TFlpC3QHp+Onrv6I1bmbdgY2iD00Gnud8ldc3L1guHxhxCXGoclsYsxe8Jv5ebTnaHP/BAIH775zfkv8ovt+IgZVK1x7jEdwlmvzMbJromNc5raOuhGOQ6qE66ealcsdi+fTsiIyMxaNAgmJiYYNSoURg/fjy8vLzUHhxRL1ezfysWWcpXLLS0tBAUFMT9TQgh6tSkSRPweDzweDy0bNlSYT+Px8PSpUs1EFnjQmU9qU1p+Wnotb0X7mTdga2RLU4HnZYb26ApnjaemP3O7AorFjLiV2Lsv7u/0jQ88GAsNIaR0AjGQuOyv3UU/84UZ2LjtY1VxuYr8lVLpUJGwBdUOqWsuqhcegwZMgRDhgxBXl4eoqKisHPnTrzzzjtwcnLC+PHjERoaWhtxEjWQ3Rl48OIBJFKJUjVVoVCIbdu21XJkhJDG6vTp02CMoVevXti3bx9MTU25fTo6OmjevDlsazDzFFEOlfWktqTmpaLXjl64m3UXdkZ2OB10Gi5mLpoOi6PsVKsT3Cegp2PP8isNQiMYaBsotbCkRCrB4QeH8Sz3WaUDqrs3667ya6kPqt2PycjICBMnTsRff/2Ff/75BwYGBnRXqZ5rZtIMulq6eCV9haTsJE2HQwgh8PX1RY8ePZCYmIhBgwbB19eXe/j4+FSrUrF+/XqIRCLo6urC29sbly9frjDtrVu3MGzYMIhEIvB4PISHhyukCQsLQ6dOnWBkZARLS0sMHjwYCQnUpZSQqqTkpaDH9h64m3UXDsYOiJkQU68qFYDyU60GeQQh0D0Qg1sNRi/HXuhk1wmu5q6wMbKBoY6h0qvVC/gCrO2zFsB/YzhkamtAdV2qdsWiqKgIe/bsweDBg9GhQwe8ePEC8+bNU2dsRM1kswgAyo+zYIxBLBZDLBZDxXH+hBCitObNmyM3Nxd//fUXfv31V+zYsUPuoazdu3cjJCQEixcvxrVr1+Du7o6AgABkZGSUm76goABOTk749ttvYW1tXW6amJgYTJ8+HX///TeOHz+OV69ewd/fH2KxuFqvtT6isp6o27PcZ+ixrQfuPb+HZibNED0hGs6mzpoOS0H3Zt1hb2yv8CNfhgceHIwd1NqCMLT1UESNjIKdsZ3cdntj+0oHijcEKs8K9eeffyIyMhIHDx6ElpYWhg8fjnHjxuHdd9+trRjfWpqYJWTE3hGIuh2FNf5rMMdnTpXpaaYQQkhF1FmG/e9//8O4ceOQn58PY2Njubt/PB4PL16UP2/7m7y9vdGpUyesW7cOACCVSuHg4ICZM2diwYIFlR4rEokwe/ZszJ49u9J0mZmZsLS0RExMjNLffTQrFGlMnuQ8Qc/tPfHw5UM0N2mO6AnREDURaTqsCsnWlQBQ7pSstfVjv67WzagpVcovlVsshgwZgsLCQuzYsQNpaWnYuHEjVSoakJamZYOlaGYoQkh98umnn2LSpEnIz89HdnY2Xr58yT2UrVSUlJQgNjYWfn5+3DY+nw8/Pz9cvHhRbbHm5OQAgNx4EEJImeScZPTY3gMPXz6EYxNHxEyIqdeVCkBzLQiyAdVj2o1BD1GPelmpUJXKg7fT09MVFjAiDQdNOUsIqY+ePXuGWbNmQV9fv9p5ZGVlQSKRwMrKSm67lZUV7t69W9MQAZS1gMyePRtdu3aFm1vFKwUXFxejuLiYe56bm6uW8xNSnz3Ofoye23siMTsRTk2dcDroNJqZNNN0WEqpyylZ32ZKVSxyc3O5pg/GWKUFZH1s4iX/qc6Us4QQUtsCAgJw9epVODk5aTqUSk2fPh03b97EuXPnKk0XFhZGE5qQRiXxZSJ6bu+JxzmP4dzUGaeDTsPBxEHTYamkrqZkfZspVbFo2rQptyKqbM7xNzHGwOPxIJFI1B4kUR9Zi0VqfiryivNgJKTWJ0KI5vXr1w/z5s3D7du30a5dO2hra8vtHzhwYJV5mJubQyAQID09XW57enp6hQOzVTFjxgz88ccfOHPmDOzt7StNu3DhQoSEhHDPc3Nz4eDQsH5kEaKsRy8foef2nkjOSYaLqQtOB51W6FZEGgelKhanTp3i+pKePn26VgMitauJbhNYGlgiQ5yBe8/voaNtR02HRAghmDJlCgBg2bJlCvuUvWmlo6ODjh074uTJkxg8eDCAsq5LJ0+exIwZM6odG2MMM2fOxIEDBxAdHQ1HR8cqjxEKhRAKhdU+JyH11ZsDjm0NbeH3ix+e5D6Bq5krTgWdgq0RrT3TWClVsfD19eX+dnR0hIODg0KrBWMMT548UW90pFa4mrkiQ5yBhOcJVLEghNQLUqlULfmEhIQgKCgIXl5e6Ny5M8LDwyEWizFx4kQAQGBgIOzs7BAWFgagbMD37du3ub+fPXuG+Ph4GBoaokWLFgDKuj9FRkbi999/h5GREdLS0gAAJiYm0NPTU0vchDQE++/sR/CxYDzNfcpt4/P4kDIpWpm3wqnAU0qvC0HeTioP3nZ0dOS6Rb3uxYsXcHR0pK5QDYCrmSvOJp9VapyFQCDA8OHDub8JIaQ+GzVqFDIzMxEaGoq0tDR4eHjg2LFj3IDu5ORk8Pn/TYiYkpICT09P7vmqVauwatUq+Pr6Ijo6GgCwYcMGAECPHj3kzrV161ZMmDChVl9PXaGynlRFNiXrm6tFS1nZTYG5XeZSpYKoXrGQjaV4U35+PnR1ddUSFKldLc2Un3JWV1cXe/fure2QCCGNXHldoF4XGhqqdF4zZsyosOuTrLIgIxKJqlwQrjEsGEdlPamMRCpB8LFghUqFDA88LI1eignuE2gWpUZO6YqFbBAaj8fDl19+KTcloEQiwaVLl+Dh4aH2AIn60ZSzhJD65sCBA3LPX716hcTERGhpacHZ2VmligUhRL3OJp+V6/70JgaGJ7lPcDb5LM2q1MgpXbGIi4sDUHbn5saNG9DR0eH26ejowN3dHXPnzlV/hETtZFPO3nt+D1ImBZ+n8jqJhBCiVrLvmNfl5uZiwoQJGDJkiAYiIqTxyinKQWxqLK6mXMWVlCuITopW6rjUvNTaDYzUe0pXLGSzQU2cOBFr166l9SoaMKemTtDia6HgVQFS8lJgb1zxtIlisRiGhoYAyrq7GRgY1FWYhJBGztjYGEuXLsWAAQPwwQcfaDqctxqV9erz5qxJtb3IWk3PJy4R41rqNVxNuYqrqVdxNeUq7j2/V61YaIwFUXmMxdatW2sjDlKHtAXacGrqhHvP7yEhK6HSigUhhGhSTk4OcnJyNB0GIUopb9Yke2N7rO2zFkNbD9X4+YpKi3A97TrXEnE15SruZN3hBmC/TtREBC9bL3Sy7QRPa09M+H0CUvNSyx1nwQMP9sb26N6su3pfIGlwVK5YAMDVq1exZ88eJCcno6SkRG7f/v371RIYqV2uZq5lFYvnCejt1FvT4RBCGrkffvhB7jljDKmpqfjll1/Qp08fDUVFiPIqmjXpWe4zDN8zHFEjo9RauajqfLuG74KLqQtXgbiachU3Mm6gVFqqkJetkS062XaCl60X9zDXN5dL82PfHzF8z3DwwJM7Jw9lE/qE9wmngdtE9YrFrl27EBgYiICAAPz111/w9/fHvXv3kJ6eTv1gGxBXM1f8D/9TaspZQgipbd9//73ccz6fDwsLCwQFBWHhwoUaiooQ5VQ2axIDAw88zD42G4NcB6nlx3dV5wOAUVGjyj3WXN+cq0R0su2EjrYdlVrQbmjroYgaGVVuC0l4n/BaaZEhDY/KFYvly5fj+++/x/Tp02FkZIS1a9fC0dERH3/8MWxsqG9dQ6HKlLOEEFLbEhMTFbYVFRVh/fr1cHFx4RalI6Q+UnbWpD6/9oGZvhleSV+hVFqKUmkpXknK/lZlW1FpEYpKi6qMy0DbAO/YvyPXGtHMpFm5ywYoY2jroRjkOqhOx5CQhkXlisXDhw/Rr18/AGWzQYnFYvB4PMyZMwe9evXC0qVL1R4kUT+acpYQUh8UFxdjyZIlOH78OIRCIebNm4fBgwdj69atWLRoEQQCAebMmaPpMAlRwBhDck4yLj27hG3x25Q65kTiidoN6g2bBmzC2HZj1ZqngC+gKWVJhVSuWDRt2hR5eXkAADs7O9y8eRPt2rVDdnY2CgoKqhXE+vXrsXLlSqSlpcHd3R0//vgjOnfuXGH6vXv34ssvv0RSUhJcXFzw3Xff4f333+f279+/HxEREYiNjcWLFy8QFxcnt8ZGUlISHB0dy817z549GDFiBICyFVqnTp2K06dPw9DQEEFBQQgLC4OWluJlO3/+PHx9feHm5ob4+PhqXYe6JJty9nH2YxSVFkFXixY3JITUvdDQUGzcuBF+fn64cOECRowYgYkTJ+Lvv//G6tWrMWLECFoJmtSYOmZqyivOw5WUK7j09BIuPbuEv5/+jXRxukp5TPOahlbmraDF14K2QLvsX37Zv69vq2r71ZSrGH9gfJXnU6aLEyHqpHLF4t1338Xx48fRrl07jBgxAsHBwTh16hSOHz+O3r1VHwS8e/duhISEICIiAt7e3ggPD0dAQAASEhJgaWmpkP7ChQsYM2YMwsLC0L9/f0RGRmLw4MG4du0a3NzcAJRNm9etWzeMHDkSU6ZMUcjDwcEBqanycy1v2rQJK1euRN++fQGULfrXr18/WFtb48KFC0hNTUVgYCC0tbWxfPlyuWOzs7MRGBiI3r17Iz1dtUJGUywNLGEiNEFOcQ4evHgAN0u3ctMJBAKu0kZf7oQQddu7dy927NiBgQMH4ubNm2jfvj1KS0tx/fr1anfXIKp7m8v66szUJJFKcCvzFleJuPTsEm5l3FIY06DF14KHtQc62XbC7pu78bLoZaWzJv3Q9we1dBtqYdoCC04uwLPcZzRLE6lXeIyx8tdnr8CLFy9QVFQEW1tbSKVSrFixAhcuXICLiwsWLVqEpk2bqhSAt7c3OnXqhHXr1gEApFIpHBwcMHPmTCxYsEAh/ahRoyAWi/HHH39w29555x14eHggIiJCLq2sZeLNFovyeHp6okOHDti8eTMA4OjRo+jfvz9SUlJgZWUFAIiIiMD8+fORmZkpt0Dg6NGj4eLiAoFAgIMHDyrdYpGbmwsTExPk5ORoZF0Q7//zxuVnlxE1IgrD2gyr8/MTQho2dZRhOjo6SExMhJ2dHQBAT08Ply9fRrt27dQZqsZpurxvrCqaOUk2k5FspqbUvFT8/fRvrhJxNeUq8kvyFfJrbtIc79i/A287b3jbe8PT2hN62npy5wJQ7qxJtTUrVF2djzReqpRfKrdYmJqacn/z+fxyf/wrq6SkBLGxsXIzfvD5fPj5+eHixYvlHnPx4kWEhITIbQsICMDBgwerHUdsbCzi4+Oxfv16ufO0a9eOq1TIzjN16lTcunULnp6eAMrW9Xj06BF+/fVXfP3115Wep7i4GMXFxdzz3NzcasesDq5mrrj87DKNsyCEaIxEIpG7UaOlpcUt1EZITSgzc9L4/eNhpmeGp3mKA6+NdIzQya4TvO28ucqElaGVQjqZup41iWZpIvWRUhULVX4Aq3InJisrCxKJRO7HOwBYWVnh7t275R6TlpZWbvqazBiyefNmtG7dGl26dKnyPLJ9AHD//n0sWLAAZ8+eLXfcxZvCwsLq1eB22TgLqlgQQjSFMYYJEyZAKBQCKJsJ6pNPPlFY+ZnWSCKqqmqmJgAoLC3E07yn4PP4cLN0K2uJ+Lci0cq8lcrdlup61iSapYnUN0pVLJo0aVJlX1fGGHg8HiQSiVoCqyuFhYWIjIzEl19+qdJxEokEY8eOxdKlS9GyZUuljlm4cKFca0tubi4cHBxUOq86cVPOVrKWhVgs5sa6ZGRkKHzZE0JITQQFBck9Hz++6gGpRP1y83JhZWUFxhgOxB6Afyv/BvfjNKcoB/Fp8YhLi0NcWhxOJ55W6rhF3Rdhfrf5MNRRT0tZXc+aRLM0kfpEqYrF6dPKfThVZW5uDoFAoDDgOT09HdbW1uUeY21trVL6qkRFRaGgoACBgYEK57l8+bLCeWT78vLycPXqVcTFxWHGjBkAysaHMMagpaWFv/76C7169ZI7XigUcnfl6oPXp5yVVQzLU93ZvgghpCpbt27VdAiN3v47+zHz95koKixbF+H9396HvXnlg5trqqazNKXmpZZVIFLjuIrEo5ePqhVLb6feaqtUENLYKVWx8PX1rZWT6+jooGPHjjh58iQGDx4MoOzH+cmTJ7kf62/y8fHByZMnMXv2bG7b8ePH4ePjU60YNm/ejIEDB8LCwkLhPN988w0yMjK4O/bHjx+HsbEx2rRpA21tbdy4cUPumJ9++gmnTp1CVFRUhdPZ1icupi7ggYfsomxkFWTBwsCi6oMIIYS8NbjBzSXy4xCe5T7D8D3Da2UAsCqzNEmZFA9fPERcWtx/rRGpcRVO89rMpBk8rT3hae2J9lbtMf3IdKTlp9HMSYTUEZUHbwPA2bNnsXHjRjx69Ah79+6FnZ0dfvnlFzg6OqJbt24q5RUSEoKgoCB4eXmhc+fOCA8Ph1gsxsSJEwEAgYGBsLOzQ1hYGAAgODgYvr6+WL16Nfr164ddu3bh6tWr2LRpE5fnixcvkJycjJSUFABAQkJZVx9ra2u5lo0HDx7gzJkzOHLkiEJc/v7+aNOmDT744AOsWLECaWlpWLRoEaZPn861Osimt5WxtLSErq6uwvb6Sk9bD81MmuFxzmMkPE+gigUhhDQiygxu/uh/H0FXoAsTXRMY6BjAQNsABjoGMNQxhIG2gcrdpSqapUlWkVn53kqY6plyrRDX064jryRPIR8+jw9XM1d42nhyFQkPaw+Y6ZspvI7he4aDB165MyeF9wlvcF2+CKnPVK5Y7Nu3Dx988AHGjRuHa9eucbMc5eTkYPny5eX+SK/MqFGjkJmZidDQUKSlpcHDwwPHjh3jBkonJyeDz+dz6bt06YLIyEgsWrQIn3/+OVxcXHDw4EG5H/OHDh3iKiZA2XSwALB48WIsWbKE275lyxbY29vD399fIS6BQIA//vgDU6dOhY+PDwwMDBAUFIRly5ap9PrqO1dz17KKRVYCujVTrVJICCGk4VJmcPPzwufot7NfhfuFAiFX4TDUMZSrfHDb/n2up6WH7//+vtKKzNzjc8s9R3ur9mUViH8rEu2s2kFfW7/K10gzJxFSt1Rex8LT0xNz5sxBYGAgjIyMcP36dTg5OSEuLg59+/at0exMjU19mNd81tFZ+PHyj5jXZR5WvLdCYb9YLOamfszPz6fB24QQTn0owxqK+nitdt7YibH7x5Y9KQEgW/v1cwD/zQCMZsbNoC3QhviVGOISMcSvxJAyaa3F5W7ljl6OvbiKhGyl6ppQx8rbhDRWtbqORUJCAt59912F7SYmJsjOzlY1O6Jh3MxQNOUsIYQ0KjZGNkql2z5ku9ysQ4wxFJUWyVU08kvyub/FJf8+f22/uESM62nXcfpx1ZPBzO86H2PajanuyyoXzZxESN1QuWJhbW2NBw8eQCQSyW0/d+4cnJyc1BUXqSPcWhYVTDnL5/O5wfuvd0kjhBDSsHVv1h3GOsbILckFeACa/7uDJ/un/MHNPB4Petp60NPWg7m+udLni06KxuntVVcslK3wEELqH5UrFlOmTEFwcDC2bNkCHo+HlJQUXLx4EXPnzlV5LQiiebIpZx++fIhSaalCc7Oenh6io6M1EBkhhJDadPDuwbJKBQBoA/hvaGKtDG7u3qw77I3t8Sz3Gc3SRMhbSuVb0AsWLMDYsWPRu3dv5Ofn491338WHH36Ijz/+GDNnzqyNGEktsje2h56WHkqlpUh8majpcAghhNSB62nXEXiwbP2m/i37w97YXm6/vbG92qeaFfAFWNtnLYD/Ki4yNEsTIW8HlVsseDwevvjiC8ybNw8PHjxAfn4+2rRpA0NDQxQWFkJPT6824iS1hM/jo6VZS1xPv46E5wlwMXPRdEiEEEJqUaY4E4N2DULBqwL4O/vjwKgD4IFXJ4ObaZYmQt5u1Z5mQUdHB23atAEAFBcXY82aNdx6D6RhcTV3LatYZCWgf8v+cvvEYjE3niYpKYlmhSKEkAasRFKC4XuH43HOY7iYumDXsF3Q4mtBLBZjRKcRAMrK+tpsNRjaeigGuQ6iWZoIeQspXbEoLi7GkiVLcPz4cejo6OCzzz7D4MGDsXXrVnzxxRcQCASYM2dObcZKagk3gLuCmaGysrLqMhxCCCG1JPhoMM48PgMjHSP8Pvp3NNVryu2ry7KeZmki5O2kdMUiNDQUGzduhJ+fHy5cuIARI0Zg4sSJ+Pvvv7FmzRqMGDECAgHdbWiIaMpZQgh5+224sgERsRHggYedw3aitUVrTYdECHnLKF2x2Lt3L3bs2IGBAwfi5s2baN++PUpLS3H9+nXweLyqMyD1VlVTzhJCCGnYYpJiMOvYLABAWO8w9GtZ8WrahBBSXUrPCvX06VN07NgRAODm5gahUIg5c+ZQpeItIJtyNl2cjpyiHA1HQwghRJ2SspMwfO9wlEpLMbbdWHzW9TNNh0QIeUspXbGQSCTQ0dHhnmtpacHQ0LBWgiJ1y1hoDGtDawDAvef3NBwNIYQQdckvycegXYOQVZCFjjYd8X8D/o9uCBJCao3SXaEYY5gwYQKEQiEAoKioCJ988onCLEH79+9Xb4SkTriauSItPw0JzxPQya6TpsMhhBBSQ1ImRdDBIPyT/g+sDKxwcPRB6GnTlPCEkNqjdMUiKChI7vn48ePVHgzRHFczV8Q8jlEYZ8Hn8+Hl5cX9TQghpGH4KuYr7L+zHzoCHRwYdUBhEbzXUVlPCFEHpSsWW7durc04iIbJxlm8OTOUnp4erly5oomQCCGEVNP+O/uxJGYJACCiXwR8HHwqTU9lPSFEHei2BAFAU84SQsjb4p/0f/DBgQ8AAMHewZjoOVHDERFCGguqWBAA/005e//5fUiZVMPREEIIqY6sgiwM2jUIBa8K4Ofkh1X+qzQdEiGkEaGKBQEAODZ1hDZfG4WlhXia+5TbXlBQAJFIBJFIhIKCAg1GSAghpDKvJK8wYu8IJGUnwbmpM3YP3w0tvnI9nqmsJ4Sog9JjLMjbTYuvBWdTZ9zNuouErAQ0M2kGoGw2sMePH3N/E0IIqZ9mH5uN6KRoGOkY4dCYQzDVM1X6WCrrCSHqQC0WhMOtwE3jLAghDdj69eshEomgq6sLb29vXL58ucK0t27dwrBhwyASicDj8RAeHl7jPDVh49WN+OnqT+CBh9+G/oY2Fm00HRIhpBGiigXhcBWLLKpYEEIapt27dyMkJASLFy/GtWvX4O7ujoCAAGRkZJSbvqCgAE5OTvj2229hbW2tljzr2pnHZzDj6AwAwDe9vsEA1wEajogQ0lhRxYJwKppylhBCGoo1a9ZgypQpmDhxItq0aYOIiAjo6+tjy5Yt5abv1KkTVq5cidGjR3MLwNY0z7r0OPsxhu0ZhlJpKUa7jcaCbgs0HRIhpBGjigXh0JSzhJCGrKSkBLGxsfDz8+O28fl8+Pn54eLFi3WaZ3FxMXJzc+Ue6iYuEWPgroHIKshCB5sO2DxwM3g8ntrPQwghyqKKBeHIukIl5ySj8FWhhqMhhBDVZGVlQSKRwMrKSm67lZUV0tLS6jTPsLAwmJiYcA8HB4dqnb8ijDFM+H0C/kn/B5YGljg46iD0tfXVeg5CCFEVVSwIx1zfHE11mwIA7r+4DwDg8Xho06YN2rRpQ3fCCCFESQsXLkROTg73ePLkiVrz//rM14i6HQVtvjb2j9wPB5OaVVyorCeEqANNN0s4PB4Pruau+Pvp30jISkB7q/bQ19fHrVu3NB0aIYRUydzcHAKBAOnp6XLb09PTKxyYXVt5CoXCCsds1NSBOwcQGh0KANjQbwO6Nuta4zyprCeEqAO1WBA5NOUsIaSh0tHRQceOHXHy5Elum1QqxcmTJ+Hj41Nv8qyJG+k38MGBDwAAszrPwuQOk+s8BkIIqQi1WBA5VLEghDRkISEhCAoKgpeXFzp37ozw8HCIxWJMnDgRABAYGAg7OzuEhYUBKBucffv2be7vZ8+eIT4+HoaGhmjRooVSedaVrIIsDNo1COJXYvR27I3VAavr9PyEEFIVqlgQOdyUs/+uZVFQUIBOnToBAK5cuQJ9fRocSAipv0aNGoXMzEyEhoYiLS0NHh4eOHbsGDf4Ojk5GXz+f431KSkp8PT05J6vWrUKq1atgq+vL6Kjo5XKs7ZIpBKcTT6L1LxUWOhb4Juz3yAxOxFOTZ2we/huaPHV9xVOZT0hRB14jDGm6SAaq9zcXJiYmCAnJwfGxsaaDgcAcDPjJtptaAdjoTGy52ejoKAAhoaGAID8/HwYGBhoOEJCSH1RH8uw+krVa7X/zn4EHwvG09ynctt1tXRxdcpVtLVsq9b4xGIxlfWEkHKpUn7RGAsip4VpC/DAQ25xLjLE9WNVWUIIaUz239mP4XuGK1QqAKCotIi6qhJC6i2qWBA5ulq6EDURAaBxFoQQUtckUgmCjwWDofzOBDzwMPvYbEikkjqOjBBCqlYvKhbr16+HSCSCrq4uvL29cfny5UrT7927F61atYKuri7atWuHI0eOyO3fv38//P39YWZmBh6Ph/j4eLn9SUlJ4PF45T727t3LpUtOTka/fv2gr68PS0tLzJs3D6WlpXLnee+992BhYQFjY2P4+Pjgzz//rPkF0bA3x1kQQgipG2eTz5bbUiHDwPAk9wnOJp+tw6gIIUQ5Gq9Y7N69GyEhIVi8eDGuXbsGd3d3BAQEICOj/G44Fy5cwJgxYzB58mTExcVh8ODBGDx4MG7evMmlEYvF6NatG7777rty83BwcEBqaqrcY+nSpTA0NETfvn0BABKJBP369UNJSQkuXLiA7du3Y9u2bQgNDeXyOXPmDN577z0cOXIEsbGx6NmzJwYMGIC4uDg1XqG6RzNDEUKIZqTmpao1HSGE1CWND9729vZGp06dsG7dOgBl84M7ODhg5syZWLBggUL6UaNGQSwW448//uC2vfPOO/Dw8EBERIRc2qSkJDg6OiIuLg4eHh6VxuHp6YkOHTpg8+bNAICjR4+if//+SElJ4Wb+iIiIwPz585GZmQkdHZ1y82nbti1GjRolVwGpSH0d+LjhygZMOzIN/Vv2x66Bu2hAHyGkXPW1DKuPlL1W0UnR6Lm9Z5X5nQ46jR6iHmqLjwZvE0Iq0mAGb5eUlCA2NhZ+fn7cNj6fDz8/P1y8eLHcYy5evCiXHgACAgIqTK+M2NhYxMfHY/Lk/xYaunjxItq1ayc3nWBAQAByc3MrXJ1UKpUiLy8Ppqam5e4vLi5Gbm6u3KM+er0rFI/HQ/PmzdG8eXPweDwNR0YIIW+37s26w97YHjyUX97ywIODsQO6N+uu1vNSWU8IUQeNViyysrIgkUgU5gK3srJCWlpaucekpaWplF4ZmzdvRuvWrdGlS5cqzyPbV55Vq1YhPz8fI0eOLHd/WFgYTExMuIeDg0O1Y65NLc1aAgAevXwEbaE2kpKSkJSURPOaE0JILRPwBVjbZy0AKFQuZM/D+4RDwBeo9bz6+vpU1hNCakzjYyw0rbCwEJGRkXKtFdURGRmJpUuXYs+ePbC0tCw3zcKFC5GTk8M9njx5UqNz1hY7IzsYaBtAwiR49PKRpsMhhJBGZWjroYgaGQU7Yzu57fbG9ogaGYWhrYdqKDJCCKmcRlfeNjc3h0AgQHp6utz29PR0WFtbl3uMtbW1SumrEhUVhYKCAgQGBiqc583ZqWTnffNcu3btwocffoi9e/cqdNN6nVAohFAorFacdYnH46GlWUvEpcUh4XkC1zWKEEJI3RjaeigGuQ7iVt62MbJB92bd1d5SQQgh6qTRFgsdHR107NgRJ0+e5LZJpVKcPHkSPj4+5R7j4+Mjlx4Ajh8/XmH6qmzevBkDBw6EhYWFwnlu3LghNzvV8ePHYWxsjDZt2nDbdu7ciYkTJ2Lnzp3o169ftWKoj2SViZvPbqJTp07o1KkTCgsLNRwVIYQ0HgK+AD1EPTCm3Rj0EPWo1UpFYWEhlfWEkBrTaIsFAISEhCAoKAheXl7o3LkzwsPDIRaLMXHiRABAYGAg7OzsEBYWBgAIDg6Gr68vVq9ejX79+mHXrl24evUqNm3axOX54sULJCcnIyUlBQCQkFA2baq1tbVca8ODBw9w5swZhXUwAMDf3x9t2rTBBx98gBUrViAtLQ2LFi3C9OnTuVaHyMhIBAUFYe3atfD29ubGXujp6cHExKQWrlbd4aaczUrA1atXAZRV+gghhLx9pFIplfWEkBrT+BiLUaNGYdWqVQgNDYWHhwfi4+Nx7NgxbqB0cnIyUlP/m6+7S5cuiIyMxKZNm+Du7o6oqCgcPHgQbm5uXJpDhw7B09OTa0EYPXo0PD09Faaj3bJlC+zt7eHv768Ql0AgwB9//AGBQAAfHx+MHz8egYGBWLZsGZdm06ZNKC0txfTp02FjY8M9goOD1XqNNEFWsbj/4r6GIyGEEEIIIQ2BxtexaMzq8xzwsSmx8PrZC+Za5shalAWA5jYnhMirz2VYfVPfrxWtY0EIqUiDWceC1F+yKWezCrI0HAkhhBBCCGkIqGJBymUkNIKtka2mwyCEEEIIIQ0EVSxIhWTjLAghhBBCCKkKVSxIhWQVCz0TPZibm2s4GkIIIbXJ3NycynpCSI1QxYJUyNXcFdAB3t/0PjIzM2kwHyGEvKUMDAyQmZlJZT0hpEaoYkEqxK1l8TxBw5EQQgghhJD6jioWpEKymaHuP78PiVSi4WgIIYQQQkh9RhULUiFRExG0pdoo/r9idH23KwoLCzUdEiGEkFpQWFiIHj16oEePHlTWE0KqjSoWpEICvgBOJk7AY+DS+UuIToymlgtCCHkLSaVSxMTEICYmBlKpVNPhEEIaKKpYkArtv7MfSTlJ3PP3f3sforUi7L+zX3NBEUIIIYSQeokqFqRc++/sx/A9w1FcWiy3/VnuMwzfM7zWKhcSqQTRSdHYeWMnopOohYQQQgghpKHQ0nQApP6RSCUIPhYMBqawj4GBBx5mH5uNQa6DIOAL1Hbe/Xf2I/hYMJ7mPuW22RvbY22ftRjaeqjaziMjkUpwNvksUvNSYWNkg+7Nuqv19TSm89Fro/MRQgghVLEgCs4mn5X7cf8mBoYnuU/gEeEBJ1MnmOqZwkzPrOyh/9+/3HZ9M+hq6VZ6TlkLyZuVGVkLSdTIKLVWLuq6EvM2n49eG52PEEIIAQAeY0zxtjSpE7m5uTAxMUFOTg6MjY01HQ5n542dGLt/bNmTEgDL/93xOQCd6uWpr60vV/F4vdLRVLcpvjn7DV4WvSz3WB54sDe2R2JwolrupFZUieGBBwC1Uol5W89Hr61hvjZ1na++lmH1UX2/VmKxGIaGhgCA/Px8WiSPEMJRpfyiioUG1dcvmuikaPTc3rPsSQmAlf/umAe5isUS3yWwMbLB84LneF7476PgOV4UvpD7W8LUM06iqW5TNNVrCn1tfYWHgbaBUtuEAiFGRo1Euji93HPwwIOdsR3uTr8LAV/A/cji8Xjc/oqev7kPKOtmIlorqrAFSN2Vpro8H722hvna1Hm++lqG1Ueya5WSUj+vlVgshqOjJQAgMTGDKhaEEE5ubi5sbaliUe/V1y9l2Y+OZ7nPyh1nocqPHCmTIrc4l6t8vCh88V9F5N9/r6Vew8WnF2vr5TQIelp60BHogM/jcw8ejyf3/M0HD4r7C14V4OHLh1Wez9XMFUZCI+75m8XA6//vFe3LK85T6lwupi4wEhqBB55chayqytmbf2cXZeNGxo0qz9fJthPM9M24ayQ7XnY9X98mu85v7k8Xp+PEoxNVnqunqCfM9c0hZVJImARSJuUeEukbz9/Y/3qa3OJcpa6lYxNHGAmNFP7/X4+9vOdvbntZ+BKXUy5Xeb7TQafRQ9Sjwv31tQyrj2TXCsgBQNeKENKQ5AJQrqynMRZEgYAvwNo+azF8z3DwwJP7kSn7sRfeJ1ypO6d8Hh9NdJugiW4TOMO53DRyLSSV+HnAz2hr0RYFrwoUHuJXYqW2p+enV9haoUmFpYUoLK27RakSnifU2bnuv7hfZ+cCgCspV+rsXKeTTtfZuQAgMTuxTs+Xmpdap+cjhBDSsFHFgpRraOuhiBoZVe7AzvA+4Wrt6929WXfYG9tX2UIy0WNijbuBKFuJ+WPMH+jevDt3t14W1+vPK9sne37+yXkM2zOsyvP9OuRXdLLrpHBHmzGmsE1uP+T3x6XG4bMTn1V5vuW9lqOdVTuuogjId+ECUOW+6+nXMf/E/CrP9W3vb9HOqh2Asmui7LV88+9bGbewJGZJledb0HUBWpm34q6N7HjZv29uk13H1/fff34fEbERVZ5rRqcZaGXeSqHlSMAXyD/nCSpNcyP9hlL/b6veW4X2Vu0V/v9ffx3KPL+deRvfnf+uyvPZGNlUmYaoJiUFoMYdQkhDkpsL2Noql5a6QmlQQ+hGIC4Qo3f/3iguLcZ3P3+H3i69a2UqStlAUkC+G466B66qs5tXYz8fvbaG+drUeb6GUIbVF/X9WhUVFWHYsLKbIPv27YOubuUz+RFCGg9Vyi9aII9UjgGXTl9C/Nl4dLXvWmvz28taSOyM7eS22xvbq3U2HFk3L0D+jvzrz5Xt5tXYz0evrWG+Nk2cj9R/EokER44cwZEjRyCR0MKkhJDqoYoFqTeGth6KpOAknA46jcihkTgddBqJwYlqn0+/rioxjeF89NrU520/HyGEkLcfdYXSoPreNA683XObv+0rHNPq1A3vXA3tfA2hDKsv6vu1epvLekJIzdA6Fg1Eff+iAejLhhBSsYZQhtUX9f1aUVlPCKkIjbEghBBCCCGE1CmqWBBCCCGEEEJqjNax0CBZL7Tc3FwNR1IxsVjM/Z2bm0uzhRBCOLKyi3rUVq2+l/dU1hNCKqJKWU8VCw3Ky8sDADg4OGg4EuXYKrs6CiGkUcnLy4OJiYmmw6jXGlJ5T2U9IaQ8ypT1NHhbg6RSKVJSUmBkZKSwsnFlcnNz4eDggCdPntTLQYCaQNekfHRdFNE1UVTda8IYQ15eHmxtbcHnU8/aylB5rz50TRTRNVFE10RRXZT11GKhQXw+H/b29tU+3tjYmD4sb6BrUj66LoromiiqzjWhlgrlUHmvfnRNFNE1UUTXRFFtlvV0i4kQQgghhBBSY1SxIIQQQgghhNQYVSwaIKFQiMWLF0MoFGo6lHqDrkn56LooomuiiK5J/UX/N4romiiia6KIromiurgmNHibEEIIIYQQUmPUYkEIIYQQQgipMapYEEIIIYQQQmqMKhaEEEIIIYSQGqOKRQO0fv16iEQi6OrqwtvbG5cvX9Z0SBqzZMkS8Hg8uUerVq00HVadOnPmDAYMGABbW1vweDwcPHhQbj9jDKGhobCxsYGenh78/Pxw//59zQRbR6q6JhMmTFB43/Tp00czwdaRsLAwdOrUCUZGRrC0tMTgwYORkJAgl6aoqAjTp0+HmZkZDA0NMWzYMKSnp2soYkJl/X+orC9D5b0iKu/labqsp4pFA7N7926EhIRg8eLFuHbtGtzd3REQEICMjAxNh6Yxbdu2RWpqKvc4d+6cpkOqU2KxGO7u7li/fn25+1esWIEffvgBERERuHTpEgwMDBAQEICioqI6jrTuVHVNAKBPnz5y75udO3fWYYR1LyYmBtOnT8fff/+N48eP49WrV/D394dYLObSzJkzB//73/+wd+9exMTEICUlBUOHDtVg1I0XlfWKGntZD1B5Xx4q7+VpvKxnpEHp3Lkzmz59OvdcIpEwW1tbFhYWpsGoNGfx4sXM3d1d02HUGwDYgQMHuOdSqZRZW1uzlStXctuys7OZUChkO3fu1ECEde/Na8IYY0FBQWzQoEEaiae+yMjIYABYTEwMY6zsfaGtrc327t3Lpblz5w4DwC5evKipMBstKuvlUVmviMp7RVTeK6rrsp5aLBqQkpISxMbGws/Pj9vG5/Ph5+eHixcvajAyzbp//z5sbW3h5OSEcePGITk5WdMh1RuJiYlIS0uTe8+YmJjA29u7Ub9nACA6OhqWlpZwdXXF1KlT8fz5c02HVKdycnIAAKampgCA2NhYvHr1Su690qpVKzRr1qzRv1fqGpX15aOyvnJU3lesMZf3dV3WU8WiAcnKyoJEIoGVlZXcdisrK6SlpWkoKs3y9vbGtm3bcOzYMWzYsAGJiYno3r078vLyNB1avSB7X9B7Rl6fPn2wY8cOnDx5Et999x1iYmLQt29fSCQSTYdWJ6RSKWbPno2uXbvCzc0NQNl7RUdHB02aNJFL29jfK5pAZb0iKuurRuV9+Rpzea+Jsl6rxjkQokF9+/bl/m7fvj28vb3RvHlz7NmzB5MnT9ZgZKQ+Gz16NPd3u3b/3879x0Rd/3EAf3487k5+eAiCHqAgCefQoQgKAQkYFMgycM2Rs7hYspEgObxa5BzkdI4Wm9amc9Foa/1coZKS6QgoEAl1gBFRMIRKkCBILwzweH//8OsnTxxQB5zG87GxeZ97fz7v1+f28fnZ6/P53PljxYoVWLJkCcrLyxEdHW3FyqZHeno6vvvuuxn5jDo9mJj19G/N5Ly3RtbzjsUDxMXFBQqFYtQ3969evQqtVmulqu4vc+fOhU6nQ0tLi7VLuS/cPi54zIztoYcegouLy4w4bjIyMnDixAmUlZVh4cKF8nKtVouhoSH09/ebjeexMv2Y9eNj1o/GvJ+YmZL31sp6NhYPEJVKhaCgIJSWlsrLRkZGUFpaitDQUCtWdv8wGo1obW2Fm5ubtUu5L3h7e0Or1ZodM9euXUNNTQ2PmTv88ssv6O3t/U8fN0IIZGRk4OjRo/jqq6/g7e1t9n5QUBCUSqXZsdLc3IyOjg4eK9OMWT8+Zv1ozPuJ+a/nvbWzno9CPWCysrKg1+uxevVqBAcH48CBA/jzzz+RkpJi7dKswmAwYMOGDfDy8sKVK1eQk5MDhUKBzZs3W7u0aWM0Gs2uvLS1taGurg7Ozs7w9PTEjh07sHfvXvj6+sLb2xu7d++Gu7s7EhMTrVf0FBvrM3F2dsZrr72Gp556ClqtFq2trXj55Zfh4+OD2NhYK1Y9tdLT0/HBBx/g+PHjmDNnjvwsraOjI2xtbeHo6Ijnn38eWVlZcHZ2hkajwfbt2xEaGoqHH37YytXPPMx6c8z6W5j3ozHvzVk96y3+XSmadm+99Zbw9PQUKpVKBAcHi3Pnzlm7JKtJSkoSbm5uQqVSCQ8PD5GUlCRaWlqsXda0KisrEwBG/en1eiHErZ8g3L17t1iwYIFQq9UiOjpaNDc3W7foKTbWZzIwMCAef/xx4erqKpRKpfDy8hKpqamiq6vL2mVPqXt9HgBEYWGhPObGjRti27ZtwsnJSdjZ2YmNGzeKzs5O6xU9wzHr/8asv4V5Pxrz3py1s176fxFERERERET/Gr9jQUREREREFmNjQUREREREFmNjQUREREREFmNjQUREREREFmNjQUREREREFmNjQUREREREFmNjQUREREREFmNjQUREREREFmNjQUSTKjc3FwEBAdYug4iIphjznu7GxoJmvOeeew6SJEGSJKhUKvj4+GDPnj24efOmtUsbU3l5OSRJQn9/PwDg3Xffxdy5c6e1BkmScOzYMbNlBoMBpaWl01oHEdFEMO//PeY9TYSNtQsguh/ExcWhsLAQg4ODKCkpQXp6OpRKJbKzs61dGoaGhqBSqaZtPpPJBEmSMGvWv7vu4ODgAAcHh0muiohocjDv/8a8p8nGOxZEANRqNbRaLby8vPDCCy8gJiYGxcXFAIC+vj4kJyfDyckJdnZ2WL9+PX766ScAgBACrq6u+PTTT+VtBQQEwM3NTX5dWVkJtVqNgYEBAEB/fz+2bt0KV1dXaDQaPProo6ivr5fH3761XFBQAG9vb8yePXvc+svLy5GSkoI//vhDvhqXm5sLABgcHITBYICHhwfs7e0REhKC8vJyed3bV76Ki4uxbNkyqNVqdHR0oLa2Fo899hhcXFzg6OiIyMhIXLx4UV5v8eLFAICNGzdCkiT59d23xkdGRrBnzx4sXLgQarUaAQEBOHXqlPz+5cuXIUkSioqKsG7dOtjZ2WHlypWorq6Wx7S3t2PDhg1wcnKCvb09li9fjpKSknE/FyKiuzHvmfc0ddhYEN2Dra0thoaGANy6dX7+/HkUFxejuroaQgjEx8djeHgYkiQhIiJCDu6+vj40NTXhxo0b+OGHHwAAFRUVWLNmDezs7AAAmzZtQnd3N7744gtcuHABgYGBiI6Oxu+//y7P39LSgs8++wxFRUWoq6sbt96wsDAcOHAAGo0GnZ2d6OzshMFgAABkZGSguroaH330ERoaGrBp0ybExcXJJ0sAGBgYQF5eHgoKCtDY2Ij58+fj+vXr0Ov1qKysxLlz5+Dr64v4+Hhcv34dAFBbWwsAKCwsRGdnp/z6bgcPHkR+fj7eeOMNNDQ0IDY2Fk8++aTZ/ACwa9cuGAwG1NXVQafTYfPmzfLjCenp6RgcHMTXX3+NS5cuIS8vj1fJiGhSMO+Z9zSJBNEMp9frRUJCghBCiJGREXHmzBmhVquFwWAQP/74owAgqqqq5PE9PT3C1tZWfPLJJ0IIId58802xfPlyIYQQx44dEyEhISIhIUEcPnxYCCFETEyMePXVV4UQQnzzzTdCo9GIv/76y6yGJUuWiCNHjgghhMjJyRFKpVJ0d3ePWXdZWZkAIPr6+oQQQhQWFgpHR0ezMe3t7UKhUIhff/3VbHl0dLTIzs6W1wMg6urqxpzPZDKJOXPmiM8//1xeBkAcPXrUbFxOTo5YuXKl/Nrd3V3s27fPbMyaNWvEtm3bhBBCtLW1CQCioKBAfr+xsVEAEE1NTUIIIfz9/UVubu6Y9RERjYd5z7ynqcU7FkQATpw4AQcHB8yePRvr169HUlIScnNz0dTUBBsbG4SEhMhj582bh6VLl6KpqQkAEBkZie+//x6//fYbKioqEBUVhaioKJSXl2N4eBhnz55FVFQUAKC+vh5GoxHz5s2Tn011cHBAW1sbWltb5Tm8vLzg6upq8X5dunQJJpMJOp3ObL6Kigqz+VQqFVasWGG27tWrV5GamgpfX184OjpCo9HAaDSio6NjwvNfu3YNV65cQXh4uNny8PBw+fO77c75bz9a0N3dDQDIzMzE3r17ER4ejpycHDQ0NEy4BiKiOzHvmfc0dfjlbSIA69atw+HDh6FSqeDu7g4bm4n/1/D394ezszMqKipQUVGBffv2QavVIi8vD7W1tRgeHkZYWBgAwGg0ws3NzeyZ19vu/IUPe3t7S3dJnk+hUODChQtQKBRm7915a9nW1haSJJm9r9fr0dvbi4MHD8LLywtqtRqhoaHyIwOTTalUyv++XcvIyAgAYOvWrYiNjcXJkydx+vRp7N+/H/n5+di+ffuU1EJE/13Me+Y9TR02FkS4Few+Pj6jlvv5+eHmzZuoqamRTxa9vb1obm7GsmXLANwKxbVr1+L48eNobGzEI488Ajs7OwwODuLIkSNYvXq1fOIIDAxEV1cXbGxs5C+/TRaVSgWTyWS2bNWqVTCZTOju7sbatWv/0faqqqpw6NAhxMfHAwB+/vln9PT0mI1RKpWj5ryTRqOBu7s7qqqqEBkZabbt4ODgf1TPokWLkJaWhrS0NGRnZ+Ptt9/miYaI/jHm/WjMe5osfBSKaAy+vr5ISEhAamoqKisrUV9fj2eeeQYeHh5ISEiQx0VFReHDDz9EQEAAHBwcMGvWLEREROD99983C9iYmBiEhoYiMTERp0+fxuXLl3H27Fns2rUL58+ft6jWxYsXw2g0orS0FD09PRgYGIBOp8OWLVuQnJyMoqIitLW14dtvv8X+/ftx8uTJcff9vffeQ1NTE2pqarBlyxbY2tqOmrO0tBRdXV3o6+u753Zeeukl5OXl4eOPP0ZzczNeeeUV1NXV4cUXX5zwvu3YsQNffvkl2tracPHiRZSVlcHPz2/C6xMRjYd5z7wny7GxIBpHYWEhgoKC8MQTTyA0NBRCCJSUlJjdyo2MjITJZJKfrQVunXzuXiZJEkpKShAREYGUlBTodDo8/fTTaG9vx4IFCyyqMywsDGlpaUhKSoKrqytef/11uf7k5GTs3LkTS5cuRWJiImpra+Hp6Tnm9t555x309fUhMDAQzz77LDIzMzF//nyzMfn5+Thz5gwWLVqEVatW3XM7mZmZyMrKws6dO+Hv749Tp06huLgYvr6+E943k8mE9PR0+Pn5IS4uDjqdDocOHZrw+kREE8G8Z96TZSQhhLB2EURERERE9GDjHQsiIiIiIrIYGwsiIiIiIrIYGwsiIiIiIrIYGwsiIiIiIrIYGwsiIiIiIrIYGwsiIiIiIrIYGwsiIiIiIrIYGwsiIiIiIrIYGwsiIiIiIrIYGwsiIiIiIrIYGwsiIiIiIrIYGwsiIiIiIrLY/wC5hLSsKSeItAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Plot experiment results!\n", + "plt.figure(figsize=(8, 3))\n", + "\n", + "# Plot error vs. power iterations.\n", + "plt.subplot(1, 2, 1)\n", + "plt.plot(power_iter_values, power_iter_error, \"-o\", c=\"g\", label=\"RDMD\")\n", + "# plt.axhline(y=cdmd_error, c=\"b\", label=\"CDMD\")\n", + "plt.axhline(y=dmd_error, c=\"r\", label=\"exact DMD\")\n", + "plt.axvline(x=power_iter_default, ls=\"--\", c=\"k\", label=\"default value\")\n", + "plt.title(\"Reconstruction Error\")\n", + "plt.xlabel(\"Power Iterations\")\n", + "plt.ylabel(\"Relative Error\")\n", + "plt.legend()\n", + "\n", + "# Plot runtime vs. oversampling.\n", + "plt.subplot(1, 2, 2)\n", + "plt.plot(power_iter_values, power_iter_times, \"-o\", c=\"g\", label=\"RDMD\")\n", + "plt.axhline(y=cdmd_time, c=\"b\", label=\"CDMD\")\n", + "plt.axhline(y=dmd_time, c=\"r\", label=\"exact DMD\")\n", + "plt.axvline(x=power_iter_default, ls=\"--\", c=\"k\", label=\"default value\")\n", + "plt.title(\"Training Time\")\n", + "plt.xlabel(\"Power Iterations\")\n", + "plt.ylabel(\"Runtime\")\n", + "plt.legend()\n", + "plt.tight_layout()\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "8256be8d", + "metadata": {}, + "source": [ + "## Runtime Comparison" + ] + }, + { + "cell_type": "markdown", + "id": "c0d9aac3", + "metadata": {}, + "source": [ + "So far, we've seen that RDMD tends to be computationally efficient like CDMD, and that the method tends to be more accurate than CDMD in the presence of noise. However, we have yet to observe another major advantage of RDMD over CDMD, which is that when performing data compression, RDMD relies more upon the intrinsic rank of the data, whereas CDMD relies more upon the dimension of the provided snapshots [1]. As a result, RDMD is able to achive high-accuracy results with much smaller compression matrices than CDMD, hence leading to faster runtimes for very high-dimensional data sets.\n", + "\n", + "We demonstrate this by replicating the final runtime experiment performed in Tutorial 4, where we compare the runtime of exact DMD, CDMD, and RDMD as one increases the dimension of the input data snapshots. This time, we do not count the time required to build compression matrices as a part of the training runtime in accordance with Tutorial 4. Notice that our compression DMD methods are more computationally efficient than exact DMD, with RDMD surpassing CDMD in terms of efficiency for larger data sets.\n", + "\n", + "Here, we also demonstrate the usage of the `test_matrix` parameter of the `RDMD` module, which allows users to pass a custom random test matrix to the `RDMD` model. By default, `RDMD` uses a random test matrix $\\Omega \\in \\mathbb{R}^{m \\times l}$ drawn from a normal Gaussian distribution, where $m$ denotes the number of data snapshots and $l$ denotes the target rank + oversampling. However, one may seek to pre-compute their test matrix as demonstrated below, that or use alternative test matrices such as the subsampled randomized Hadamard transform for improved efficiency [1]." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "05a7718a", + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0kAAAHACAYAAAB3WSN5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAACTNElEQVR4nOzdd3RU1d7G8e+k9wQCpJAAoVfpHRQFLyhgQQRBEb0odkEEERUEFcGCAsoV5b6CHZULNlRUBAULKFWKSq+hSEkhkDbn/WM7MxmSYAhJJuX5rDUrp83JHjJAntl7/7bNsiwLERERERERAcDL0w0QEREREREpTRSSREREREREclBIEhERERERyUEhSUREREREJAeFJBERERERkRwUkkRERERERHJQSBIREREREclBIUlERERERCQHH083oLjZ7XYOHjxIaGgoNpvN080REREREREPsSyLlJQUYmNj8fLKv7+o3IekgwcPEh8f7+lmiIiIiIhIKbFv3z7i4uLyPV/uQ1JoaChg/iDCwsI83BoREREREfGU5ORk4uPjnRkhP+U+JDmG2IWFhSkkiYiIiIjIP07DUeEGERERERGRHBSSREREREREclBIEhERERERyaHcz0kqCMuyyMrKIjs729NNEXHj7e2Nj4+PyteLiIiIlKAKH5IyMjJITEwkLS3N000RyVNQUBAxMTH4+fl5uikiIiIiFUKFDkl2u51du3bh7e1NbGwsfn5++sReSg3LssjIyODo0aPs2rWLevXqnXPRMxEREREpGhU6JGVkZGC324mPjycoKMjTzRHJJTAwEF9fX/bs2UNGRgYBAQGebpKIiIhIuaePpUGfzkuppveniIiISMnSb18iIiIiIiI5VOjhdiIiIiIiUoyys2HFCkhMhJgY6NoVvL093ap/pJ6kopCdDcuXw3vvma8qJZ6v3bt3Y7PZWL9+fZHfu1u3bowcObLI7ysiIiIihbBwIdSqBZdeCoMHm6+1apnjpZxC0oUqwz/8C2Gz2fjoo4883QwRERERKY0WLoT+/WH/fvfjBw6Y46X8d2WFpAtRxn/4IiIiIiJFLjsbRowAy8p9znFs5MhSPfpKISkvp07l/zhzxlxTkB/+iBHuP/z87nme7HY7U6ZMISEhgcDAQJo3b86CBQv+/tYWPXr0oGfPnlh/t+P48ePExcUxYcKEv5uezbBhw5zPb9CgATNmzMj1fV5//XWaNGmCv78/MTEx3HvvvQDUqlULgGuvvRabzebcz8vq1atp2bIlAQEBtGnThnXr1rmdX758OTabjSVLltCyZUsCAwO57LLLOHLkCF988QWNGjUiLCyMwYMHuy34e+rUKW6++WZCQkKIiYlh2rRp5/3nKCIiIiLFYMWK3J0IOVkW7NtnriulFJLyEhKS/+O668w1Bfnh79/v/sOvVSvve56nKVOm8OabbzJ79mw2b97MAw88wE033cR3332HzWbjjTfe4JdffmHmzJkA3HnnnVSvXt0Zkux2O3FxcXz44Yds2bKFCRMm8Mgjj/DBBx84v8crr7zCPffcw/Dhw/ntt9/45JNPqFu3LgC//PILAHPnziUxMdG5f7bU1FT69OlD48aNWbNmDRMnTmT06NF5Xjtx4kRefvllfvzxR/bt28eAAQOYPn067777LosXL+arr77ipZdecl4/ZswYvvvuOz7++GO++uorli9fztq1a8/7z1JEREREilhiYtFe5wGqbldYHvrhp6en8/TTT/PNN9/QsWNHAGrXrs3KlSt59dVXueSSS6hevTqvvvoqN998M4cOHeLzzz9n3bp1+PiYH7evry+TJk1y3jMhIYGffvqJDz74gAEDBgDw1FNP8eCDDzJixAjndW3btgWgatWqAERERBAdHZ1vW999913sdjv/93//R0BAAE2aNGH//v3cddddua596qmn6Ny5MwDDhg1j3Lhx7Nixg9q1awPQv39/li1bxtixY0lNTeX//u//ePvtt+nevTsAb7zxBnFxcYX7QxURERGRC2dZYLebKnYFUdDrPEAhKS+pqfmfc5QsLMwPf/fuQjfJYfv27aSlpXH55Ze7Hc/IyKBly5bO/euvv55FixYxdepUXnnlFerVq+d2/axZs3j99dfZu3cvp0+fJiMjgxYtWgBw5MgRDh486AwghbV161YuuugiAgICnMccwe5sF110kXM7KiqKoKAgZ0ByHFu9ejUAO3bsICMjg/bt2zvPV65cmQYNGlxQe0VERESkECwLPv0UHn8c7rwTbrsN4uLMPP28pqbYbOZ8164l39YCUkjKS3DwP1/Ttev5//ALct9/kPp3gFu8eDHVq1d3O+fv7+/cTktLY82aNXh7e7Nt2za36+bPn8/o0aOZNm0aHTt2JDQ0lOeee45Vq1YBEBgYeMHtPF++vr7ObZvN5rbvOGa320u6WSIiIiKSH8uCL74w4ejXX82xmTNh+HCYMcMUMrPZ3H9XttnM1+nTS/V6SZqTVFje3uaHD64ftkMx/vAbN26Mv78/e/fupW7dum6P+Ph453UPPvggXl5efPHFF8ycOZNvv/3Wee6HH36gU6dO3H333bRs2ZK6deuyY8cO5/nQ0FBq1arF0qVL822Hr68v2f9QkaRRo0Zs3LiRM45iF8DPP/9cmJftpk6dOvj6+jpDHcCJEyf4888/L/jeIiIiIvIPLAu++go6doTevU1ACg6GcePg++/N78L9+sGCBXDWh/rExZnj/fp5pu0FpJ6kC+H44Y8Y4V7EIS7OBKRi+OGHhoYyevRoHnjgAex2O126dCEpKYkffviBsLAwhg4dyuLFi3n99df56aefaNWqFWPGjGHo0KFs3LiRSpUqUa9ePd58802WLFlCQkICb731Fr/88gsJCQnO7zNx4kTuvPNOqlWrxhVXXEFKSgo//PAD9913H4AzRHXu3Bl/f38qVaqUq62DBw/m0Ucf5fbbb2fcuHHs3r2b559//oL/DEJCQhg2bBhjxowhMjKSatWq8eijj+LlpcwvIiIiUuweeggcv9MFBsK998KYMfD3vHWnfv3g6qtNIbPERDMNpWvXUt2D5KDfKi9Uv35mrtGyZfDuu+brrl3Fmo6ffPJJxo8fz5QpU2jUqBG9evVi8eLFJCQkcPToUYYNG8bEiRNp1aoVAJMmTSIqKoo777wTgDvuuIN+/foxcOBA2rdvz7Fjx7j77rvdvsfQoUOZPn06//nPf2jSpAl9+vRxG7Y3bdo0vv76a+Lj493mQuUUEhLCp59+ym+//UbLli159NFHeeaZZ4rkz+C5556ja9eu9O3blx49etClSxdat25dJPcWERERkbNkZrq2r7sOAgLMWkc7d8Kzz+YOSA7e3tCtGwwaZL6WgYAEYLOsvCbUlB/JycmEh4eTlJREWFiY27kzZ86wa9cuEhIS3IoLiJQmep+KiIiIx/zwA0yYAM2bwwsvuI4fOwaRkZ5rVyGdKxvkpJ4kERERERFxt2oV9OoFXbrAt9/C//2fewXoMhiQzodCkoiIiIiIGGvWQJ8+0KEDLFkCPj5w++2wcSOEhHi6dSVGhRtERERERATmzDHlu8HMHbr5ZnjsMcixdmVFoZAkIiIiIlJRZWaCY33KPn1MKe9+/WD8eKhXz7Nt8yCFJBERERGRimbrVpg40cwzWrzYHIuJgb17oXJljzatNFBIEhERERGpKP78E554wixd4yhy/eefUL++2VZAAlS4QURERESk/NuxA265BRo1gnfeMQHp2mthwwZXQBIn9SSJiIiIiJRny5bB5ZdDdrbZ79vXDLVr1cqjzSrN1JMkFc7EiRNp0aLFeT1n+fLl2Gw2Tp48WeTtqVWrFtOnTy/y+4qIiEgFlpnp2u7UCapXhyuugNWr4ZNPFJD+gXqSikB2NqxYAYmJZr5b166maqKIiIiISIk6cACmTIHly2H9erPOkb8/rFun+UbnQT1JF2jhQqhVCy69FAYPNl9r1TLHKzrLssjKyvJ0M0RERETKv0OHYORIqFMHZs2CzZvhyy9d5xWQzotC0gVYuBD694f9+92PHzhgjhdXULLb7Tz77LPUrVsXf39/atSoweTJk53nf/vtNy677DICAwOJjIxk+PDhpKamOs/fcsstXHPNNTz99NNERUURERHBE088QVZWFmPGjKFy5crExcUxd+5c53N2796NzWZj/vz5dOrUiYCAAJo2bcp3333nvMYxJO2LL76gdevW+Pv7s3LlSux2O1OmTCEhIYHAwECaN2/OggULnM87ceIEN954I1WrViUwMJB69eo5v3dGRgb33nsvMTExBAQEULNmTaZMmeJ87smTJ7ntttuoWrUqYWFhXHbZZWzYsMHtz2vq1KlERUURGhrKsGHDOHPmzD/+GX/++efUr1+fwMBALr30Unbv3u12ft68eURERPDZZ5/RoEEDgoKC6N+/P2lpabzxxhvUqlWLSpUqcf/995PtGP8LHDlyhL59+xIYGEhCQgLvvPPOP7ZFREREJF9HjsDo0WbB1xkzID0dunSBb7816x5JoWi4XR5Oncr/nLc3BASYIXYjRrgqJ+ZkWWCzmfNXX+0aepfffYODz69948aNY86cObz44ot06dKFxMREfv/997+/xyl69uxJx44d+eWXXzhy5Ai33XYb9957L/PmzXPe49tvvyUuLo7vv/+eH374gWHDhvHjjz9y8cUXs2rVKt5//33uuOMOLr/8cuLi4pzPGzNmDNOnT6dx48a88MIL9O3bl127dhEZGem85uGHH+b555+ndu3aVKpUiSlTpvD2228ze/Zs6tWrx/fff89NN91E1apVueSSSxg/fjxbtmzhiy++oEqVKmzfvp3Tp08DMHPmTD755BM++OADatSowb59+9i3b5/ze11//fUEBgbyxRdfEB4ezquvvkr37t35888/qVy5Mh988AETJ05k1qxZdOnShbfeeouZM2dS+xwrR+/bt49+/fpxzz33MHz4cH799VcefPDBXNelpaUxc+ZM5s+fT0pKCv369ePaa68lIiKCzz//nJ07d3LdddfRuXNnBg4cCJiAevDgQZYtW4avry/3338/R44cOb83gIiIiAjA7t3QpAmkpZn9Dh3gySehe3fzy6gUnuVB3333ndWnTx8rJibGAqxFixble+0dd9xhAdaLL754Xt8jKSnJAqykpKRc506fPm1t2bLFOn36tNtxE3Pyflx5pblm2bJzX+d4LFvmum+VKnlfcz6Sk5Mtf39/a86cOXmef+2116xKlSpZqampzmOLFy+2vLy8rEOHDlmWZVlDhw61atasaWVnZzuvadCggdW1a1fnflZWlhUcHGy99957lmVZ1q5duyzAmjp1qvOazMxMKy4uznrmmWf+/jNZZgHWRx995LzmzJkzVlBQkPXjjz+6tXPYsGHWoEGDLMuyrL59+1q33nprnq/nvvvusy677DLLbrfnOrdixQorLCzMOnPmjNvxOnXqWK+++qplWZbVsWNH6+6773Y73759e6t58+Z5fj/Lsqxx48ZZjRs3djs2duxYC7BOnDhhWZZlzZ071wKs7du3O6+54447rKCgICslJcV5rGfPntYdd9xhWZZl/fHHHxZgrV692nl+69at//i+zu99KiIiIhVQRob7frdultW2rWV98YVl5fH7krg7VzbIyaPD7U6dOkXz5s2ZNWvWOa9btGgRP//8M7GxsSXUsn+WmFi01xXU1q1bSU9Pp3v37vmeb968OcE5uqc6d+6M3W7njz/+cB5r0qQJXl6uH39UVBTNmjVz7nt7exMZGZmrl6Njx47ObR8fH9q0acPWrVvdrmnTpo1ze/v27aSlpXH55ZcTEhLifLz55pvs2LEDgLvuuov58+fTokULHnroIX788Ufn82+55RbWr19PgwYNuP/++/nqq6+c5zZs2EBqaiqRkZFu9961a5fz3lu3bqV9+/b5vob8/gwL8pygoCDq1Knj3I+KiqJWrVqEhIS4HXP8GW7duhUfHx9at27tPN+wYUMiIiLO2R4RERERTp6Exx+HhAT46y/X8YULYdUq6NVLvUdFyKPD7a644gquuOKKc15z4MAB7rvvPpYsWULv3r1LpF05pu/k4hg6FxNTsHvlvO6saS2FEhgYeOE3AXx9fd32bTZbnsfsdvt53ztnQHPMhVq8eDHVq1d3u87f3x8w74M9e/bw+eef8/XXX9O9e3fuuecenn/+eVq1asWuXbv44osv+OabbxgwYAA9evRgwYIFpKamEhMTw/Lly3O1oSSCR3H+GYqIiIgAkJwMM2fCtGkmKAHMm2fmIQFUquSplpVrpbpwg91uZ8iQIYwZM4YmTZoU6Dnp6ekkJye7Pc5XcHD+j4AAc03XrhAXl39gt9kgPt5c90/3PR/16tUjMDCQpUuX5nm+UaNGbNiwgVM5JkD98MMPeHl50aBBg/P7Znn4+eefndtZWVmsWbOGRo0a5Xt948aN8ff3Z+/evdStW9ftER8f77yuatWqDB06lLfffpvp06fz2muvOc+FhYUxcOBA5syZw/vvv8///vc/jh8/TqtWrTh06BA+Pj657l2lShXnn8eqVavyfQ15adSoEatXrz6v5xREw4YNnX9mDn/88UexrL0kIiIiZVxqKkydanqOxo83AalxY/jwQxg1ytOtK/dKdeGGZ555Bh8fH+6///4CP2fKlClMmjSpGFtleHubAiL9+5tAlLOAgyM4TZ9e9OslBQQEMHbsWB566CH8/Pzo3LkzR48eZfPmzQwbNowbb7yRxx9/nKFDhzJx4kSOHj3Kfffdx5AhQ4iKirrg7z9r1izq1atHo0aNePHFFzlx4gT//ve/870+NDSU0aNH88ADD2C32+nSpQtJSUn88MMPhIWFMXToUCZMmEDr1q1p0qQJ6enpfPbZZ87g9cILLxATE0PLli3x8vLiww8/JDo6moiICHr06EHHjh255pprePbZZ6lfvz4HDx5k8eLFXHvttbRp04YRI0Zwyy230KZNGzp37sw777zD5s2bz1m44c4772TatGmMGTOG2267jTVr1rgVvSisBg0a0KtXL+644w5eeeUVfHx8GDlyZJH1DoqIiEg5cfo0NGgABw+a/QYNYOJEuP56LcZZQkptT9KaNWuYMWMG8+bNw3Ye4yvHjRtHUlKS85GzElpR69cPFiwwCxjnFBdnjvfrVzzfd/z48Tz44INMmDCBRo0aMXDgQOe8l6CgIJYsWcLx48dp27Yt/fv3p3v37rz88stF8r2nTp3K1KlTad68OStXruSTTz5x9trk58knn2T8+PFMmTKFRo0a0atXLxYvXkxCQgIAfn5+jBs3josuuoiLL74Yb29v5s+fD5iQ9eyzz9KmTRvatm3L7t27+fzzz/Hy8sJms/H5559z8cUXc+utt1K/fn1uuOEG9uzZ4wyEAwcOZPz48Tz00EO0bt2aPXv2cNddd52zvTVq1OB///sfH330Ec2bN2f27Nk8/fTTRfCnB3PnziU2NpZLLrmEfv36MXz4cKpVq1Yk9xYREZEyLDPTtR0YCH37Qt268NZbZs2jG25QQCpBNsvKq4h1ybPZbCxatIhrrrkGgOnTpzNq1Ci34gLZ2dl4eXkRHx+fa92a/CQnJxMeHk5SUhJhYWFu586cOcOuXbtISEggwDGOrhCys2HFClOkISbGDLErb+/h3bt3k5CQwLp162jRooWnm1OhFNX7VEREREqhM2fgv/81Q+s++wwcv2clJ0NQEPiU6oFfZc65skFOpfZPfciQIfTo0cPtWM+ePRkyZAi33nqrh1qVN29v6NbN060QERERkTIjIwNefx0mT4b9+82xl182gQngHL/AS/HzaEhKTU1l+/btzv1du3axfv16KleuTI0aNdwWKAVTTSw6OrpIChCIiIiIiJS4zEx44w2z6OveveZY9erw2GNwjnneUrI8GpJ+/fVXLr30Uuf+qL8rdQwdOrRIJspL0alVqxalZGSmiIiISNlkWWb4kWNNyJgYeOQRuO02VwllKRU8GpK6det2Xr94F3QekoiIiIhIqZCdbUofe3mZr9dfD9u3w7hxcMcdpkiDlDqltrqdiIiIiEiZZbfD/PnQtCn873+u43feCTt3wsiRCkilmEKSiIiIiEhRsdvNWjAXXQSDBsHvv8PMma7zAQEQHOy59kmBKCSJiIiIiFwoy4KPPoKWLc2Qus2bISLCFGhYvNjTrZPzVGpLgIuIiIiIlBnDhsHcuWY7LAweeMAMqYuI8GSrpJDUkyQiIiIicr4sC7KyXPsDBkBICDz6KOzaBRMnKiCVYQpJ8o9uueUWrrnmmmL/Pt26dWPkyJHF+j1sNhsfffTReT2nuNo1b948IvSPp4iISNliWfDNN9C5M0yZ4jresyfs2QNPPQWVK3uufVIkNNyuCGTbs1mxdwWJKYnEhMbQtUZXvL28Pd2sMmfhwoX4+vp6uhkiIiIieVu+HCZMgBUrzP7u3fDww+Dra8p7KxyVGwpJF2jh1oWM+HIE+5P3O4/FhcUxo9cM+jXqVyJtyMjIwM/Pr0S+V3GqrH9YREREpDRaudKEo2XLzL6/vynlPXasCUhS7mi43QVYuHUh/T/o7xaQAA4kH6D/B/1ZuHVhsXzfbt26ce+99zJy5EiqVKlCz549AXjhhRdo1qwZwcHBxMfHc/fdd5Oamup8nmN415IlS2jUqBEhISH06tWLxMRE5zXZ2dmMGjWKiIgIIiMjeeihh3It+Juens79999PtWrVCAgIoEuXLvzyyy/O88uXL8dms7FkyRJatmxJYGAgl112GUeOHOGLL76gUaNGhIWFMXjwYNLS0txel2NYm+MeZz9uueUW5/Uff/wxrVq1IiAggNq1azNp0iSycowN3rZtGxdffDEBAQE0btyYr7/++h//bE+dOsXNN99MSEgIMTExTJs2Ldc1tWrV4qmnnnJeV7NmTT755BOOHj3K1VdfTUhICBdddBG//vqr2/PmzZtHjRo1CAoK4tprr+XYsWP/2B4RERHxsGefha5dTUDy9YV77oEdO2D6dIiJ8XTrpJgoJOXhVMapfB9nss4AZojdiC9HYGHler7j2IgvR5Btz/7H+xbGG2+8gZ+fHz/88AOzZ88GwMvLi5kzZ7J582beeOMNvv32Wx566CG356WlpfH888/z1ltv8f3337N3715Gjx7tPD9t2jTmzZvH66+/zsqVKzl+/DiLFi1yu8dDDz3E//73P9544w3Wrl1L3bp16dmzJ8ePH3e7buLEibz88sv8+OOP7Nu3jwEDBjB9+nTeffddFi9ezFdffcVLL72U5+vr1KkTiYmJzse3335LQEAAF198MQArVqzg5ptvZsSIEWzZsoVXX32VefPmMXnyZADsdjv9+vXDz8+PVatWMXv2bMaOHfuPf65jxozhu+++4+OPP+arr75i+fLlrF27Ntd1L774Ip07d2bdunX07t2bIUOGcPPNN3PTTTexdu1a6tSpw8033+wMmKtWrWLYsGHce++9rF+/nksvvZSnnnrqH9sjIiIiHpCZ6dq+9lqzttHw4bB9O7z8MlSv7rm2ScmwyrmkpCQLsJKSknKdO336tLVlyxbr9OnTbseZSL6PK9+50rIsy1q2a9k5r3M8lu1a5rxvlWer5HnN+brkkkusli1b/uN1H374oRUZGencnzt3rgVY27dvdx6bNWuWFRUV5dyPiYmxnn32Wed+ZmamFRcXZ1199dWWZVlWamqq5evra73zzjvOazIyMqzY2Fjn85YtW2YB1jfffOO8ZsqUKRZg7dixw3nsjjvusHr27On2ukaMGJHrdfz1119W7dq1rbvvvtt5rHv37tbTTz/tdt1bb71lxcTEWJZlWUuWLLF8fHysAwcOOM9/8cUXFmAtWrQozz+vlJQUy8/Pz/rggw+cx44dO2YFBga6tatmzZrWTTfd5NxPTEy0AGv8+PHOYz/99JMFWImJiZZlWdagQYOsK6+80u37DRw40AoPD8+zLTnl9z4VERGRIrZ2rWX16WNZgwe7Hz92zDPtkSJ3rmyQk3qSCikxJfGfLzqP685X69atcx375ptv6N69O9WrVyc0NJQhQ4Zw7NgxtyFtQUFB1KlTx7kfExPDkSNHAEhKSiIxMZH27ds7z/v4+NCmTRvn/o4dO8jMzKRz587OY76+vrRr146tW7e6teeiiy5ybkdFRREUFETt2rXdjjm+d34yMzO57rrrqFmzJjNmzHAe37BhA0888QQhISHOx+23305iYiJpaWls3bqV+Ph4YmNjnc/p2LHjOb/Xjh07yMjIcHv9lStXpkGDBrmuPfu1ATRr1izXMcfr27p1q9t9C9IeERERKSEbN0K/ftCqFXz2GXz4IeSYjqCCDBWPCjfkIXVcar7nHFXrYkILNgY153W7R+y+oHblFBwc7La/e/du+vTpw1133cXkyZOpXLkyK1euZNiwYWRkZBAUFASQq3qczWbLNeeoqOT8XjabLc/vbbfbz3mPu+66i3379rF69Wp8fFxv19TUVCZNmkS/frmLYwQEBFxgy//Z2a8tv2P/9PpERETEgzZvhkmTTCgCU6Fu8GBTpEHzjSo09STlIdgvON9HgI/5Bbxrja7EhcVhw5bnPWzYiA+Lp2uNrv9436KwZs0a7HY706ZNo0OHDtSvX5+DBw+e1z3Cw8OJiYlh1apVzmNZWVmsWbPGuV+nTh3nXCiHzMxMfvnlFxo3bnzhLySHF154gQ8++ICPP/6YyMhIt3OtWrXijz/+oG7durkeXl5eNGrUiH379rkVpfj555/P+f3q1KmDr6+v2+s/ceIEf/755wW/lkaNGrndtyDtERERkWK0aBE0a2YCks0GAwfCpk3w9ttQv76nWycepp6kQvL28mZGrxn0/6A/NmxuBRwcwWl6r+kltl5S3bp1yczM5KWXXqJv375uBR3Ox4gRI5g6dSr16tWjYcOGvPDCC5w8edJ5Pjg4mLvuuosxY8ZQuXJlatSowbPPPktaWhrDhg0rstfzzTff8NBDDzFr1iyqVKnCoUOHAAgMDCQ8PJwJEybQp08fatSoQf/+/fHy8mLDhg1s2rSJp556ih49elC/fn2GDh3Kc889R3JyMo8++ug5v2dISAjDhg1jzJgxREZGUq1aNR599FG8vC78s4T777+fzp078/zzz3P11VezZMkSvvzyywu+r4iIiJyHzExXye4ePSAyEi65BB5/3AQmkb+pJ+kC9GvUjwUDFlA9zL3CSVxYHAsGLCixdZIAmjdvzgsvvMAzzzxD06ZNeeedd5iScxXoAnrwwQcZMmQIQ4cOpWPHjoSGhnLttde6XTN16lSuu+46hgwZQqtWrdi+fTtLliyhUqVKRfVyWLlyJdnZ2dx5553ExMQ4HyNGjACgZ8+efPbZZ3z11Ve0bduWDh068OKLL1KzZk3AVPpbtGgRp0+fpl27dtx2223Oynfn8txzz9G1a1f69u1Ljx496NKlS57zv85Xhw4dmDNnDjNmzKB58+Z89dVXPPbYYxd8XxERESmAnTvh3/82pbwd0wxCQ+HPP2HBAgUkycVmFdeElFIiOTmZ8PBwkpKSCAsLczt35swZdu3aRUJCwgXNY8m2Z7Ni7woSUxKJCY2ha42uJdaDJOVfUb1PRUREKpw9e2DyZJg7FxxrKf7wA3Tq5Nl2icecKxvkpOF2RcDby5tutbp5uhkiIiIiArB/Pzz9NPz3v641j3r2NEUazqo2K5IXhSQRERERKT82bIB27SAjw+x3727CUY7lS0T+iUKSiIiIiJRtOQsyNGsGjRpBeDg88YQpzCBynhSSRERERKRsOnoUnnvOlPHetAmCg8HLC5Ytg4gIU9pbpBBU3U5EREREypZjx+CRRyAhwYSk3bvh/fdd5ytVUkCSC6KeJKCcF/iTMk7vTxERkb+dOAEvvgjTp0NKijnWurUZVnfFFR5tmpQvFTok+f49djUtLY3AwEAPt0Ykb2lpaYDr/SoiIlIhnTgBdeqYrwDNm5tw1Leveo2kyFXokOTt7U1ERARHjhwBICgoCJv+kkkpYVkWaWlpHDlyhIiICLy9tfaWiIhUMDkLMlSqBJdfDlu2mGp111xj5h+JFIMKHZIAoqOjAZxBSaS0iYiIcL5PRUREKoRTp2DWLDO07ocfoHZtc/y11yA0VOFIil2FD0k2m42YmBiqVatGpmOxMZFSwtfXVz1IIiJScaSlwezZMHWqqVwH8Oqr8MwzZjs83HNtkwqlwockB29vb/0yKiIiIuIJZ86YXqIpU+DQIXOsdm14/HEYPNizbZMKSSFJRERERDzHbodWrWDrVrNfqxaMHw9DhrjmI4mUMA3oFBEREZGSlZkJjiUuvLzg+ushPt4MrfvjD/j3vxWQxKMUkkRERESkZGRmwuuvQ/36sHSp6/hDD8G2bTB8OPj5ea59In9TSBIRERGR4pWVBW++CY0awbBhsHs3vPSS63xwMPj7e6x5ImdTSBIRERGR4pGdDe++C02awNChsGMHVK0K06bBe+95unUi+VLhBhEREREpHtddBx9/bLYjI82wunvuMT1HIqWYepJEREREpGhYlhla5zBgAFSqBJMnw65dJiQpIEkZ4NGQ9P3339O3b19iY2Ox2Wx89NFHznOZmZmMHTuWZs2aERwcTGxsLDfffDMHDx70XINFREREJDfLgk8+MaW8Z892HR840ISjRx6B0FDPtU/kPHk0JJ06dYrmzZsza9asXOfS0tJYu3Yt48ePZ+3atSxcuJA//viDq666ygMtFREREZFcLAs+/xzatYOrr4b16+Hll13lvb29ITzco00UKQyPzkm64ooruOKKK/I8Fx4eztdff+127OWXX6Zdu3bs3buXGjVqlEQTRURERORslgVffw0TJsCqVeZYcDDcfz88+CDYbJ5tn8gFKlOFG5KSkrDZbEREROR7TXp6Ounp6c795OTkEmiZiIiISAUybhw884zZDgyEe++FMWNM5TqRcqDMFG44c+YMY8eOZdCgQYSFheV73ZQpUwgPD3c+4uPjS7CVIiIiIuVUZqZr+/rrISAARo6EnTvh2WcVkKRcKRMhKTMzkwEDBmBZFq+88so5rx03bhxJSUnOx759+0qolSIiIiLl0A8/QI8eMGqU61jr1nDwILz4IkRHe65tIsWk1IckR0Das2cPX3/99Tl7kQD8/f0JCwtze4iIiIjIeVq1Cnr1gi5dYOlSmDcPck5jqFTJY00TKW6lOiQ5AtK2bdv45ptviIyM9HSTRERERMq3NWugTx/o0AGWLAEfH7j9dti0CfThs1QQHi3ckJqayvbt2537u3btYv369VSuXJmYmBj69+/P2rVr+eyzz8jOzubQoUMAVK5cGT8/P081W0RERKR8ev11GDbMbHt7w803w2OPQe3anm2XSAmzWZajkH3JW758OZdeemmu40OHDmXixIkkJCTk+bxly5bRrVu3An2P5ORkwsPDSUpK0tA7ERERkbNlZoKvr9k+cgTq1oVrroHx46FePY82TaSoFTQbeLQnqVu3bpwro3kwv4mIiIiUb1u2wKRJcOIEfPWVOVatGuzZo/lGUuGVqXWSREREROQC/fmnCUfvvWcWhQXYuhUaNTLbCkgipbtwg4iIiIgUkR074JZbTBh6910TkK69FjZscAUkEQHUkyQiIiJS/n3/PVx2GWRnm/2+fWHiRGjVyqPNEimtFJJEREREyqOcBRk6doSaNaFBAzPUrm1bz7ZNpJRTSBIREREpTw4cgClTzAKwGzeaoOTrC7/+qvlGIgWkOUkiIiIi5cGhQzByJNSpA7Nmwe+/w+LFrvMKSCIFppAkIiIiUpYdOQKjR5sFX2fMgPR06NIFvv3WrHckIudNw+1EREREyqp9+6BhQ0hLM/sdOsCTT0L37mCzebZtImWYQpKIiIhIWZKzIEN8PHTuDCdPwhNPQM+eCkciRUAhSURERKQsOHkSXnwR5syB9euhWjVz/IMPIDxc4UikCGlOkoiIiEhplpwMTz0FCQmmtygxEebOdZ2PiFBAEili6kkSERERKY1SU+Hll+G55+D4cXOscWOzzlG/fp5tm0g5p5AkIiIiUtqkp0OjRrB/v9lv0AAmToTrrwdvb482TaQi0HA7ERERkdIgM9O17e9vynfXrQtvvQWbN8MNNyggiZQQhSQRERERTzpzxgyrq1UL1qxxHX/6adi6FW66SeFIpIQpJImIiIh4Qno6vPIK1KsH990HBw/CrFmu86Gh4KOZESKeoL95IiIiIiUpMxPmzTMV6/buNcfi4uDRR+Hf//Zo00TEUEgSERERKUmXXQYrV5rtmBh45BG47TYICPBsu0TESSFJREREpDhlZ5uvjnlFN9wAf/4J48bBHXdAYKDn2iYiedKcJBEREZHiYLfD/PnQtCm8/77r+O23w86dMHKkApJIKaWQJCIiIlKU7HZYsAAuuggGDYLffzfV6xz8/CA42HPtE5F/pJAkIiIiUhQsCz76CFq2NIu+bt4MERHw5JPw5Zeebp2InAfNSRIREREpCsOHw3//a7bDwuCBB8yQuogIT7ZKRApBPUkiIiIihWFZppy3ww03QEiIKeW9axdMnKiAJFJGKSSJiIiInA/Lgm++gc6dzVA6h8suM+sePfUUVK7sufaJyAVTSBIREREpqOXL4ZJL4PLL4aef4LXXICPDnLPZoFIljzZPRIqGQpKIiIjIP1m50vQUXXoprFgB/v4wYgSsW2eq1YlIuaLCDSIiIiLnMm0ajB5ttn19TYGGceOgenXPtktEio16kkRERETOlrMgQ79+EBQEd9wB27ebNY8UkETKNfUkiYiIiDisWwePPw6BgfD+++ZYQgLs36/5RiIViEKSiIiIyMaNpmT3okVm38cHDhxw9RgpIIlUKBpuJyIiIhXX5s0wYAA0b24Cks0GN95ojmtInUiFpZ4kERERqZg++QSuucase2SzmbD0+OPQqJGnWyYiHqaQJCIiIhVHZqapUAfQvTtUqwZduphw1KyZZ9smIqWGQpKIiIiUfzt3wlNPwYYN8Msv4OUFwcHw++8QEeHp1olIKaOQJCIiIuXXnj0weTLMnQtZWebYypVw8cVmWwFJRPLg0cIN33//PX379iU2NhabzcZHH33kdt6yLCZMmEBMTAyBgYH06NGDbdu2eaaxIiIiUnbs3w933w316sGcOSYg9ewJP//sCkgiIvnwaEg6deoUzZs3Z9asWXmef/bZZ5k5cyazZ89m1apVBAcH07NnT86cOVPCLRUREZEyY9MmqFMHXnnFzEHq3t30Hn35JbRv7+nWiUgZYLMsy/J0IwBsNhuLFi3immuuAUwvUmxsLA8++CCjR48GICkpiaioKObNm8cNN9xQoPsmJycTHh5OUlISYWFhxdV8ERER8aScBRksC9q2NXOOnngCLrnEs20TkVKjoNmg1K6TtGvXLg4dOkSPHj2cx8LDw2nfvj0//fRTvs9LT08nOTnZ7SEiIiLl1NGj8NBDpufI8X++zQbffAPLlysgiUihlNqQdOjQIQCioqLcjkdFRTnP5WXKlCmEh4c7H/Hx8cXaThEREfGAY8fgkUcgIQGeew727YP333edj4gwYUlEpBBKbUgqrHHjxpGUlOR87Nu3z9NNEhERkaJy4gRMmGDC0ZQpcOoUtG4NixfDbbd5unUiUk6U2hLg0dHRABw+fJiYmBjn8cOHD9OiRYt8n+fv74+/v39xN09ERERKWlIS1K0Lx4+b/ebNzZyjvn3VayQiRarU9iQlJCQQHR3N0qVLnceSk5NZtWoVHTt29GDLREREpMRkZrq2w8PhiiugaVP43/9g7Vq46ioFJBEpch7tSUpNTWX79u3O/V27drF+/XoqV65MjRo1GDlyJE899RT16tUjISGB8ePHExsb66yAJyIiIuXUqVMwaxa88AKsWGHWOwL4z38gJAS8Su3nvCJSDng0JP36669ceumlzv1Ro0YBMHToUObNm8dDDz3EqVOnGD58OCdPnqRLly58+eWXBAQEeKrJIiIiUpzS0mD2bJg61VSuA3j1VXj+ebOt5TxEpASUmnWSiovWSRIRESkDzpyB114zxRgcVWzr1IHHH4dBg8Cn1E6jFpEypKDZQP/iiIiIiGfZ7Wbx102bzH6tWjB+PAwZ4logVkSkBCkkiYiISMnLzDS9QzabmV80cKCpXvfYY3DLLeDn5+kWikgFplmPIiIiUnIyM+H116F+ffjyS9fxBx+Ebdtg+HAFJBHxOIUkERERKX5ZWfDmm9CoEQwbBrt3m+p1DoGBoHUORaSUUEgSERGR4pOdDe++C02awNChsGMHVK0K06bBBx94unUiInnSnCQREREpPgMGwMKFZjsyEh56CO65B4KDPdsuEZFzUE+SiIiIFB273Qytc7jhBqhUCSZPhl27TEhSQBKRUk4hSURERC6cZcEnn0Dr1vDyy67j111nwtEjj0BoqOfaJyJyHhSSREREpPAsCz7/3KxzdPXVsH69Kchgt5vzXl4QHu7RJoqInC+FJBERETl/lgVffQUdO0Lv3rBmjRlGN24c/PyzCUciImWUCjeIiIjI+XvsMXj6abMdGAj33gtjxpjKdSIiZZw+5hEREZGCychwbQ8YYMLRAw/Azp3w7LMKSCJSbqgnSURERM7thx/g8cehbl2YPdsca94cDh6EiAiPNk1EpDioJ0lERETytmoV9OoFXbrA0qXw9ttw8qTrvAKSiJRTCkkiIiLibs0a6NMHOnSAJUvAxwduvx02b1YwEpEKQcPtRERExOXNN2HoULPt5QU33wzjx0Pt2p5tl4hICVJIEhERqegyMsDPz2z37m3WNerbFyZMgHr1PNs2EREPUEgSERGpqLZuhUmT4MgRM+fIZoPISNi9W8PqRKRCU0gSERGpaP78E554At591ywKC7BpEzRrZrYVkESkglPhBhERkYpixw645RZo1AjeeccEpGuvhQ0bXAFJRETUkyQiIlIh/PADXHIJZGeb/b59YeJEaNXKo80SESmNFJJERETKq5wFGdq3NxXq6tY185DatvVs20RESjGFJBERkfLmwAGYMgW++gp++w38/c1aR6tXa76RiEgBaE6SiIhIeXHoEIwcCXXqwKxZsG0bfPaZ67wCkohIgRQqJJ0+fZq0tDTn/p49e5g+fTpfffVVkTVMRERECujIERg92gynmzED0tOhSxf49lu47jpPt05EpMwp1HC7q6++mn79+nHnnXdy8uRJ2rdvj6+vL3/99RcvvPACd911V1G3U0RERPJy4AA0aACnTpn9jh1Nee/u3c26RyIict4K1ZO0du1aunbtCsCCBQuIiopiz549vPnmm8ycObNIGygiIiJnychwbVevDhdfbAoxfPGFqWLXo4cCkojIBShUT1JaWhqhoaEAfPXVV/Tr1w8vLy86dOjAnj17irSBIiIi8reTJ2H6dJg9G9atg5gYc/y99yAsTMFIRKSIFKonqW7dunz00Ufs27ePJUuW8K9//QuAI0eOEBYWVqQNFBERqfCSk+GppyAhwZTvPnwYXn/ddT48XAFJRKQIFSokTZgwgdGjR1OrVi3at29Px44dAdOr1LJlyyJtoIiISIWVmgpTp5pwNH686Ulq3Bg++ADGjfN060REyi2bZVlWYZ546NAhEhMTad68OV5eJmutXr2asLAwGjZsWKSNvBDJycmEh4eTlJSkXi4RESk7MjKgXj3Yu9fsN2gAEyfC9deDt7dHmyYiUlYVNBsUejHZ6OhooqOj3Y61a9eusLcTERGRjAzw8zPbfn6mfPenn8Ljj8OgQQpHIiIlpMA9Sf369SvwTRcuXFjoBhU19SSJiEipd+YM/Pe/8PTTsHAhdOhgjqemQkAA+BT6M00REcmhoNmgwHOSwsPDnY+wsDCWLl3Kr7/+6jy/Zs0ali5dSnh4+IW1XEREpKJIT4dXXjHD6u67DxIT4T//cZ0PCVFAEhHxgAL/yzt37lzn9tixYxkwYACzZ8/G+++u/+zsbO6++2711oiIiPyTzEyYN89UrHPMOYqLg0cfhX//26NNExGRQla3e/311xk9erQzIAF4e3szatQoXs9ZkvQCZWdnM378eBISEggMDKROnTo8+eSTFLLWhIiISOnwr3/B8OEmIMXEwEsvwbZtcOedrjlJIiLiMYXqw8/KyuL333+nQYMGbsd///137HZ7kTQM4JlnnuGVV17hjTfeoEmTJvz666/ceuuthIeHc//99xfZ9xERESlW2dnmq+PDxUGDYMsWU8b7jjsgMNBzbRMRkVwKFZJuvfVWhg0bxo4dO5wV7VatWsXUqVO59dZbi6xxP/74I1dffTW9e/cGoFatWrz33nusXr26yL6HiIhIscnOhg8/NKW7x42DoUPN8VtvhRtvhOBgjzZPRETyVqiQ9PzzzxMdHc20adNITEwEICYmhjFjxvDggw8WWeM6derEa6+9xp9//kn9+vXZsGEDK1eu5IUXXsj3Oenp6aSnpzv3k5OTi6w9IiIiBWK3myp1EyfC5s3m2KxZrpDk62seIiJSKhV6MVkHRwgpjoINdrudRx55hGeffRZvb2+ys7OZPHky486xyvjEiROZNGlSruMqAS4iIsXOsuDjj826Rhs3mmMREfDgg3D//aD/h0REPKqgJcAvOCQVp/nz5zNmzBiee+45mjRpwvr16xk5ciQvvPACQx2fxp0lr56k+Ph4hSQRESl+d90Fs2eb7bAweOABGDnSBCUREfG4Yg1Jhw8fZvTo0SxdupQjR47kqjaX7ZigeoHi4+N5+OGHueeee5zHnnrqKd5++21+//33At1Di8mKiEixsSxTzttRke6776BPHxgxAkaNgsqVPds+ERFxU9BsUKg5Sbfccgt79+5l/PjxxMTEYLPZCt3Qc0lLS8PLy71Kube3d5FW0BMRETlvlgVLl8KECXDJJTBlijl+ySWwb596jkREyrhChaSVK1eyYsUKWrRoUcTNcde3b18mT55MjRo1aNKkCevWreOFF17g31poT0REPGX5chOOVqww+9u2mTlIAQFmXwFJRKTMK1RIio+PL5EFXV966SXGjx/P3XffzZEjR4iNjeWOO+5gwoQJxf69RURE3KxcacLRsmVm39/fLP46dqwrIImISLlQqDlJX331FdOmTePVV1+lVq1axdCsoqM5SSIicsGmTzdFGMCU7h4+3Kx7VL26R5slIiLnp1gLN1SqVIm0tDSysrIICgrC96y1Ho4fP37+LS4mCkkiIlIoGRmuggx790LjxnDTTfDII1CjhmfbJiIihVKshRumT59e2HaJiIiUbuvWmTlGPj5mQVgwoWj/fs03EhGpIAoVkvJbo0hERKTM2rgRJk6ERYvMvre36UFy9BopIImIVBiFCklg1kL66KOP2Lp1KwBNmjThqquuwtvbu8gaJyIiUuw2b4ZJk+DDD82+zQaDB5siDRpWJyJSIRUqJG3fvp0rr7ySAwcO0KBBAwCmTJlCfHw8ixcvpk6dOkXaSBERkWKxeDH07WvWPbLZYMAAM9SuUSNPt0xERDyoUIUbrrzySizL4p133qHy36uJHzt2jJtuugkvLy8WL15c5A0tLBVuEBERNzkLMpw+DXXrQseOJhw1a+bZtomISLEq1up2wcHB/PzzzzQ76z+TDRs20LlzZ1JTU8+/xcVEIUlERADYuROeegrWroU1a8ycI4CkJAgP92zbRESkRBQ0G3gV5ub+/v6kpKTkOp6amoqf49M5ERGR0mDPHrOuUYMGMHcubNgA33/vOq+AJCIiZylUSOrTpw/Dhw9n1apVWJaFZVn8/PPP3HnnnVx11VVF3UYREZHzt38/3H031KsHc+ZAVhb07Ak//wyXXurp1omISClWqMINM2fOZOjQoXTs2NG5kGxWVhZXXXUVM2bMKNIGioiInLetW6FFCzP/CKB7d1PBrnNnjzZLRETKhkKFpIiICD7++GO2b9/uLAHeqFEj6tatW6SNExERKbCcBRkaNoRWrcDfH554Ai6+2LNtExGRMqXQ6yQB1K1bV8FIREQ86+hReO45ePdd2LTJLPpqs8GXX0JYmNkWERE5D4Wak3TdddfxzDPP5Dr+7LPPcv31119wo0RERP7RsWPwyCOQkGBC0oED8N57rvPh4QpIIiJSKIUKSd9//z1XXnllruNXXHEF3+esGCQiIlLUTp6ECRNMOJoyBU6dgtat4bPP4M47Pd06EREpBwo13C6/Ut++vr4kJydfcKNERETylJJiFn89dszsN29u5hz17ateIxERKTKF6klq1qwZ77//fq7j8+fPp3HjxhfcKBERESdHhTqA0FATiJo2hf/9zywMe9VVCkgiIlKkCtWTNH78ePr168eOHTu47LLLAFi6dCnvvfceH374YZE2UEREKqhTp2DWLJg2DZYvh0aNzPGZMyE4GLwK9TmfiIjIPyrU/zB9+/blo48+Yvv27dx99908+OCD7N+/n2+++YZrrrmmiJsoIiIVSlqaCUYJCTB2LBw5Aq++6jofGqqAJCIixcpmWZbl6UYUp+TkZMLDw0lKSiIsLMzTzRERkfycOWPC0JQpcPiwOVa7Njz+OAweDD4XtGqFiIhIgbNBof/HOXnyJAsWLGDnzp2MHj2aypUrs3btWqKioqhevXphbysiIhWRZUH79rBxo9mvVQvGj4chQ8DX16NNExGRiqdQIWnjxo306NGD8PBwdu/ezW233UblypVZuHAhe/fu5c033yzqdoqISHmTkWECkM1mHoMGwYkT8NhjcMstkEcVVRERkZJQqEHdo0aN4pZbbmHbtm0EBAQ4j1955ZVaJ0lERM4tMxNefx0aNDBrGzmMHAnbtsHw4QpIIiLiUYUKSb/88gt33HFHruPVq1fn0KFDF9woEREph7Ky4M03TZW6YcNg925Tvc4hIAD8/T3WPBEREYdChSR/f/88F439888/qVq16gU3SkREypHsbHj3XWjSBIYOhR07oGpVU8Fu4UJPt05ERCSXQoWkq666iieeeILMzEwAbDYbe/fuZezYsVx33XVF2kARESnjBg2CG2+EP/+EyEh45hnYtQtGjYKgIE+3TkREJJdChaRp06aRmppKtWrVOH36NJdccgl16tQhJCSEyZMnF3UbRUSkLLHbzbwjh8GDoVIlmDzZhKOHHjKLwYqIiJRSF7RO0sqVK9m4cSOpqam0bt2a7t27F2XbioTWSRIRKSGWBZ9+6lrXaMwY1/GUFNC/wSIi4mEFzQbn1ZP0008/8VmOSkRdunQhODiY//znPwwaNIjhw4eTnp5e+FaLiEjZY1nw+efQti1cfTWsXw+vvGLmIoEp762AJCIiZch5haQnnniCzZs3O/d/++03br/9di6//HIefvhhPv30U6ZMmVLkjRQRkVLIsuCrr6BjR+jdG9asMcPoxo2DX34Bb29Pt1BERKRQziskrV+/3m1I3fz582nXrh1z5sxh1KhRzJw5kw8++KDIGykiIqXQ449Dz56wahUEBprhdbt2wdNPmwINIiIiZdR5haQTJ04QFRXl3P/uu++44oornPtt27Zl3759Rdc6EREpXTIyXNsDB5rqdA88ADt3wrPPmtLeIiIiZdx5haSoqCh27doFQEZGBmvXrqVDhw7O8ykpKfj6+hZtC0VExPN+/BF69IC77nIda9IEDh6EF16A6GjPtU1ERKSInVdIuvLKK3n44YdZsWIF48aNIygoiK5duzrPb9y4kTp16hR5I0VExENWrYJevaBzZ1i6FN57D44fd50PD/dc20RERIrJeYWkJ598Eh8fHy655BLmzJnDnDlz8PPzc55//fXX+de//lXkjRQRkRK2Zg306QMdOsCSJeDjA7ffDlu3QuXKnm6diIhIsSrUOklJSUmEhITgfVblouPHjxMSEuIWnDxN6ySJiJynt9+GIUPMtrc33HwzPPYY1K7t2XaJiIhcoIJmA5/C3Dw8n+EVlfXpoohI2ZSRAY4PuHr3Nr1FV14JEyZAvXqebZuIiEgJO6/hdp5w4MABbrrpJiIjIwkMDKRZs2b8+uuvnm6WiEj5sGWLqVLXvbtZ9wigUiVTre6ttxSQRESkQipUT1JJOXHiBJ07d+bSSy/liy++oGrVqmzbto1KlSp5umkiImXbH3/AE0+YQgyOcLRhA7RoYbZVkEFERCqwUh2SnnnmGeLj45k7d67zWEJCggdbJCJSxu3YAU8+aXqJ7HZz7NprYeJEuOgijzZNRESktCjVw+0++eQT2rRpw/XXX0+1atVo2bIlc+bMOedz0tPTSU5OdnuIiAjw88/QoAG88YYJSH37mip2CxcqIImIiORQqkPSzp07eeWVV6hXrx5Llizhrrvu4v777+eNN97I9zlTpkwhPDzc+YiPjy/BFouIlDIZGa7ttm2hfn244gpYvRo++QRatfJc20REREqpQpUALyl+fn60adOGH3/80Xns/vvv55dffuGnn37K8znp6emkp6c795OTk4mPj1cJcBGpWA4cgClT4PPPTXGGgABzPClJ841ERKTEZGfDihWQmAgxMdC1q1ldwlMKWgK8VPckxcTE0LhxY7djjRo1Yu/evfk+x9/fn7CwMLeHiEiFcegQjBwJderArFmwaxd8/LHrvAKSiIiUkIULoVYtuPRSGDzYfK1Vyxwv7Up1SOrcuTN//PGH27E///yTmjVreqhFIiKl1JEjMHq0WfB1xgxIT4cuXeDbb02JbxERkRK0cCH07w/797sfP3DAHC/tQalUV7d74IEH6NSpE08//TQDBgxg9erVvPbaa7z22muebpqISOlx6BDUrQunTpn9jh1Nee/u3cFm82zbRESkwsnOhhEjXCtM5GRZ5r+mkSPh6qs9O/TuXEp1T1Lbtm1ZtGgR7733Hk2bNuXJJ59k+vTp3HjjjZ5umoiIZ+UsyBAdbQJR27bwxRfwww/Qo4cCkoiIeMSnn+buQcrJsmDfPjNXqbQq1T1JAH369KFPnz6eboaISOlw8iRMnw6vvGLKd8fFmeNvvQWhoQpGIiJSYiwL9uyBdevcHwcOFOz5iYnF274LUepDkoiIAMnJMHMmTJtmghLA66/