From e980bf9e5557c488d08e1290e4ae7788c7343f87 Mon Sep 17 00:00:00 2001 From: Kyle Koeller Date: Mon, 22 Apr 2024 12:18:06 -0500 Subject: [PATCH] Removed Required Functions Removed some functions that are needed for package to work properly. --- EclipsingBinaries/vseq_updated.py | 47 ++++++++++++++++++++++++++++++- 1 file changed, 46 insertions(+), 1 deletion(-) diff --git a/EclipsingBinaries/vseq_updated.py b/EclipsingBinaries/vseq_updated.py index b62367e..0123c24 100644 --- a/EclipsingBinaries/vseq_updated.py +++ b/EclipsingBinaries/vseq_updated.py @@ -3,7 +3,7 @@ Created on Sat Feb 22 16:09:28 2020 @author: Alec Neal -Last Updated: 04/05/2024 +Last Updated: 04/22/2024 Last Editor: Kyle Koeller Collection of functions, coefficients and equations commonly used @@ -246,12 +246,21 @@ def t_eff_err(coeflist, value, error, temp, coeferror=[], base=10): # sum(np.array(coeferror) * value ** np.arange(len(coeflist)) ** 2)) class error: + def per_diff(x1, x2): + return 100 * (abs(x1 - x2) / np.mean([x1, x2])) + def SS_residuals(obslist, modellist): SS_res = 0 for n in range(len(obslist)): SS_res += (obslist[n] - modellist[n]) ** 2 return SS_res + def sig_sum(errorlist): + SS = 0 + for n in range(len(errorlist)): + SS += errorlist[n] ** 2 + return np.sqrt(SS) + def SS_total(obslist): mean = np.mean(obslist) SS_tot = 0 @@ -275,6 +284,42 @@ def CoD(obslist, modellist): """ return 1 - calc.error.SS_residuals(obslist, modellist) / calc.error.SS_total(obslist) + def weighted_average(valuelist, errorlist): + """ + Returns the weighted average of a list of values, with + their corresponding errors. Also returns the uncertainty in the + weighted average, which is the reciprocal of the square + root of the sum of the reciprocal squared errors. + """ + M = sum(1 / np.array(errorlist) ** 2) + w_average = 0 + for n in range(len(errorlist)): + w_average += valuelist[n] / errorlist[n] ** 2 + w_average /= M + ave_error = 1 / np.sqrt(M) + return w_average, ave_error, M + + def avg(errorlist): + error2list = [] + for error in errorlist: + error2list.append(error ** 2) + return np.sqrt(sum(error2list)) * (1 / len(errorlist)) + + def red_X2(obslist, modellist, obserror): + """ + Calculates the reduced chi squared. + Requires observed values, expected values (model), + and ideally the observed error. However, if the errors are not known, + simply make all values in obserror 1. This will then return the residual sum + of squares, which isn't really chi squared + """ + X2v0 = 0 + X2v = X2v0 + for n in range(len(obslist)): + # print(X2v) + X2v += ((obslist[n] - modellist[n]) / obserror[n]) ** 2 + return X2v + # ------------------- class astro: class convert: