forked from TPRU-India/taxdata
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmatchfiles.py
164 lines (143 loc) · 6.88 KB
/
matchfiles.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import pandas as pd
import numpy as np
from statmatch import counts, reg, predict, match
def matchfiles(income_data, verbose=False):
"""
Run all statistical matching logic
"""
consumption_file = "Household Characteristics - Block 3 - Level 2 - 68.dta"
consumption_file2 = "Household characteristics - Block 3 - Level 3.dta"
consumption_summary = "Summary of Consumer Expenditure - Block 12 - Level 11 - 68.dta"
if verbose:
print("Reading Data")
if verbose:
print("Finished Reading Income Data")
consumption_data = pd.read_stata(consumption_file, preserve_dtypes=False)
# pull ration card data from other file
consumption_data2 = pd.read_stata(consumption_file2)
consumption_data = pd.merge(consumption_data,
consumption_data2[["Possess_ration_card",
"HHID"]],
on="HHID", how="inner")
del consumption_data2
consump_summary_data = pd.read_stata(consumption_summary)
# only use the summary data on monthly per capita expenditure
consump_summary_data = consump_summary_data[["Value", "HHID"]][
consump_summary_data["Srl_no"] == "49"
]
consumption_data = pd.merge(consumption_data, consump_summary_data,
how="inner", on="HHID")
del consump_summary_data
if verbose:
print("Finished Reading Consumption Data")
print("Cleaning Data")
# perform general data cleaning
# convert listed variables to integers
int_vars = ["HH_Size", "State_code", "Sector"]
for var in int_vars:
consumption_data[var] = consumption_data[var].astype(int)
# rename variables in data to match names
income_renames = {"URBAN2011": "urban",
"RC1": "ration_card"}
income_data.rename(income_renames, axis=1, inplace=True)
# normalize data
consumption_data["urban"] = np.where(consumption_data["Sector"] == 2,
1, 0)
ration_card = np.where(consumption_data["Possess_ration_card"] == 2,
1, 0)
consumption_data["ration_card"] = ration_card
owns_land = np.where(consumption_data["whether_Land_owned"] == 2, 1, 0)
consumption_data["owns_land"] = owns_land
caste = np.where(consumption_data["Social_Group"] == "9", 4,
consumption_data["Social_Group"])
consumption_data["caste"] = caste
owns_land = income_data[["FM4A", "FM4B", "FM4C"]].sum(axis=1).astype(bool)
income_data["owns_land"] = owns_land * 1
caste = np.where(income_data["ID13"] == 5, 1,
np.where(income_data["ID13"] == 4, 2,
np.where(income_data["ID13"] == 3, 3,
4)))
income_data["caste"] = caste
# top code household size because of the lack of records with
# higher household sizes
consumption_data["hh_size_tc"] = np.where(consumption_data["HH_Size"] > 10,
11, consumption_data["HH_Size"])
income_data["hh_size_tc"] = np.where(income_data["NPERSONS"] > 10,
11, income_data["NPERSONS"])
# create dummy variables
caste_dummies = pd.get_dummies(income_data["caste"], prefix="caste")
income_data[caste_dummies.columns] = caste_dummies
caste_dummies = pd.get_dummies(consumption_data["caste"],
prefix="caste")
consumption_data[caste_dummies.columns] = caste_dummies
caste_dummy_vars = list(caste_dummies.columns)
# remove variable representing missing caste data
caste_dummy_vars.remove("caste_ ")
state_dummies = pd.get_dummies(consumption_data["State_code"],
prefix="stateid")
consumption_data[state_dummies.columns] = state_dummies
state_dummies = pd.get_dummies(income_data["STATEID"], prefix="stateid")
income_data[state_dummies.columns] = state_dummies
# determine partition groups and unweighted counts in each
if verbose:
print("Partitioning Data")
partition_vars = ["urban", "hh_size_tc"]
income_counts = counts(income_data, partition_vars, "WT")
consumption_counts = counts(consumption_data, partition_vars,
"Combined_multiplier")
income_counts.rename(columns={"count": "i_count",
"wt": "i_wt"},
inplace=True)
consumption_counts.rename(columns={"count": "c_count",
"wt": "c_wt"},
inplace=True)
full_count = pd.merge(income_counts, consumption_counts,
how="inner", on=partition_vars)
full_count["cell_id"] = full_count.index + 1
# Factor for adjusting weight in each cell
full_count["factor"] = (full_count["c_wt"] /
full_count["i_wt"]).astype(float)
# merge cell_id onto each data file
income_data = pd.merge(income_data, full_count, how="inner",
on=partition_vars)
consumption_data = pd.merge(consumption_data, full_count,
how="inner", on=partition_vars)
# ensure that income data weights total consumption data
income_data["wt"] = income_data["WT"] * income_data["factor"]
consumption_data["wt"] = consumption_data["Combined_multiplier"]
consumption_data["const"] = np.ones(len(consumption_data))
# define variables for the regression
indep_vars = (["owns_land", "ration_card"] +
list(state_dummies.columns)[:-1] +
caste_dummy_vars[1:])
# find model parameters for each group
if verbose:
print("Running Regression")
gdf = consumption_data.groupby("cell_id", as_index=False)
params = gdf.apply(reg, dep_var="Value", indep_vars=indep_vars,
wt="Combined_multiplier")
params = params.add_prefix("param_")
params["cell_id"] = params.index + 1
income_data = pd.merge(income_data, params, how="inner",
on="cell_id")
consumption_data = pd.merge(consumption_data, params,
how="inner", on="cell_id")
# calculate yhat values
if verbose:
print("Predicting Consumption")
income_data["const"] = np.ones(len(income_data))
income_data["yhat"] = predict(income_data, indep_vars)
consumption_data["yhat"] = predict(consumption_data,
indep_vars)
# perform match
if verbose:
print("Matching Data")
match_index = match(income_data, consumption_data,
"IDHH", "HHID", "wt", "wt")
match_index["HHID"] = match_index["HHID"].astype(int)
match_index["IDHH"] = match_index["IDHH"].astype(int)
if verbose:
print("Match Complete")
return match_index
if __name__ == "__main__":
matchfiles(True)