DhAlmW0VqRESkGGVlwdatEBkJsbHm2IcfXti015iYomlbcVBIEhEpzVJT4eWX4bnn4Phxc6xxY5g0Cfr182zbRESkXDp1CjZuhPXrXb1Dv/1magI9+yyMGWOua94cfH2hSRNo2dL1aNoUmjUzPUp5zUuy2cxAiK5dS/RlnReFJBGR0ioz0/wvs3u32W/QACZOhOuvL70zXUVEpEw5dsyEH0fv0G+/QYsWYLfnvjY0FNLSXPv16pnP8vz8cl87Y4apYmezuQclx6jw6dNL939lCkkiIqVJRobrfxtfXxgwwNRJffxxGDSodP+PIiIipZZj/lDO3qF160yBheHD4dVXzXX16pkgEx1teoVatHD1ENWuDV45yr55eeUdkMAMdliwwFS5y1nEIS7OBKTSPhjCZll5dYKVHwVdVVdExKPOnIH//heefhref981BuHUKfD3Bx99piUiIgWTlWVGaFerZvbT0iA+3jVq+2zXXuu+btFff0GVKkXTluxsU8UuMdHMQera1bOf9xU0G+h/XRERT0pPNwUYnn7a9VHbK6+4QlJwsOfaJiIipV5aWt7zhzp1gqVLzTVBQaa+T0qKmT+Us3eoefPctX+KKiCBCUTduhXd/UqKQpKIiCdkZsK8efDUU7B3rzkWFwePPgr//rdHmyYiIqVTWpoJPA4XX2yWxstr/tCOHe77y5aZnhx//+JtY3mhkCQi4glXXOH6iC8mBh55BG67DQICPNsuERHxOMsyn5/l7B1av97MFXLU8gETeOx2M6wuZ3W5li2hTh33e9aqVXLtLw8UkkRESkJ2tvlfzzG36MYbzXiIcePgjjsgMNCz7RMREY+w292LIdx/P7zzTv7zh06ehIgIs/3yy2aoXGleb6isUkgSESlO2dlmtb1Jk+DBB01vEcCQIaZyneYciYhUGGlp5vMxR8/QunVmgdbDh12flWVmmoDk4+O+/lCLFmb+UHi4634NGnjiVVQMqm4nIlIc7HZTKmjiRNi82Rxr2RLWrHEtEiEiIhXCK6+YXp/ff897/tCqVdCundn+/XcTppo00fyh4qDqdiIinmBZ8PHHZl2jjRvNsYgI04t0//0KSCIi5Yxlwb597nOH1q2DL7+ERo3MNWlpsGWL2XbMH8pZYa5uXdf9GjYs6VcgeVFIEhEpSvfdB7Nmme2wMHjgARg50jWAXEREyoWvv4ZnnjGh6Nix3OfXr3eFpH79TPhp2dLMH9LnZaWfQpKIyIWwLDOA3LHk+ODB8MYbZonxUaOgcmXPtk9ERArl9GkzfyhnhbmJE6FXL3M+Lc1VpNTHBxo3du8hatXKda+EBPOQskMhSUSkMCzL/O84YQJ07gzPPWeOd+pkFoXNObNWRETKhK1bzdre69aZuUHZ2e7nV692haROnWDOHBOImjTRCg7ljQo3iIicr+XLTThascLsR0aaAekq4y0iUqpZlvkcK2fv0NVXwy23mPObN0PTpq7rq1Z17x3q1Alq1PBAw6XIqHCDiEhRW7HCFGRYtszs+/vDnXfC2LEKSCIipdTx4zB1qquowl9/uZ8PDXWFpAYN4MknXaEoNlbzhyoqhSQRkYJ46SVTnQ7M/KPbbzcLwVav7tl2iYgIZ8641h9at85Ui3vwQXMuIACmTXOV3vb2dp8/1KWL6z4+PvDYYyXefCmFNNxORCQ/6emuRSoOHDBligYPhkce0XgLEREPstthxgxXKNq61X3+UMeO8OOPrv1Jk8xnWi1amOF0mj9UcWm4nYhIYa1bZ4bVWRZ8+qk5Vr26mXekggwiIiXCssznU45hcpZlpoMCeHnBCy+Y+UUOVaq41h3q0MH9Xo8/XmLNlnJCIUlExGHjRlPfddEis+/tDbt2ueq2KiCJiBSrjz4yPUCOwgo55w9VrQrjx7vmCN19t1mBwRGMqlfX/CEpOgpJIiKbN5uxGB9+aPZtNjOsbsIELWwhIlLEzpyBTZtMCNqzB556ynVuxgxTQNTB29uMdHbMH8rONvOGwEwLFSkuCkkiUrF9+SVceaUZx2GzwYABZlyGY5l0ERG5IGvXwvffu88fyspynR8zxtVR36+feyhq2lTFQ8UzFJJEpOLJWZChWzeIi4N27Uw4atbMo00TESmLLAsOHnQFoYcecv0z+8or8N//ul8fGekaJpeR4Tp+330l12aRc1FIEpGKY+dOM65j9Woz4N3Hx5Q42rQJVP1SRKTA9u+HlStdoWj9ejh61HW+d29o1cpsX3qpOecIRS1bms+mNH9ISjOFJBEp//bsgcmTYe5c1xiPZcvg8svNtgKSiEie0tPN50jr15uRyTEx5vg778DDD7tf6+0NDRuaEOTn5zo+eLB5iJQlCkkiUn7t3w9PP23GeWRmmmM9e5oiDe3be7ZtIiKlTGoqrFnj3ju0ZYvrs6X33zfTNsGMUG7f3r13SPOHpDxRSBKR8mnbNvM/tmOwe/fuJhx17uzZdomIeJhlQWKiCUL160O9eub4kiXQv3/u6ytXNiEoJMR17NJL4eefS6a9Ip6gkCQi5UfOggx165qPOW02eOIJuOQSz7ZNRMQD7HbYvt29d2jdOjhyxJyfPBkeecRst2wJNWq49w61aAHx8Zo/JBWPQpKIlH1Hj8Jzz8Fbb5k1jypXNv+jf/YZhIbqf3cRqRDS083wOH9/aNzYHPvtNxN0zublZeYPhYa6jtWubaZwiohCkoiUZceOwbRpMHMmnDpljr37Ltx7r9lWQQYRKaeSk129Qo6vW7aY6Ze33gqvv26ua9wYIiLMsDpHz1DLlma1g6Agz7VfpLRTSBKRsufECXjxRZg+HVJSzLHWrc2wuiuu8GjTRESKWmIinDzpWuP61CmoVMkMpTtbpUquUccAvr7m8yQvrxJpqki5oZAkImVLaqr5SPSvv8x+8+YmHPXtq2F1IlKm2e2wY4dr/pCjl+jwYejaFb7/3lwXHAx16sCZM+7zh1q2zHv+kAKSyPlTSBKR0i9nQYaQELjmGlNWadIks63fAESkjElPhwMHzDwgh0aN4M8/c1/r5eUq1Omwfr2Gy4kUJ4UkESm9Tp2CWbPg+edh6VIziB7MULugIIUjESkTkpNhwwb3HqItW6BKFTh40HVdnTqwdy9cdJFr7lB+84cUkESKV5kKSVOnTmXcuHGMGDGC6dOne7o5IlJc0tJg9mx45hlXndpXX4WXXzbbORfrEBEpRf76y4Qfh0GDYP78vK89c8bMNYqIMPtvvmm2fcrUb2ci5VOZ+Wv4yy+/8Oqrr3LRRRd5uikiUlzOnIHXXoMpU+DQIXOsdm14/HEYPNizbRMRycFuh507c68/dPgwJCW5SmtXrWq+xsXlnj9Uo4b7/KGc4UpEPKtMhKTU1FRuvPFG5syZw1NPPeXp5ohIcbAs6NTJ/JYBUKsWjB8PQ4aY8kwiIh6SkWF6dxwjfKdMMQ9Hcc2cbDYzr6h1a7M/bhxMmKAAJFLWlImQdM8999C7d2969OjxjyEpPT2d9PR0535ycnJxN09ECivnbx42G9x4oxmr8thjcMst4Ofn6RaKSAWTkpJ7/tDmzfDrr2auEJjqcikppp5Ms2aunqEWLcw1wcGu+8XEeORliMgFKvUhaf78+axdu5ZffvmlQNdPmTKFSZMmFXOrROSCZGbCW2/Bk0+axWD79TPH773XPHIu8iEiUkwsyzXcbdEiGDsWtm83x8+2YYMrJA0cCJddBg0aqKNbpLwq1SFp3759jBgxgq+//pqAgIACPWfcuHGMGjXKuZ+cnEx8fHxxNVFEzkdWFrz7rlnXaMcOc+yVV1whSeFIRIqB3Q67drn3Dq1bZ4pn5vznZ9s2sx0X515drmVLqFnTdb+oKPMQkfKrVIekNWvWcOTIEVq1auU8lp2dzffff8/LL79Meno63t7ebs/x9/fHX79oiZQu2dnw/vtmXSPHIiBVq8LDD8Odd3q2bSJSbq1fD/ffb3qB8hp9v26dKyR17gxffWXCkaPYgohUXKU6JHXv3p3ffvvN7ditt95Kw4YNGTt2bK6AJCKl1E03uWrgRkbCQw/BPfe4D9wXETlPqanu84fWrze1XkaONOeDgmDFCrPt5+c+f6hlS9fwOYDwcLj88pJ+BSJSWpXqkBQaGkrTpk3djgUHBxMZGZnruIiUIna7GVrnKLxw002wZAmMHg333eeqjSsicp6OHDH/jKxbl/f8ofr1Xdt165q1h1q0gIYNNX9IRAquVIckESljLAs+/dSsa3T99fDII+b4lVfC7t0QFubR5olI6WdZuecPXXSRKbkNpsdn4ULzOQxAbKx7dbk2bVz38vIyPUsiIufLZll51XApP5KTkwkPDycpKYkw/YImUjwsCz7/3ISjNWvMsZo1TXEGDYsVkX9gt5uO5rVrzZC5pCT3823aQM4it//3fxAfb0JRtWol2VIRKesKmg3UkyQihWdZZqbzhAmwerU5FhxsZko/+KACkog4OeYPrV9veod8fU1xSzA9Ph99ZHqQwIzUbdrU1UOUs3cIYNiwkmy5iFRECkkiUniTJpkHQGCgWeNozBiVhhIRwISg774zoWjbNvf5QxER8J//uNYpeuwx87lKixbQuLHmD4mIZykkicj5SU93rWc0aBA8/zwMH25WYdTCISIVimWZ6YaOuUN798Ibb7jOL1oEX3/t2o+NdV9/yG53dTj/+98l2XIRkXPTnCQRKZgffzTD6mJjTbkoh+RkFWQQqUC+/NIUq3SU3D57/tDRo1Clitl+910TnBxFFfQ5ioh4muYkiUjRWLXKFGRYssTsBwTACy+4fgtSQBIpd06dgo0bXT1EM2aYNYcAPvnENZcIzLC4nPOHfHL8ZjF4cMm2W0SkqCgkiUje1qwx4WjxYrPv4wO33gqPPuoKSCJSLvz2G3zxhSsU/fmn+/yh226D9u3Ndu/eJhg5QlGjRq4l0UREyguFJBHJ7b33XB8Be3vDzTebWdW1a3u2XSJSaJYFe/a4gtC//w21aplz33xjphXmFB3tCkI5Pxfp3ds8RETKM4UkETFyFmS48krzW1GvXmYeUr16nm2biJy3Q4dM0QRHKFq/Hk6edJ1v0MAVkjp1Mus/51yUNTq65NssIlJaKCSJVHRbtpgy3nv3muIMNptZ0n7HDs03EikDTp0yw+XWrYOOHU3AAbN02c03u1+bc/5QzZqu4+3bwwcflFiTRURKPYUkkYrqjz/giSfM0DrH5IM1a1yrNiogiZQ6aWnwww+uniHH/CG73Zx//HFXSGrVCrp0cfUOtWxp1h/S/CERkX+mkCRS0ezYAU8+CW+95frN6tprYeJEuOgijzZNRIyc84eiosxwODBrEv3rX7mvj4424ahuXdexuDhYsaIkWisiUv4oJIlUJL/8YsbjZGeb/b59TThq1cqjzRKpyOx22LrVNXfI0Ut04oQ5f9NNrpDUoAE0awYNG7ovyqr5QyIiRUshSaS8y1mQoXVrM94mLs7MQ2rb1rNtE6lg0tLM/KGMDOja1RxLT4fmzV2fXTj4+kKTJu5FJb29zfpFIiJSvBSSRMqrAwdgyhT49FPzMXVQEHh5wcqVmm8kUgKOHXOfO7RunZkKaLdDhw7w00/musBA83mFt3fu+UOOzzdERMqqbHs2K/auIDElkZjQGLrW6Iq3l7enm/WPFJJEyptDh2DqVJg923xEDfDRR651jxSQRIqUZcG+fbB/v2tYHJhRrHv35r6+WjWIjXU/5ghMIiLlycKtCxnx5Qj2J+93HosLi2NGrxn0a9TPgy37ZwpJIuXFkSPw7LPwn//A6dPmWNeuZljdpZd6tm0i5UR2tukNOnv+0PHjEBkJR4+aKvpgeoN8fd3nDrVsCTExnnwFIiIlY+HWhfT/oD8WltvxA8kH6P9BfxYMWFCqg5JCkkh5cOQI1KkDqalmv2NHU967e3fXb2wicl7S0uD3393rmvTuDUuW5L7Wx8dM9UtKgogIc2zBAnNcRKSiybZnM+LLEbkCEoCFhQ0bI78cydUNri61Q+/0z7dIWZWzIEO1atCzpxnb88QTZlvhSKTAjh/PPX/o99/N/KETJ1zBp0kTs05R8+aunqEWLczxs+cPKSCJSEViWRYnz5wkMTWRg8kH3YbY5boWi33J+1ixdwXdanUruUaeB/0TLlLWnDwJ06fDrFmmpHetWub43LkQEqJwJHIOlmXmDkVHm6FwAGPHmpGqealWzaxX5AhJTzwBzz1naqCIiFQEdsvOsbRjVAqshI+XiQ5fbPuCz7d9TmJqonmkmK9nss4AMO1f0wp078SUxGJr94VSSBIpK5KTYeZMmDbNBCWA1183v7UBhIZ6rGkipVHO+UOOHqL1603VuV9/NRXxARISzNfatfOeP5Tzc4fg4BJ+ESIixSTbno3NZsPLZj71Wbl3Jct2LeNgysFc4SfLnsXv9/xOgyoNAPh5/8+8/MvLed43IiCCQJ/AArUhJrT0TtJUSBIp7VJT4eWXzcfXx4+bY40bm4IM/UrvhEeRknT6tAkzAQFm/8034c47XTVMcvL2hp07XSFp8GC44QZXb5GISHmx4dAGft7/sxkC5wg/fwefw6mH2XT3JhpWaQjANzu/YdJ3k/K915FTR5wh6dKES8m0ZxIbGktMSAwxoTHEhMQQHRJNoG8g2fZsnl75NAeSD+Q5L8mGjbiwOLrW6Fo8L7wIKCSJlGZZWWbyw86dZr9BA5g4Ea6/3vymJ1IBnTjhPnfIMX/o7bdN2AHTA3T6tOn5ccwfcvQSNWniClOgqvgiUrbsPLGT9YfWO8OO8+vf28tvWe4MPh/9/hETv5uY770SUxKd13aI68CwlsPcgo9jOyokCj9vP+fzutXqds65RN5e3szoNYP+H/THhs0tKNkw3fPTe00vtUUbQCFJpPTJWZDBxwcGDYL334fHHzfbCkdSQViW+ZzAMXfo559NCNqzJ+/rt251bXfubIJT3br6KyMipd+RU0fYdmxbrt4ex/7/BvyP+pH1AXh749s8vvzxfO91MOWgM/g0j25O3/p9iQn5O/D83ePj2I4KjnI+r1fdXvSq26vIXlO/Rv1YMGBBnuskTe81vVSX/wawWZaVuw+sHElOTiY8PJykpCTC9HGhlGZnzsCcOTBlCrzzjmtto7Q08PNTqSwp17Kz4c8/c68/NHIkPPaYuWbXLjNvCMw8orPnD8XGqm6JiJQeaZlpHEg+4Ao7OXp8DqYc5NU+r1K3cl0AnvzuSSYsn5Dvvb4Z8g3da3cH4P1N7zN91XTT23NW+IkJjaF+ZH2CfINK5DUWRLY9mxV7V5CYkkhMaAxda3T1aA9SQbOBfusS8bT0dFOAYfJkOHDAHJs92xWSgkrPP3QiRcGyXGHm0CG49lrYuNF8HnC29etd27VqwbJlJhxp/pCIeIJlWSSlJ7n39OQIP5Mvm0ztSubTnBd+eoHxy8bne689J/c4Q1LNiJokRCTk7u35O/i0inEt2Daw6UAGNh1YvC+0CHl7eZfaMt/nopAk4imZmTBvHjz1lFnfCKB6dXj0Ufj3vz3aNJGiknP+kONrx47w2mvmfGSkOZaebj4PyLn+kGP+kIPNBt26eeBFiEi5Z1kWx08fdw51yznsbVTHUdSMqAnA1JVTeeTbR/K9z7CWw5whKSYkhhC/ELfCBjmDT+OqjZ3Pu7n5zdzc/ObifZFyXhSSRDylTx/46iuzHRMDjzwCt93mPqNcpAyy22HAAFizBnbvzn0+5xwhX1/46CPTS1SvnuYPiUjRslt2/kr7y73HJyWRoS2GEhcWB8BLq15i9NejycjOyPMefer3cYakqBAzhyfcP9x9mNvfAcjRMwRwa8tbGdZqWDG/QikuCkkiJSU724wzcswtuukm89H6uHFwxx0QWLA1BUQ8LTsbtm1z7x0KCjJhB8xCq5s2uQJSrVquniHHPKKcehXdPGERqSCy7FkcOXXEbdjbVQ2uIjokGoC56+Yyftl4Dp86TJY9K9fz21Zv6wxJwX7BzoBUObByrnk+jusABjUdxA1NbyjQnB/H+kNSNikkiRS37Gz48EOzrtGIEWbxFjCLs/Trp9UppcyYMAG++QY2bMg9fygkxPQgef39O8G0aa7y25UqlXxbRaRsyszO5FDqIWePT6f4TlQNrgrAB5s/YOrKqSSmJnLk1BHslt3tuTXDaxJdN9q5fyDFzPO1YaNqcFW34W5Vg6o6r+vXqB/dE7oTHRKNv4//OdsX6KsPNCsKhSSR4mK3w8KFZl2jzZvNsdmzTa+RzWbGFSkgSSly8qQJQI7qcvv2wbffus6vWQM//WS2AwNzrz+UU+/eJdVqESkLzmSdcfb6NKrSiEqB5tOTz7d9zsxVM52h6GjaUbfnfXHjF86y1GmZaaw7tM55zsvmRVRwlHM9n1D/UOe53vV7s/q21cSGxlItuBq+3r75ti0iIIKIgIgifLVSHigkiRQ1y4KPPzbrGm3caI5FRMDo0XDffapRLKXK22/DokUmFO3alfv8oUMQ/fcHs/fdBzfeaAJR/fqaPyQicCrjFImpiUSHRBPiFwLAd7u/4//W/Z9b8YMTZ044n/P54M+5ot4VABw9dZQlO5a43dPHy4fokGhiQmLw8XL9qtqjdg8+G/SZMxRVDaqabynpasHVqBZcrahfrlQgCkkiRW3kSJg502yHhcEDD5hjqlksHmC3u+YPOeYQLVgAoX9/4Prrr6bD06FmTffqcjmXkNDcIZGKIyU9BT9vP+fws18O/ML7m9/PVfY6OT0ZgMWDF3NlvSsB2JO0h7c2vpXrnv7e/sSExrjNEepasytzr57rVgEuMigyz/k8cWFxbvODRIqTQpLIhbIsyMgA/7/HMd94o1n3aMQIGDUKKlf2bPukwlmxAubPN6Fo40Y4dcr9/IYN0KWL2b7uOoiPdw2b09tVpPyyLAsLyxlANh/ZzOJti93X/Pm75+dU5ik+G/QZveubsbO///U7036alud9g3yDSElPce63r96eqd2n5lrzJyIgAttZoylqV6rtLJktUpooJIkUlmXB0qVmNnu7djB9ujnerp1ZFPYcqziLXKikJFdluXXrTJHEhg3NuQ0b4D//cV0bGAgXXeTqHapTx3Wua1fzEJHyYdeJXXy35zu33p6c4ed/A/7nDD7rDq1j7Ddj873XkVNHnNstolswqsMo51A3R89PbGgsoX6hbuGnQZUGjO2S/31FygKFJJHCWL7chKMVK8z+77/D5MmuQgwKSFLEtm2D9993BaOdO93Pd+vmCkmXXGKmwDlCkeYPiZRth1MPsyZxjfsipzmGvb3a51XnHJ8f9/3IrR/fmu+9DqYcdG43qdqEIRcNcQs8OYe9Bfu5igs1i2rGtJ559ySJlEcKSSLnY8UKU5Bh2TKz7+9vSnqPHatKdXLB7HbYvt01d6h3b9ewuO3bYfx49+tr1HAFodatXcebNYPnniuxZotIISSnJ/PHX384e3gcXw+mmuAztcdUetTuAcDSXUu5ceGN+d5rf/J+53a9yHr0rNMz1yKnOYe9ObSMacmb175ZfC9SpAwr1SFpypQpLFy4kN9//53AwEA6derEM888Q4MGDTzdNKmI/vMfuOces+3rC8OHmzFO1at7tl1SZh0/7qost369GSaXmuo67+3tCkmtW5vpbo5y2y1aQGSkBxotIvnKzM7MVdgg5/bYzmO5pNYlAHz252fnDD47T7i6i2tF1KJldEu3oJOzx6d+ZH3nte2qt+PLm74svhcpUkGU6pD03Xffcc8999C2bVuysrJ45JFH+Ne//sWWLVsI1qf2UhLS010FGfr1g0cegRtuMF9r1PBs26TMSE52DZOrW9e1htDx43Dbbe7XBgSY+UMtWkDnzq7j1aqZct0iUvJOZ57O3ePz97C3O1rfQcf4jgAs2LKAwQsH53ufqxtc7QxJcWFxVA+tnmfwiQ2NpWW0a/GxTvGdWHvH2uJ9kSLiplSHpC+/dP8kZN68eVSrVo01a9Zw8cUXe6hVUiGsW2eG1WVmwhdfmGPR0bB3r+YbyTllZJh6Ho6CCuvWwY4drvMDB7pCUu3aZrthQ1cPUYMG4FOq/2UWKT9SM1Ld5/n8vT2w6UDaxLYBTPC5/sPr871Hh7gOzpAUExqDr5dvvj0+XWu6qqRcXPNi9o/an99tRcTDytR/xUlJSQBUPkeN2vT0dNLT0537ycnJxd4uKUc2boSJE80YKAAvLzMZpG5ds6+AJH+z2034WbfOhJp+/Vznrr7a5OucHGW2c36+4+UFn31WMu0VqSgsyyI5PTnXULeedXrSLKoZAIv/XMwN/7uB1IzUPO9Ru1JtZ0iqGlQVgECfQNc8n9AYYkPMPJ8OcR2cz7u45sWkP5aeq8y1iJQ9ZSYk2e12Ro4cSefOnWnatGm+102ZMoVJkyaVYMukXNi8GSZNgg8/NPs2GwwebCrYOQKSVGjr18Pata7eoZzzh1q1coUkPz+46iozStNRVEHzh0QunGVZHD993G3YW/vq7WlQxcxT/nbXt9z+6e0kpiRyOut0rucH+QY5Q1Kof6gzIAX7BucqbOC4DqBjfEdOjD1BuH/4P4afvBZAFZGyqcyEpHvuuYdNmzaxcuXKc143btw4Ro0a5dxPTk4mPj6+uJsnZdk338C//mXWPQIzHmrCBGjc2LPtEo9ITjYB6PBh6N/fdfy663KX3Q4IMJXkOnRwP75gQfG3U6S8sFt2/kr7yznUrVHVRtSKqAWYctYPfvWgMxRlZGe4PfflK152hiRfL1+3Ygfh/uFuwadOJdcCYW1i2/DHvX8QExJDqH/oOdvn5+2Hn7dfEb1aESkrykRIuvfee/nss8/4/vvviYuLO+e1/v7++Dsm2ovkJ2dBhosvhpo1Tfmwxx83v/VKhXD4sHvv0Pr1ZnQlQHi4CUaOD44vvdS8TRy9Q5o/JHJu2fZsjpw6QmJqonOIGsDaxLVM+m6SMxQdPnWYLHuW83kvXfES97a7FzAB6uf9P7vdNzIw0hl+okOincdbRLdg5a0riQk1x4N8g/JtW5BvkFtFOBGRs5Xq/94ty+K+++5j0aJFLF++nISEBE83Scq6nTvhqafgxx/ht99MKW8/P9N1oPlG5Zbdbn70mzeb+UIOQ4fCkiW5r4+LMyEoJcX1tvjvf0umrSKlXWZ2JodSDxHiF0KlwEoAbDm6hRd/etFtkdMjp45gt+yAe/A5nXmaT/74JNd9qwVXIyYkhhC/EOexptWa8r8B/3MWQIgOicbfJ+8PQkP9Q+lco3Oe50REzlepDkn33HMP7777Lh9//DGhoaEcOnQIgPDwcAIDAz3cOilT9uyByZNh7lzI+vsTy2++gSvMCuUKSOVHRgZs2eJeXW7DBhN4AI4cgapmHjZt2pi3Rs7eoRYtoEoVjzVfxGPOZJ3BsiwCfc3/rzuO7+D1da87Fzd1hJ+/0v4CYGavmdzX/j4ATp45yX/X5f4kwcvm5dbbA9CwSkNe6f2K2yKnUcFR+Hr75np+REAE/Rr1y3VcRKS42SzLMRGj9MlvguTcuXO55ZZbCnSP5ORkwsPDSUpKIky/CFc8+/fD00+bbgBHubGePU2RhvbtPds2uWApKSYAtW4Njs9N7rsPXn4597X+/mYk5ZtvQqNG5phluYbTiZRXlmU5/z89kHyABVsWuCq/5Sh7feLMCWb0msH97e8H4Kd9P9Hp9U553tPHy4cnuj3BuK7jADh66iizf53tXvo6NIaqQVXx9vIumRcqIlIABc0GpbonqRTnNykLdu40vw1n/D3Rt3t3E446azhGWXT4sHvv0Lp1rvlDP/4IHc0yJTRvbuYTnd071LChGV2ZkwKSlAdHTx3l651fuxY6PWux0ye6PcGIDiMA2Ju0l5FLRuZ7r0Oph5zbtSvV5t6297qXvf572FtkUKRbJbeqwVUZf8n4YnuNIiIlrVSHJJHzlrMgQ+3a0KWLGV73xBNwySWebZsUiN0Ou3aZktkREebYK6/A3XfnfX1cHBw/7tofOhSGDVMAkrItOT2Z1QdWu4JPSqLbsLdRHUZxV9u7ANhxYgc3Lrwx33slpiY6t2tF1GJAkwEm9OTo8XGEoEoBlZzXRoVE8dKVLxXfixQRKcUUkqR8OHoUnnsO3ngDNm1yTTr56CMICdFvzKVURgZs3Zp7/lByshkWN2SIua5RI/MjrF8/dw+R40ftcHZvkUhpcSbrDNuObXMb5pZz2NvtrW7nlha3ALD16FYuf+vyfO+1++Ru53Z8WDzdanVzhZ6/A49jv3pYdee1MaExvN///eJ6iSIi5YZCkpRtx47BtGkwcyacOmWOvfsujDBDSwg99/oXUnJSU820sEp/f1D9/fdw+eWu0ZA5+fmZAgsOnTub4BQSkvtaEU+yW3ZT5jpn4MmxPbDJQAY1GwTAxsMbaf/f/OdCdo53DQWuHladxlUbu4a5hbj3+NSrXM/t2mVDlxXfixQRqYAUkqRsOnECXnwRpk93lS1r3doMq3NUrBOPOXIk7/lD48ebaWEAdeqYgBQebnqEcvYQnT1/yNdXPURSsrLsWRxOPZxrfk9iSiJX1LuCaxpeA8Cag2to9992+d6nXuV6zpAUGxpLlaAquYe5/R18mlVzrdEWFxbH5rs3F+trFBGR/CkkSdmTlmZW8Tx61Ow3b27CUd++GlZXwizLdOA5engOHIB27eDgwbyv373btR0ba2pr1KqlH5uUnPSsdA6lHnIb7paYkkiXGl3oWbcnAOsPrafVq62wyLt4UKh/qDMkxYTGYMNGteBqbsHHMeytbfW2zufFhcVxdMzRYn+NIiJy4RSSpGzIWZAhKAj694cVK0y3xDXXgJfXOZ8uFy4z033+0Pr15tG7N7zzjrkmOhpOnjShp1693POHqlVz3c9mA60PLUXldObpXPN8WkS34OKaFwNmsdOL517MsdPH8nz+qA6jnCGpalBVLCy8bd5EhUS55vn8HX661uzqfF710OpkjM/Ax0v/nYqIlCf6V11Kt1OnYNYsU5Thq6/Mb9tg9gMDFY6KSVYW+Pz9r4PdDp06mWCU1/yhTZtc297ephx3nTqaPyRFIzUj1a3Hp07lOrSJbQPAtmPbuHr+1SSmJnLyzMlcz32gwwPOkBQREOEMSL5evm7lrGNCYtyCT0xoDIcePESVoCr/uMaPzWbDx6b/SkVEyhv9yy6elZ1teoQSEyEmBrp2Nb9pp6XB7NkwdaprWN1rr5la0ADBwZ5rczlz5IjpEco5f6hyZfjpJ3Pey8tk1Zzzh3LOIXIszOrQvHkJvwApcyzLIik9yRl+okOiaVy1MWCqtt3y0S3OUJSSkeL23Ac6POAMSSF+IWz9a6vzXIBPgNt8n+ZRrjdjVHAUG+/cSGxoLJUDK+e7WDmAl82LqJCoonzJIiJSxigkiecsXGiq0O3f7zpWvTr07Amffw6H/l7UsHZtePxxGDzYM+0sp4YPh8WL854/FBDg3pv0+utm3aKEBM0fkvxZlsXx08dJTE0kxC+EWhG1ADiQfIAHljzgVvzgdNZp5/NGth/Ji71eBEzQ+W7Pd273DfYNdgYfxz0BqgVX45sh3zjPhfuH5xt+vL28aRbVLM9zIiIiZ1NIEs9YuNDMK7LOmhh94ID5jRzMjP7x481iOSptdl4yM+H33917h/btMxXmHL9DHj1qApJj/lDO3qEWLVwBCaBt27y+i1QUdsvOX2l/YcNG1WCzMNWRU0d44rsncpW9zsg2YzJHtB/B9F7TARNQPtzyYa77hvuHExMaQ+XAys5jVYOq8t5177mt9RPqn3cpf28vb7rX7l7Er1ZEREQhSTwhO9v0IJ0dkHKqVAm2bDHzjqTApk+Ht98284TS03Of37cPatQw2488AqNHw0UXaTmpiirLnkVGdgZBvkEAHD99nJdWvWR6e3KUvj586jBZ9izub3c/M66YAZheo1m/zMrzvpUDK+Ntc83lqRpUlek9p7uXvQ6NcX7fnLy9vLmh6Q3F8GpFREQKTiFJSt7nn7sPscvLiROwahV061YiTSor/vrLvXdo/Xr44QczhwhMR9yaNWY7NDT3+kOxsa57qXeo/LIsyznsLCU9hbc3vp2r8ltiaiJHTh3hnrb3MPOKmYAJTRO/m5jnPW3YSM1Ide5XDa7KI10eyVX2OjokGn8ff7fnent5M6LDiOJ5sSIiIsVAIUlKRkoKfPIJvP++CUkFkZhYvG0qIz791NSsWLfOhKCzrV8Pl11mtm+8Edq3N4EoIUHF/8qrtMw0vtz+pdswt5zD3gY1HeTs8TmTdYa7P78733slprr+nlUJqsLwVsOJDonO1esTFRyFr7dr2KuXzYvJ3ScX34sUERHxIIUkKX4pKaZy3alT5/e8mJjiaU8pk5WVe/7Qiy+aXiAw84Y++8x1fd267r1DrVu7zjkqz0nZk5Gdwar9q3LN8XHsX1X/Kqb0mAKYkHTdB9fle68DKa40HRkUybUNryUqOMq97PXfAahasGvxKi+bF6/2fbX4XqSIiEgZoZAkRSs93axntHEjPPqoORYaCu3amSF2N9xgCjb07m26RfKal2SzQVycKQdeTm3YYJZ/WrcOfvst9/yh1atdYad7d5g50wSi5s01f6gsybZns/34drf5PTnn+1yWcBmPXfwYYIbFXTzv4nzv1bBKQ+d2ZGAkXWt0pWpwVWJD3Ht8YkJiiAuLc17rZfNi4cCFxfciRUREyiGFJLlwWVnw7bcwfz4sWgQnT5qg8+9/u3qDFi40i+w4SqvNmGHCks3mHpQc56dPN+sllWGO+UOONYiGDIErrnCdmzPHda1j/pBjDpFj+ByYnqP77ivBhss5WZbFyTMn3cpZ5/zaIa4DIzuMBCApPYmGsxrme6+IgAjnduXAyjSs0pAqQVXcFjl1DHurXam281qbzcb3t35fXC9RRESkwlNIksJbvx5efRUWLDC/9TvExMCAAWC3u45FRLg/t18/87yz10mKizMBqV+/Ymx48UhMNOvfOobMnV2bIi7OFZJatTLV5RyhqHZtzR/yNMuyOHb6mNtQN8f2RVEXcXvr2wE4eeYklZ+tnO990rPTnSGpUkAlqgRVoXJgZVfg+bvHJzY0lgaRDZzPs9lsbL1naz53FRERkZJks6xz1WEu+5KTkwkPDycpKYmwsDBPN6dssyyzAI+fn9n/v/+D224z21WqwPXXw8CB0KVLwXuBsrNhxQqTMGJizBC7UtyDlJUFf/zhCkKtWpliCQB79pilnXJyzB9q0QJ69DCjDqVk2S07R08ddev5OZhykHqR9ZylppPTk6nybBUy7Zl53uOahtewaOAiwISpoKeDCPQJdKvq5gg/zao109o9IiIipVRBs4F6kuTcLMv0GM2fbyrTPfCA6f0BuPZa+PFHE4wuu8x99dGC8vYu1WW+z5yBefNcoei338wxh2uvdYWkGjXgzjuhUSPX/CHl8uKTZc/icOpht/BTPaw6fer3AeBUxinqv1yfw6mHybaycz3/6gZXO0NSqF8o3l7eZNozqRJUxa23JyYkhpbRLZ3Ps9lsnBx7MleZaxERESk/FJIkb1u2mGA0fz5s2+Y6/vHHrpBUubLpTSoHjh1zzR0KDYU77jDHfXxMLswZjEJCTABq2dI939ls8MorJdnq8ikjO4NDqYecQ90qB1bmklqXAHA68zSdXu/EwZSDHD11FAv3jvCrGlzlDElBvkGcOH2CbCsbGzaqBVdzCz7tqru69Ww2Gzvu30GVoCr4efv9YxsVkERERMo3hSRxl50NHTrAr7+6jgUEQJ8+pjLdlVd6rm1F6LPPzEt09BDt2+c616yZe0gaPhyCglwlt+vU0fyhwjidedrZ4xPoG0irmFYApGelc9X8q5zD4I6dPub2vL71+zpDUoBPAH/89Qens04D4G3zJjok2jnsrWNcR+fzbDYbq25bRWRQJNWCq+Hjde5/7mJDY895XkRERCoOhaSKbs8eWLYMbrnF7Ht7Q/XqpkZ1r14mGPXtWybrTuecP3T8ONx/v+vcmDFmbaKc6tQxc4fOnjc0Y0axN7VMS81IJTHFLEhaL7IeAJnZmdz68a1uVd9OnjnpfE6f+n34dNCnAPh5+7Fy70rSMtOc5329fJ3BJ2fpa5vNxuLBi6kUWImYkBiqBFXB2yv/OWzNopoV5UsVERGRCkKFGyqixET48EMzx+jHH82x7dtNSgDYuRMqVTKPYlaUdRvWr4dVq1y9Qxs3uobJBQdDUpLr3o8+apZpcvQONW9uKpSLYVkWyenJnMk6Q1RIFGDW/Bnz9Zhca/6kZqQC0Ltebz4b7Fr1NuTpEE5lui8g7Ch2cGmtS/nvVf91Hl+wZQFh/mHOuUCRgZHYHOXgRURERIqICjeIu2PHTMnt99+H5ctdaxPZbHDxxWZtI4fatfO6Q5FbuDDvCuAzZpy7Avjx4yYQbd4M997rWlpp/HgzjC6nnPOH0tJcHWKTJxfpSykzLMvidNZpgnyDAFP57bkfnsu1yOnBlIOczjrNlfWuZPHgxQB4e3kzZ+0cZyjKKdg3GF9vX7djL/R8gSDfILfKb+H+4XmGn/6N+xfDqxUREREpHIWkimLZMlN6zaFDBzOU7vrrIbbk52IsXGjWkj27H/PAAXN8wQITlBITYfVqV1GFdetg717X9ddd52p+t26QkeHqHWrZ0pTgrmjzhyzLYu76uW69PTmHvXVP6M7nN34OgJfNi8krJpOSkZLnvZLTk932H+36KH7efm6LnMaExBDqn3s45vDWw4v+xYmIiIiUAA23K29SU+HTT01Vuk6dYOxYczwtDf71L7jqKrPQ69kL+pSg7Gzz7c9ebNXBZjM9Srt2wejRZm3Zs9WubeYPPfOMCULlnWVZLN622H2R0xzBp2V0Sz4Z9Inz+vCp4bkCjkOL6Basu2Odc3/s12Pxsnk5A0/Or44eJxEREZHyQMPtKpLTp+GLL0ww+uwzsw+mdPdDD5nUERQEK1d6tp1/e+ed/AMSmN6lffvMXKW2beGii1w9Qy1amEd5mT+0+sBqZ6nrnKEnMTWRxlUb89a1bwGmYMFNC28iKT0pz/tEBka67Q9oPIBsK9ttqJtjOzok2u3aZy5/pnhenIiIiEgZpZBU1t17L7z5JqTkGC5Vt64ZSjdwoGvCTgnIzjbhZ9cu89i507U9bZoZ4Qcm/BREYiIMHmweZcmek3s4mHLQrbfnYKoJQnUq1WFW71nOa3u+3dOt6ltO2Xb3BVB71O7BmawzuYa6xYbGUj2sutu1c66aU+SvS0RERKSiUEjytPMp75aVZarRde3qCj/JySYg1ahhQtHAgdCqVbGEI8uCI0dcwadTJ6hZ05x7910YOtQ0MS9bt7pCUsuWBft+MTEX3uaikpaZ5j7ULcd29dDqTOkxxXlti1db5Bt8Loq6yG2/dUxrUjJSTG/PWeGnRngNt2sXDFhQ5K9LRERERHLTnCRPKkh5N7vdDJN7/31TtvvoUVO9oEULc37TJhOUOnQokgoFluXKVxs3wpw5rlC0e7eZ2uQwb54JRgBff22mPPn5meCUkOD+6NgR4uPNtY45SQcOgEU21FwBIYmQGgN7umLD2zknqbDlwAv2Wi1SMlLyDD+RgZGM6zrOeW3ks5EcP308z/s0q9aMjXdtdO63erUVJ86ccJvf4xjqViuiFpcmXFp8L0pERERE8qU5SaXd3+Xdsi0bK7iERGKIIZGu+1fi3b8/PP206bb54AOTJhwiI016cISkpk3P69tmZLgPgzv7MX063HyzufbQIXj5Zffn22xmrdmEBMj5vurc2VSdi43952Dj7W1y4HWPLYReIyA8R0hMisP6cgbTn+pX6IBkWRYnz5zMtZ5PqF8od7W9y3ldrRm12Ju0N897NK3W1C0kRYdEO4e65ZzfExMSQ+1K7iXT196xtnANFxEREZFSQSHJE7KzYcQIFlrXMIIZ7CfeeSqOfcywRtBvnOsXdMLDTc/SwIFw2WXg65vHTY2sLPd5Qbt2Qc+e0KWLOb9sGfTqlX/Tdu1ybTdtCg8/7N4jVKOG6S06W1CQeRRYo4UwMI8a4GEHzPFGCwD3xZIsy+LY6WNuPT7+3v4MajbIeU3bOW3ZdGQTZ7LO5PqWTao2cQtJoX6hzq85h7nFhMRQt7J7ybxfb/+VAJ8ALXAqIiIiUgEoJJWQ7IxsVvznNxJ3pBFjHeSv/e0ZwAecPdbxANXpzwIW0J9+3ZPh/vtNyvH3B/6eF3QYfHxMpxKYRVVHjDABZ+/e3POCfHxcISkhwSywevZwOMcj5zqysbEwZQpFLtuezYgvRwAWnJ05bOZPZOSXI7m6wdV4e3lz5TtXsunIJg6lHiLTnul2eeOqjd1C0pmsM86AFBEQ4VbdrX7l+m7P/WrIV4T7hxPsF/yPbQ70DTz/FyoiIiIiZZJCUglY+NDPjHihBvuzWziPeXMNFjaw2aHmcuecHGtPV2yWjfuZSXaTXezd1pVdX5n5QDnnBT3xBIwfb+7l4wNLl7q+39nzgtq2dZ2rV89MYSqODpGjp45y/PRxTpw5wYnTJ5xfT545SZh/GPe1vw+AFXtXsD/5HDXAgX3J+1ixdwXdanVjf/J+9iXvc56rElTFGX7qR7oHn/nXzSfIN4jokOh/DDaxoSW/iK6IiIiIlH4KScVs4UM/0/+5dli2bKi13BmGsvd0hYaL8p2Tc2BrPwbMjMvznjYbnDjh2q9VC954wxWKYmPzr+GQXziyLIvTWac5k3WGyoGVncff3/Q+h08ddoWeHAGoZnhN3u73tvPalq+25EDKgbxuT8MqDZ0hKTElMe9GnMVx3ew+s/G2eRMbGktUSBR+3nmM9/tbk2pNCnRvEREREZH8lImQNGvWLJ577jkOHTpE8+bNeemll2jXrp2nm/WPsjOyGfFCDaxGC6HXA+5h6FQkBB3L/aSwAzCgP3ywgDrp19KmrS3XkLiz5wX5+5tiC45qbfuSTYg5eeYkJ06fINgvmH/V+Zfz+ts/uZ0DKQfM+RyhJyM7g45xHflx2I/Oa0d/PTrfXp+/qvzlth8ZFElqRioRARFUCqxEpYBKzq81w2s6r4sJLVhtb8d1neI7Feh6EREREZGiUOpD0vvvv8+oUaOYPXs27du3Z/r06fTs2ZM//viDatWqebp557TiP7+xv/5OGDAAzp595AhIec3JsWzQaySju8VTt2mSM8SsPX2CpbtPcGLrCWpF1HKrvpYwI4F9SfvItrI5W4e4Dm4h6csdX+YbfJLSk9z2r6x7JSfTT1IpoJIJPzmCT3RItNu16+5Yh5ftn8uQd63RlbiwOA4kH8DKNSsLbNiIC4uja42u/3gvEREREZGiVurXSWrfvj1t27bl5b9rUdvtduLj47nvvvt4+OGH//H5nlwn6Z37VnCT72AI2587DBVAgHcAZ7JzV2kDE3x+GvaTcz/+xXhn8PHz9nOGmYiACC6qdhGv9n3Vee0b698g28p2CzyO3p9Qv9ASqeC2cOtC+n/QH8AtKNn+/oNaMGAB/Rr1y/O5IiIiIiKFUS7WScrIyGDNmjWMy1EO28vLix49evDTTz+d45mlw9Gaf8CpcxcoOJfY0FiC/ILcQkylAPM4e22eZUOXEeQbRERABIE+gecMOkNbDC10m4pKv0b9WDBgASO+HOHWqxUXFsf0XtMVkERERETEY0p1SPrrr7/Izs4mKirK7XhUVBS///57ns9JT08nPT3duZ+cnFysbTyXqt0D4ZPCP///rv4/utXqVqBrz17Xpyzo16gfVze4mhV7V5CYkkhMaAxda3TF26uQq8iKiIiIiBSBUh2SCmPKlClMmjTJ080AoHql6oV6XkWak+Pt5V3gICgiIiIiUhL+eZa9B1WpUgVvb28OHz7sdvzw4cNER0fn+Zxx48aRlJTkfOzbty/P60qCo0BBHrUJjDyOO+bkTO81XT0qIiIiIiIeUKpDkp+fH61bt2ZpjpVS7XY7S5cupWPHjnk+x9/fn7CwMLeHp3h7eTOj1wxsNpsz/DjYsIENIgMj3Y7HhcWpaIGIiIiIiAeV+uF2o0aNYujQobRp04Z27doxffp0Tp06xa233urpphXIPxUo0JwcEREREZHSpdSXAAd4+eWXnYvJtmjRgpkzZ9K+ffsCPdeTJcBzyrZnKwyJiIiIiHhQQbNBmQhJF6K0hCQREREREfGsgmaDUj0nSUREREREpKQpJImIiIiIiOSgkCQiIiIiIpKDQpKIiIiIiEgOCkkiIiIiIiI5KCSJiIiIiIjkoJAkIiIiIiKSg0KSiIiIiIhIDgpJIiIiIiIiOSgkiYiIiIiI5ODj6QYUN8uyAEhOTvZwS0RERERExJMcmcCREfJT7kNSSkoKAPHx8R5uiYiIiIiIlAYpKSmEh4fne95m/VOMKuPsdjsHDx4kNDQUm83msXYkJycTHx/Pvn37CAsL81g7pOzQe0YKQ+8bOV96z8j50ntGzldpes9YlkVKSgqxsbF4eeU/86jc9yR5eXkRFxfn6WY4hYWFefzNIWWL3jNSGHrfyPnSe0bOl94zcr5Ky3vmXD1IDircICIiIiIikoNCkoiIiIiISA4KSSXE39+fxx9/HH9/f083RcoIvWekMPS+kfOl94ycL71n5HyVxfdMuS/cICIiIiIicj7UkyQiIiIiIpKDQpKIiIiIiEgOCkkiIiIiIiI5KCSJiIiIiIjkoJBUQmbNmkWtWrUICAigffv2rF692tNNkmIwZcoU2rZtS2hoKNWqVeOaa67hjz/+cLvmzJkz3HPPPURGRhISEsJ1113H4cOH3a7Zu3cvvXv3JigoiGrVqjFmzBiysrLcrlm+fDmtWrXC39+funXrMm/evFzt0fuubJk6dSo2m42RI0c6j+n9Ink5cOAAN910E5GRkQQGBtKsWTN+/fVX53nLspgwYQIxMTEEBgbSo0cPtm3b5naP48ePc+ONNxIWFkZERATDhg0jNTXV7ZqNGzfStWtXAgICiI+P59lnn83Vlg8//JCGDRsSEBBAs2bN+Pzzz4vnRUuhZWdnM378eBISEggMDKROnTo8+eST5KzdpfdMxfb999/Tt29fYmNjsdlsfPTRR27nS9P7oyBtKRKWFLv58+dbfn5+1uuvv25t3rzZuv32262IiAjr8OHDnm6aFLGePXtac+fOtTZt2mStX7/euvLKK60aNWpYqampzmvuvPNOKz4+3lq6dKn166+/Wh06dLA6derkPJ+VlWU1bdrU6tGjh7Vu3Trr888/t6pUqWKNGzfOec3OnTutoKAga9SoUdaWLVusl156yfL29ra+/PJL5zV635Utq1evtmrVqmVddNFF1ogRI5zH9X6Rsx0/ftyqWbOmdcstt1irVq2ydu7caS1ZssTavn2785qpU6da4eHh1kcffWRt2LDBuuqqq6yEhATr9OnTzmt69eplNW/e3Pr555+tFStWWHXr1rUGDRrkPJ+UlGRFRUVZN954o7Vp0ybrvffeswIDA61XX33Vec0PP/xgeXt7W88++6y1ZcsW67HHHrN8fX2t3377rWT+MKRAJk+ebEVGRlqfffaZtWvXLuvDDz+0QkJCrBkzZjiv0XumYvv888+tRx991Fq4cKEFWIsWLXI7X5reHwVpS1FQSCoB7dq1s+655x7nfnZ2thUbG2tNmTLFg62SknDkyBELsL777jvLsizr5MmTlq+vr/Xhhx86r9m6dasFWD/99JNlWeYfKi8vL+vQoUPOa1555RUrLCzMSk9PtyzLsh566CGrSZMmbt9r4MCBVs+ePZ37et+VHSkpKVa9evWsr7/+2rrkkkucIUnvF8nL2LFjrS5duuR73m63W9HR0dZzzz3nPHby5EnL39/feu+99yzLsqwtW7ZYgPXLL784r/niiy8sm81mHThwwLIsy/rPf/5jVapUyfk+cnzvBg0aOPcHDBhg9e7d2+37t2/f3rrjjjsu7EVKkerdu7f173//2+1Yv379rBtvvNGyLL1nxN3ZIak0vT8K0paiouF2xSwjI4M1a9bQo0cP5zEvLy969OjBTz/95MGWSUlISkoCoHLlygCsWbOGzMxMt/dDw4YNqVGjhvP98NNPP9GsWTOioqKc1/Ts2ZPk5GQ2b97svCbnPRzXOO6h913Zcs8999C7d+9cP1O9XyQvn3zyCW3atOH666+nWrVqtGzZkjlz5jjP79q1i0OHDrn9PMPDw2nfvr3b+yYiIoI2bdo4r+nRowdeXl6sWrXKec3FF1+Mn5+f85qePXvyxx9/cOLECec153pvSenQqVMnli5dyp9//gnAhg0bWLlyJVdccQWg94ycW2l6fxSkLUVFIamY/fXXX2RnZ7v9AgMQFRXFoUOHPNQqKQl2u52RI0fSuXNnmjZtCsChQ4fw8/MjIiLC7dqc74dDhw7l+X5xnDvXNcnJyZw+fVrvuzJk/vz5rF27lilTpuQ6p/eL5GXnzp288sor1KtXjyVLlnDXXXdx//3388YbbwCun/u5fp6HDh2iWrVqbud9fHyoXLlykby39L4pXR5++GFuuOEGGjZsiK+vLy1btmTkyJHceOONgN4zcm6l6f1RkLYUFZ8ivZuION1zzz1s2rSJlStXeropUkrt27ePESNG8PXXXxMQEODp5kgZYbfbadOmDU8//TQALVu2ZNOmTcyePZuhQ4d6uHVSGn3wwQe88847vPvuuzRp0oT169czcuRIYmNj9Z4RyYd6kopZlSpV8Pb2zlWN6vDhw0RHR3uoVVLc7r33Xj777DOWLVtGXFyc83h0dDQZGRmcPHnS7fqc74fo6Og83y+Oc+e6JiwsjMDAQL3vyog1a9Zw5MgRWrVqhY+PDz4+Pnz33XfMnDkTHx8foqKi9H6RXGJiYmjcuLHbsUaNGrF3717A9XM/188zOjqaI0eOuJ3Pysri+PHjRfLe0vumdBkzZoyzN6lZs2YMGTKEBx54wNmDrfeMnEtpen8UpC1FRSGpmPn5+dG6dWuWLl3qPGa321m6dCkdO3b0YMukOFiWxb333suiRYv49ttvSUhIcDvfunVrfH193d4Pf/zxB3v37nW+Hzp27Mhvv/3m9o/N119/TVhYmPMXo44dO7rdw3GN4x5635UN3bt357fffmP9+vXOR5s2bbjxxhud23q/yNk6d+6ca2mBP//8k5o1awKQkJBAdHS0288zOTmZVatWub1vTp48yZo1a5zXfPvtt9jtdtq3b++85vvvvyczM9N5zddff02DBg2oVKmS85pzvbekdEhLS8PLy/1XPm9vb+x2O6D3jJxbaXp/FKQtRaZIy0BInubPn2/5+/tb8+bNs7Zs2WINHz7cioiIcKtGJeXDXXfdZYWHh1vLly+3EhMTnY+0tDTnNXfeeadVo0YN69tvv7V+