forked from PyDMD/PyDMD
-
Notifications
You must be signed in to change notification settings - Fork 0
/
tutorial-6-hodmd.py
157 lines (103 loc) · 4.47 KB
/
tutorial-6-hodmd.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
#!/usr/bin/env python
# coding: utf-8
# # PyDMD
# ## Tutorial 6: Higher Order Dynamic Mode Decomposition on low dimensional snapshots
# In this tutorial we will show the application of the higher order dynamic mode decomposition (for complete description read the original work by [Soledad Le Clainche and José M. Vega](https://epubs.siam.org/doi/10.1137/15M1054924)). This method allows to apply the DMD also when the dimension of the snapshots is less than the number of snapshots: following we will consider a limit case, dealing with 1D snapshots.
# First of all we import the HODMD class from the pydmd package, we set matplotlib for the notebook and we import numpy.
# In[1]:
get_ipython().run_line_magic("matplotlib", "inline")
import matplotlib.pyplot as plt
import numpy as np
import time
from pydmd import HODMD
from pydmd.plotter import plot_eigs
# Now, we create our toy dataset: we evaluate a nonlinear function in equispaced points, in order to simulate a temporal signal. Here our function:
#
# $
# f(t) = \cos(t)\sin(\cos(t)) + \cos(\frac{t}{5})
# $
# In[2]:
def myfunc(x):
return np.cos(x) * np.sin(np.cos(x)) + np.cos(x * 0.2)
# Because we trust in the DMD power, we add a bit of noise and we plot our function:
# In[3]:
x = np.linspace(0, 10, 64)
y = myfunc(x)
snapshots = y
plt.plot(x, snapshots, ".")
plt.show()
# Now we create the `HODMD` object: in addition to the usual DMD parameters, we have the `d` parameter. Basically, using this method the initial snapshots matrix is rearranged in order to be able to extract the main structures using the singular value decomposition. This parameter `d` handle this arrangement (for further details, check the [HODMD](https://mathlab.github.io/PyDMD/hodmd.html) documentation).
# In[4]:
hodmd = HODMD(svd_rank=0, exact=True, opt=True, d=30).fit(snapshots[None])
# Despite the arrangement, the shape of the reconstructed data is the same of the original input.
# In[5]:
hodmd.reconstructed_data.shape
# As always, we take a look at the eigenvalues to check the stability of the system.
# In[6]:
plot_eigs(hodmd)
# Now we can compare the DMD output with the inital dataset: we plot the snapshots, the original function we are trying to reconstruct and the DMD reconstruction.
# In[7]:
hodmd.original_time["dt"] = hodmd.dmd_time["dt"] = x[1] - x[0]
hodmd.original_time["t0"] = hodmd.dmd_time["t0"] = x[0]
hodmd.original_time["tend"] = hodmd.dmd_time["tend"] = x[-1]
plt.plot(hodmd.original_timesteps, snapshots, ".", label="snapshots")
plt.plot(hodmd.original_timesteps, y, "-", label="original function")
plt.plot(
hodmd.dmd_timesteps,
hodmd.reconstructed_data[0].real,
"--",
label="DMD output",
)
plt.legend()
plt.show()
# Quite good! Let see if we can see in the future.
# In[8]:
hodmd.dmd_time["tend"] = 50
fig = plt.figure(figsize=(15, 5))
plt.plot(hodmd.original_timesteps, snapshots, ".", label="snapshots")
plt.plot(
np.linspace(0, 50, 128),
myfunc(np.linspace(0, 50, 128)),
"-",
label="original function",
)
plt.plot(
hodmd.dmd_timesteps,
hodmd.reconstructed_data[0].real,
"--",
label="DMD output",
)
plt.legend()
plt.show()
# The reconstruction is perfect. Also when time is far away from the snapshots.
#
# We can check what happens if we add some noise.
# In[10]:
noise_range = [0.01, 0.05, 0.1, 0.2]
fig = plt.figure(figsize=(15, 10))
future = 20
for id_plot, i in enumerate(noise_range, start=1):
snapshots = y + np.random.uniform(-i, i, size=y.shape)
hodmd = HODMD(svd_rank=0, exact=True, opt=True, d=30).fit(snapshots[None])
hodmd.original_time["dt"] = hodmd.dmd_time["dt"] = x[1] - x[0]
hodmd.original_time["t0"] = hodmd.dmd_time["t0"] = x[0]
hodmd.original_time["tend"] = hodmd.dmd_time["tend"] = x[-1]
hodmd.dmd_time["tend"] = 20
plt.subplot(2, 2, id_plot)
plt.plot(hodmd.original_timesteps, snapshots, ".", label="snapshots")
plt.plot(
np.linspace(0, future, 128),
myfunc(np.linspace(0, future, 128)),
"-",
label="original function",
)
plt.plot(
hodmd.dmd_timesteps,
hodmd.reconstructed_data[0].real,
"--",
label="DMD output",
)
plt.legend()
plt.title("Noise [{} - {}]".format(-i, i))
plt.show()
# Results are obviously worst, but depending from the amount of noise the HODMD output matches the original function pretty well, at least in a short-time prevision. Within the temporal window, instead, it can reconstruct very well the trend and denoise the input data.