/fVXq2PHjlbHjh2d5x0lnf/1r39Z69evt7788kuratWqeZZ0HjNmjLV161Zr1qxZeZZ01vuu7MlZ3c6y9H6R3FavXm35+PhYkydPtrZt22a98847VlBQkPX22287r5k6daoVERFhffzxx9bGjRutq6++Os9yvS1btrRWrVplrVy50qpXr55bud6TJ09aUVFR1pAhQ6xNmzZZ8+fPt4KCgnKV6/Xx8bGef/55a+vWrdbjjz+ucs6l0NChQ63q1as7S4AvXLjQqlKlivXQQw85r9F7pmJLSUmx1q1bZ61bt84CrBdeeMFat26dtWfPHsuyStf7oyBtKQoKSSXkpZdesmrUqGH5+flZ7dq1s37++WdPN0mKAZDnY+7cuc5rTp8+bd19991WpUqVrKCgIOvaa6+1EhMT3e6ze/du64orrrACAwOtKlWqWA8++KCVmZnpds2yZcusFi1aWH5+flbt2rXdvoeD3ndlz9khSe8Xycunn35qNW3a1PL397caNmxovfbaa27n7Xa7NX78eCsqKsry9/e3unfvbv3xxx9u1xw7dswaNGiQFRISYoWFhVm33nqrlZKS4nbNhv9v795jav7/OIA/j5I6TsfpJGkoImen5KBNhFxiaCYKZ67Fmcll8Uf+QEmY0XL7ug5buS0LseZSLLUSmtDpD02xEtNcIpbQ7f3747c+v3N0O3749ZPnY2vr/fm8z+v9er3X1nnt8+5kNIqxY8eKbt26iT59+oidO3c2yyU5OVkMHjxY2NjYCC8vL3H16tVfXzD9lE+fPom1a9cKV1dXYWtrK9zd3cWmTZvMPoqZPzN/t8zMzBbfv4SGhgoh/r9+PizJ5VeQCWHy75aJiIiIiIj+cvybJCIiIiIiIhNskoiIiIiIiEywSSIiIiIiIjLBJomIiIiIiMgEmyQiIiIiIiITbJKIiIiIiIhMsEkiIiIiIiIywSaJiIj+Z8LCwjBr1qyOTqNFiYmJUKlU0njLli0YNmxYh+VjqQkTJmDdunUdnQYRUafCJomIqBN4+/YtVq5cCVdXV3Tr1g29e/fG1KlTkZub29Gp/XLfNzO/S2RkJDIyMn77Oj8rJSUF27Zt6+g0iIg6FeuOToCIiH5eSEgIamtrcfLkSbi7u+P169fIyMhAZWVlR6f2x1IoFFAoFB2dRrvUanVHp0BE1OnwSRIR0R+uqqoKOTk52LVrFyZOnAg3NzeMHDkSGzZswMyZM6V5MpkMJ06cwOzZsyGXy+Hh4YHU1FTpfkNDAwwGAwYMGAA7OztoNBrs37/fbK2m43KxsbFwcnKCUqlEeHg4amtrpTkXLlyAt7c37Ozs4OjoiMmTJ+Pz589mceLj4+Hi4gJHR0esXr0adXV10r0PHz5gyZIlcHBwgFwux/Tp01FSUgIAyMrKwtKlS/Hx40fIZDLIZDJs2bIFAHD48GF4eHjA1tYWzs7OmDNnTpv7lpiYCFdXV8jlcsyePbtZQ/n9cbum2nfs2AFnZ2eoVCps3boV9fX1WL9+PdRqNfr27YuEhASzOC9evMC8efOgUqmgVqsRFBSEsrKyZnHb2pO2avv+uF1b+9dUt0qlQnp6OrRaLRQKBaZNm4aKioo294uI6G/CJomI6A/X9MTj8uXL+PbtW5tzY2NjMW/ePBQWFiIwMBALFy7E+/fvAQCNjY3o27cvzp8/j8ePH2Pz5s3YuHEjkpOTzWJkZGSgqKgIWVlZSEpKQkpKCmJjYwEAFRUVmD9/PpYtWybNCQ4OhhBCen1mZiaePXuGzMxMnDx5EomJiUhMTJTuh4WFIT8/H6mpqbh79y6EEAgMDERdXR38/Pywb98+KJVKVFRUoKKiApGRkcjPz0dERAS2bt2KJ0+eIC0tDf7+/q3uQ15eHgwGA9asWYOCggJMnDgR27dvb3evb926hVevXiE7Oxt79uxBTEwMZsyYAQcHB+Tl5SE8PBwrVqzAy5cvAQB1dXWYOnUq7O3tkZOTg9zcXKkpMW0s29qTH62trf1rUlNTg/j4eJw+fRrZ2dkoLy9HZGRku/UTEf01BBER/fEuXLggHBwchK2trfDz8xMbNmwQRqPRbA4AERUVJY2rq6sFAHH9+vVW465evVqEhIRI49DQUKFWq8Xnz5+la0eOHBEKhUI0NDSIBw8eCACirKysxXihoaHCzc1N1NfXS9fmzp0r9Hq9EEKI4uJiAUDk5uZK99+9eyfs7OxEcnKyEEKIhIQE0aNHD7O4Fy9eFEqlUnz69KnVWkzNnz9fBAYGml3T6/VmcWNiYoROp2uWe0NDg3RNo9GIcePGSeP6+nrRvXt3kZSUJIQQ4vTp00Kj0YjGxkZpzrdv34SdnZ1IT0+3aE/aq238+PFi7dq1QgjL9w+AePr0qTTn0KFDwtnZufUNIyL6y/BJEhFRJxASEoJXr14hNTUV06ZNQ1ZWFkaMGGH2hAYAhg4dKn3fvXt3KJVKvHnzRrp26NAh+Pj4wMnJCQqFAseOHUN5eblZDJ1OB7lcLo1Hjx6N6upqvHjxAjqdDgEBAfD29sbcuXNx/PhxfPjwwez1Xl5esLKyksYuLi5SDkVFRbC2toavr69039HRERqNBkVFRa3WP2XKFLi5ucHd3R2LFy/G2bNnUVNT0+r8oqIiszWa6miPl5cXunT5z69OZ2dneHt7S2MrKys4OjpK9RiNRjx9+hT29vbSEz+1Wo2vX7/i2bNnZnFb25Mfqc3S/ZPL5Rg4cGCL6xEREY/bERF1Gra2tpgyZQqio6Nx584dhIWFISYmxmxO165dzcYymQyNjY0AgHPnziEyMhIGgwE3btxAQUEBli5danYsrD1WVla4efMmrl+/Dk9PTxw4cAAajQalpaUW5fDfsre3x8OHD5GUlAQXFxds3rwZOp0OVVVVPxX3ey3l3lY91dXV8PHxQUFBgdlXcXExFixY0Gbcphi/o7aW1hMmRyKJiP52bJKIiDopT0/PZh+Y0Jbc3Fz4+flh1apVGD58OAYNGmT2tKOJ0WjEly9fpPG9e/egUCjQr18/AP9+wz1mzBjExsbi0aNHsLGxwaVLlyzKQavVor6+Hnl5edK1yspKPHnyBJ6engAAGxsbNDQ0NHuttbU1Jk+ejLi4OBQWFqKsrAy3bt1qdR3TNZrq+NVGjBiBkpIS9OrVC4MGDTL76tGjh8VxLK3Nkv0jIqL2sUkiIvrDVVZWYtKkSThz5gwKCwtRWlqK8+fPIy4uDkFBQRbH8fDwQH5+PtLT01FcXIzo6Gjcv3+/2bza2loYDAY8fvwY165dQ0xMDNasWYMuXbogLy8PO3bsQH5+PsrLy5GSkoK3b99Cq9VanENQUBCWL1+O27dvw2g0YtGiRejTp49US//+/VFdXY2MjAy8e/cONTU1uHLlCv755x8UFBTg+fPnOHXqFBobG6HRaFpcJyIiAmlpaYiPj0dJSQkOHjyItLQ0i/fKUgsXLkTPnj0RFBSEnJwclJaWIisrCxEREdKHO7TnR2qzZP+IiKh9bJKIiP5wCoUCvr6+2Lt3L/z9/TFkyBBER0dj+fLlOHjwoMVxVqxYgeDgYOj1evj6+qKyshKrVq1qNi8gIAAeHh7w9/eHXq/HzJkzpY/hViqVyM7ORmBgIAYPHoyoqCjs3r0b06dPtziPhIQE+Pj4YMaMGRg9ejSEELh27Zp0RMzPzw/h4eHQ6/VwcnJCXFwcVCoVUlJSMGnSJGi1Whw9ehRJSUnw8vJqcY1Ro0bh+PHj2L9/P3Q6HW7cuIGoqCiLc7SUXC5HdnY2XF1dERwcDK1WC4PBgK9fv0KpVFoU40dra2//iIiofTLBQ8hERGShsLAwVFVV4fLlyx2dChER0W/DJ0lEREREREQm2CQRERERERGZ4HE7IiIiIiIiE3ySREREREREZIJNEhERERERkQk2SURERERERCbYJBEREREREZlgk0RERERERGSCTRIREREREZEJNklEREREREQm2CQRERERERGZYJNERERERERk4l9pLbgGn+TJtgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Runtime storage.\n", + "time_dmd = []\n", + "time_cdmd = []\n", + "time_rdmd = []\n", + "\n", + "# Define the data parameters to investigate.\n", + "niter = 4\n", + "t_dim = 100\n", + "xdims = 10 ** np.arange(2, 2 + niter)\n", + "\n", + "for x_dim in xdims:\n", + " # Build a data matrix using the current x resolution.\n", + " snapshots_matrix = create_dataset(x_dim, t_dim)[-1].T\n", + "\n", + " # Build compression matrix for CDMD.\n", + " compression_matrix = build_compression_matrix(snapshots_matrix)\n", + "\n", + " # Build random matrix for RDMD.\n", + " test_matrix = np.random.randn(snapshots_matrix.shape[1], 5)\n", + "\n", + " t0 = time.time()\n", + " DMD(svd_rank=-1, exact=True).fit(snapshots_matrix)\n", + " t1 = time.time()\n", + " time_dmd.append(t1 - t0)\n", + "\n", + " t0 = time.time()\n", + " CDMD(svd_rank=-1, compression_matrix=compression_matrix).fit(\n", + " snapshots_matrix\n", + " )\n", + " t1 = time.time()\n", + " time_cdmd.append(t1 - t0)\n", + "\n", + " t0 = time.time()\n", + " RDMD(svd_rank=-1, test_matrix=test_matrix).fit(snapshots_matrix)\n", + " t1 = time.time()\n", + " time_rdmd.append(t1 - t0)\n", + "\n", + "# Plot runtime results!\n", + "plt.figure(figsize=(10, 5))\n", + "plt.plot(xdims, time_dmd, \"ro--\", label=\"exact dmd\")\n", + "plt.plot(xdims, time_cdmd, \"bo--\", label=\"compressed dmd\")\n", + "plt.plot(xdims, time_rdmd, \"go--\", label=\"randomized dmd\")\n", + "plt.legend()\n", + "plt.ylabel(\"Seconds\")\n", + "plt.xlabel(\"Snapshots dimension\")\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "24c6d70e", + "metadata": {}, + "source": [ + "## In summary...\n", + "- `RDMD` tends to be faster and more accurate than `CDMD`.\n", + "- The previous statement is especially true in the presence of measurement noise and very high-dimensional snapshots.\n", + "- By default, `oversampling = 10` and `power_iters = 2`, as these are generally effective and appropriate parameter choices.\n", + "- Increasing either oversampling or power iterations often increases accuracy at the expense of slower runtimes.\n", + "- Use the `test_matrix` parameter to input custom or pre-computed random test matrices.\n", + "- See the original RDMD paper [1] for reference and for further details!" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "5b44fdd7", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.6" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/tutorials/tutorial16/tutorial-16-rdmd.py b/tutorials/tutorial16/tutorial-16-rdmd.py new file mode 100644 index 000000000..fcadb0877 --- /dev/null +++ b/tutorials/tutorial16/tutorial-16-rdmd.py @@ -0,0 +1,380 @@ +#!/usr/bin/env python +# coding: utf-8 + +# # Tutorial 16: Randomized DMD +# +# In this tutorial, we re-examine the system explored in [Tutorial 4](https://pydmd.github.io/PyDMD/tutorial4cdmd.html) and compare the performance of Compressed DMD (CDMD) and Randomized DMD (RDMD) [1] as means of improving the efficiency of the exact DMD algorithm. We highlight RDMD as an effective alternative to its predecessor CDMD, while also highlighting how one might tune the parameters of RDMD in order to balance accuracy and efficiency. +# +# [1] N. B. Erichson, L. Mathelin, J. N. Kutz, and S. L. Brunton, *Randomized dynamic mode decomposition*, SIAM J. Appl. Dyn. Syst., 18 (2019), pp. 1867-1891. https://doi.org/10.1137/18M1215013 + +# We begin by importing the `RDMD` class from the PyDMD package, along with the `DMD` and `CDMD` classes for performance comparison. We also import the `time` module for calculating runtime, `numpy` for mathematical computations, and `matplotlib.pyplot` for plotting. + +# In[1]: + + +import time +import numpy as np +import matplotlib.pyplot as plt + +from pydmd import DMD, CDMD, RDMD + + +# We then define a function for calculating relative error, along with a function for computing the CDMD compression matrix used in Tutorial 4. + +# In[2]: + + +def compute_error(true, est): + """ + Computes and returns relative error. + """ + return np.linalg.norm(true - est) / np.linalg.norm(true) + + +def build_compression_matrix(snapshots_matrix): + """ + Computes and returns the CDMD compression matrix used in Tutorial 4. + """ + random_matrix = np.random.permutation( + snapshots_matrix.shape[0] * snapshots_matrix.shape[1] + ) + random_matrix = random_matrix.reshape( + snapshots_matrix.shape[1], snapshots_matrix.shape[0] + ) + compression_matrix = random_matrix / np.linalg.norm(random_matrix) + + return compression_matrix + + +# ## The Toy Data Set +# +# Now, we re-create the helper function from Tutorial 4 that returns toy data snapshots for a given spatial and temporal resolution. Each data snapshot is the sum of the following three components, with $x \in [-5, 5]$ and $t \in [0, 4\pi]$. +# +# - $f_1(x, t) = e^{\frac{-x^2}{5}}\,\cos(4x)\,e^{(2.3i)t}$ +# - $f_2(x, t) = \bigg(1-e^{1-\frac{x^2}{6}}\bigg)e^{(1.3i)t}$ +# - $f_3(x, t) = \bigg(-\frac{x^2}{50} + 1\bigg)1.1i^{-2t}$ +# +# Here we produce our toy data set for 256 spatial collocation points across 128 time points. We then add Gaussian noise to our data so that we may compare method performance in the presence of measurement noise. The clean data and the noisy data sets are then plotted. + +# In[3]: + + +def create_dataset(x_dim, t_dim): + """ + Args: + x_dim = resolution along the x range [-5, 5] + t_dim = resolution along the t range [0, 4*pi] + + Returns: + x_grid = x collocation points + t_grid = t collocation points + X = (t_dim, x_dim) np.ndarray of snapshot data + """ + # Define the x and t collocation points. + x = np.linspace(-5, 5, x_dim) + t = np.linspace(0, 4 * np.pi, t_dim) + xgrid, tgrid = np.meshgrid(x, t) + + # Define the modes that make up each snapshot. + def f1(x, t): + return np.exp(-(x**2) / 5) * np.cos(4 * x) * np.exp(2.3j * t) + + def f2(x, t): + return (1 - np.exp(1 - (x**2) / 6)) * np.exp(1.3j * t) + + def f3(x, t): + return (1 - ((x**2) / 50)) * (1.1j ** (-2 * t)) + + # Evaluate modes at each collocation point. + X1 = f1(xgrid, tgrid) + X2 = f2(xgrid, tgrid) + X3 = f3(xgrid, tgrid) + + return xgrid, tgrid, (X1 + X2 + X3) + + +# Generate and visualize the toy dataset. +xgrid, tgrid, X = create_dataset(x_dim=256, t_dim=128) + +# Generate noisy data for a given noise magnitude. Seed is used for reproducibility. +noise_mag = 0.1 +rng = np.random.default_rng(seed=42) +X_noisy = X + (noise_mag * rng.standard_normal(X.shape)) + +# Plot both the clean and the noisy data sets. +plt.figure(figsize=(8, 3)) +for i, (mat, name) in enumerate(zip([X, X_noisy], ["Data", "Noisy Data"])): + plt.subplot(1, 2, i + 1) + plt.pcolor(xgrid, tgrid, mat.real) + plt.colorbar() + plt.title(name) + plt.xlabel("x") + plt.ylabel("t", rotation=0) +plt.tight_layout() +plt.show() + + +# ## Exact DMD +# +# We begin by applying exact DMD to our data so that its results may serve as a benchmark for CDMD and RDMD. Note that throughout this tutorial, we will fit our models to the noisy data set and use our models' ability to reconstruct the clean signal as a proxy for model accuracy. Furthermore, we record fitting time for all methods in order to compare method efficiency. Here, we replicate the DMD approach used in Tutorial 4. + +# In[4]: + + +# Define the data matrices to be used for model fitting. +snapshots_matrix = X.T +snapshots_matrix_noisy = X_noisy.T + +# Fit a DMD model. +t0 = time.time() +dmd = DMD(svd_rank=3, exact=True) +dmd.fit(snapshots_matrix_noisy) +t1 = time.time() + +# Record and print model error and training time. +dmd_error = compute_error(snapshots_matrix, dmd.reconstructed_data) +dmd_time = t1 - t0 +print(f"DMD Reconstruction Error: {dmd_error}") +print(f"DMD Training Time: {dmd_time}") + + +# ## Compressed DMD +# +# Now we apply CDMD to our data, where we again compute error and training time when given noisy data. Here, we compute these metrics across multiple trials in order to account for variations that result from randomness. We additionally utilize the compression matrix used in Tutorial 4 for all CDMD models as to replicate the Tutorial 4 approach. We also begin by including the time needed to compute the compression matrix in our CDMD training time. + +# In[5]: + + +# Define the number of random trials to perform. +num_trials = 100 + +# Initialize the error and runtime metrics. +cdmd_error = 0.0 +cdmd_time = 0.0 + +for _ in range(num_trials): # Perform multiple trials... + # Fit a CDMD model. + t0 = time.time() + compression_matrix = build_compression_matrix(snapshots_matrix) + cdmd = CDMD(svd_rank=3, compression_matrix=compression_matrix) + cdmd.fit(snapshots_matrix_noisy) + t1 = time.time() + # Incorporate this trial's results into the running averages. + cdmd_error += ( + compute_error(snapshots_matrix, cdmd.reconstructed_data) / num_trials + ) + cdmd_time += (t1 - t0) / num_trials + +# Print average model error and training runtime. +print(f"CDMD (Average) Reconstruction Error: {cdmd_error}") +print(f"CDMD (Average) Training Time: {cdmd_time}") + + +# ## Randomized DMD: Varying Oversampling +# +# We now examine the performance of RDMD, which is derived in [1] and implemented in the `RDMD` class of PyDMD. +# +# The performance of the RDMD algorithm is manually toggled by 2 major parameters, one of which is the **oversampling** parameter, which controls the number of additional random samples (beyond the predicted rank of the data) that are used to compute a basis for the range of the input data. In short, increasing the oversampling increases the probability that one is able to construct a good basis used in RDMD, yet it simultaneously increases runtime due to the usage of a larger random test matrix. It should be noted that in general, a small oversampling value approximately within the range of $[5, 10]$ often suffices [1]. +# +# Here, we demonstate how the performance of the `RDMD` module is impacted by the `oversampling` parameter, which is `10` by default and can be toggled upon the initialization of an `RDMD` model. Here, we examine oversampling values within the range $[0, 50]$ and we again fit our RDMD models to noisy data across multiple random trials. We then compare the average error and training time to that of exact DMD and CDMD. + +# In[6]: + + +# Define the default PyDMD oversampling value. +oversampling_default = 10 + +# Define the oversampling values to investigate. +oversampling_values = np.arange(0, 51, 5) + +# Initialize the error and runtime metrics. +oversampling_error = np.zeros(len(oversampling_values)) +oversampling_times = np.zeros(len(oversampling_values)) + +for i, oversampling in enumerate(oversampling_values): + for _ in range(num_trials): # Perform multiple trials... + # Fit an RDMD model. + t0 = time.time() + rdmd = RDMD(svd_rank=3, oversampling=oversampling).fit( + snapshots_matrix_noisy + ) + t1 = time.time() + # Incorporate this trial's results into the running averages. + oversampling_error[i] += ( + compute_error(snapshots_matrix, rdmd.reconstructed_data) + / num_trials + ) + oversampling_times[i] += (t1 - t0) / num_trials + + +# We now plot the results of our experiments. +# +# Notice that exact DMD and RDMD tend to be more accurate than CDMD, with RDMD performing considerably well with very little oversampling. Also notice that as expected, the time required to train an RDMD model on average increases as one increases the oversampling parameter. However, as long as the oversampling isn't too large, an RDMD model can be trained in about the same amount of time as a CDMD model for this particular data set. + +# In[7]: + + +# Plot experiment results! +plt.figure(figsize=(8, 3)) + +# Plot error vs. oversampling. +plt.subplot(1, 2, 1) +plt.plot(oversampling_values, oversampling_error, "-o", c="g", label="RDMD") +plt.axhline(y=cdmd_error, c="b", label="CDMD") +plt.axhline(y=dmd_error, c="r", label="Exact DMD") +plt.axvline(x=oversampling_default, ls="--", c="k", label="default") +plt.title("Reconstruction Error") +plt.xlabel("Oversampling") +plt.ylabel("Relative Error") +plt.legend() + +# Plot runtime vs. oversampling. +plt.subplot(1, 2, 2) +plt.plot(oversampling_values, oversampling_times, "-o", c="g", label="RDMD") +plt.axhline(y=cdmd_time, c="b", label="CDMD") +plt.axhline(y=dmd_time, c="r", label="Exact DMD") +plt.axvline(x=oversampling_default, ls="--", c="k", label="default") +plt.title("Training Time") +plt.xlabel("Oversampling") +plt.ylabel("Runtime") +plt.legend() +plt.tight_layout() +plt.show() + + +# ## Randomized DMD: Varying Power Iterations +# +# Another major RDMD parameter is the number of **power iterations** used during the randomized QB decomposition process. The use of power iterations is a data preprocessing step that promotes faster singular value decay and hence promotes better basis approximations. Thus similar to the oversampling parameter, increasing the number of power iterations tends to lead to increased accuracy with the drawback of increased runtime due to the need to pass through the data at each power iteration. In general, as little as $1$ or $2$ power iterations often suffice [1]. +# +# The number of power iterations used may also be toggled upon the initialization of an `RDMD` model via the `power_iters` argument, which is `2` by default. Here, we run through the same RDMD experiments as before, only this time we examine power iteration values within the range $[0, 20]$. + +# In[8]: + + +# Define the default PyDMD power_iter value. +power_iter_default = 2 + +# Define the power iteration values to investigate. +power_iter_values = np.arange(0, 21, 2) + +# Initialize the error and runtime metrics. +power_iter_error = np.zeros(len(power_iter_values)) +power_iter_times = np.zeros(len(power_iter_values)) + +for i, power_iters in enumerate(power_iter_values): + for _ in range(num_trials): # Perform multiple trials... + # Fit an RDMD model. + t0 = time.time() + rdmd = RDMD(svd_rank=3, power_iters=power_iters).fit( + snapshots_matrix_noisy + ) + t1 = time.time() + # Incorporate this trial's results into the running averages. + power_iter_error[i] += ( + compute_error(snapshots_matrix, rdmd.reconstructed_data) + / num_trials + ) + power_iter_times[i] += (t1 - t0) / num_trials + + +# As expected, we observe that the time required to train an RDMD model tends to increase as one increases the power iterations. Yet again, as long as this parameter isn't too large, an RDMD model can on average be trained in less time than an exact DMD model, and in about the same amount of time as a CDMD model for this particular data set. However this time, notice that on average, introducing as little as 2 power iterations results in a noticeable improvement in RDMD accuracy. Here, we omit the CDMD error so that we can better observe this phenomenon. + +# In[9]: + + +# Plot experiment results! +plt.figure(figsize=(8, 3)) + +# Plot error vs. power iterations. +plt.subplot(1, 2, 1) +plt.plot(power_iter_values, power_iter_error, "-o", c="g", label="RDMD") +# plt.axhline(y=cdmd_error, c="b", label="CDMD") +plt.axhline(y=dmd_error, c="r", label="exact DMD") +plt.axvline(x=power_iter_default, ls="--", c="k", label="default value") +plt.title("Reconstruction Error") +plt.xlabel("Power Iterations") +plt.ylabel("Relative Error") +plt.legend() + +# Plot runtime vs. oversampling. +plt.subplot(1, 2, 2) +plt.plot(power_iter_values, power_iter_times, "-o", c="g", label="RDMD") +plt.axhline(y=cdmd_time, c="b", label="CDMD") +plt.axhline(y=dmd_time, c="r", label="exact DMD") +plt.axvline(x=power_iter_default, ls="--", c="k", label="default value") +plt.title("Training Time") +plt.xlabel("Power Iterations") +plt.ylabel("Runtime") +plt.legend() +plt.tight_layout() +plt.show() + + +# ## Runtime Comparison + +# So far, we've seen that RDMD tends to be computationally efficient like CDMD, and that the method tends to be more accurate than CDMD in the presence of noise. However, we have yet to observe another major advantage of RDMD over CDMD, which is that when performing data compression, RDMD relies more upon the intrinsic rank of the data, whereas CDMD relies more upon the dimension of the provided snapshots [1]. As a result, RDMD is able to achive high-accuracy results with much smaller compression matrices than CDMD, hence leading to faster runtimes for very high-dimensional data sets. +# +# We demonstrate this by replicating the final runtime experiment performed in Tutorial 4, where we compare the runtime of exact DMD, CDMD, and RDMD as one increases the dimension of the input data snapshots. This time, we do not count the time required to build compression matrices as a part of the training runtime in accordance with Tutorial 4. Notice that our compression DMD methods are more computationally efficient than exact DMD, with RDMD surpassing CDMD in terms of efficiency for larger data sets. +# +# Here, we also demonstrate the usage of the `test_matrix` parameter of the `RDMD` module, which allows users to pass a custom random test matrix to the `RDMD` model. By default, `RDMD` uses a random test matrix $\Omega \in \mathbb{R}^{m \times l}$ drawn from a normal Gaussian distribution, where $m$ denotes the number of data snapshots and $l$ denotes the target rank + oversampling. However, one may seek to pre-compute their test matrix as demonstrated below, that or use alternative test matrices such as the subsampled randomized Hadamard transform for improved efficiency [1]. + +# In[10]: + + +# Runtime storage. +time_dmd = [] +time_cdmd = [] +time_rdmd = [] + +# Define the data parameters to investigate. +niter = 4 +t_dim = 100 +xdims = 10 ** np.arange(2, 2 + niter) + +for x_dim in xdims: + # Build a data matrix using the current x resolution. + snapshots_matrix = create_dataset(x_dim, t_dim)[-1].T + + # Build compression matrix for CDMD. + compression_matrix = build_compression_matrix(snapshots_matrix) + + # Build random matrix for RDMD. + test_matrix = np.random.randn(snapshots_matrix.shape[1], 5) + + t0 = time.time() + DMD(svd_rank=-1, exact=True).fit(snapshots_matrix) + t1 = time.time() + time_dmd.append(t1 - t0) + + t0 = time.time() + CDMD(svd_rank=-1, compression_matrix=compression_matrix).fit( + snapshots_matrix + ) + t1 = time.time() + time_cdmd.append(t1 - t0) + + t0 = time.time() + RDMD(svd_rank=-1, test_matrix=test_matrix).fit(snapshots_matrix) + t1 = time.time() + time_rdmd.append(t1 - t0) + +# Plot runtime results! +plt.figure(figsize=(10, 5)) +plt.plot(xdims, time_dmd, "ro--", label="exact dmd") +plt.plot(xdims, time_cdmd, "bo--", label="compressed dmd") +plt.plot(xdims, time_rdmd, "go--", label="randomized dmd") +plt.legend() +plt.ylabel("Seconds") +plt.xlabel("Snapshots dimension") +plt.show() + + +# ## In summary... +# - `RDMD` tends to be faster and more accurate than `CDMD`. +# - The previous statement is especially true in the presence of measurement noise and very high-dimensional snapshots. +# - By default, `oversampling = 10` and `power_iters = 2`, as these are generally effective and appropriate parameter choices. +# - Increasing either oversampling or power iterations often increases accuracy at the expense of slower runtimes. +# - Use the `test_matrix` parameter to input custom or pre-computed random test matrices. +# - See the original RDMD paper [1] for reference and for further details! + +# In[ ]: