-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathhidden_role_learning.py
485 lines (407 loc) · 20 KB
/
hidden_role_learning.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
# features.py
import glob, os, sys, math, warnings, copy, time
import numpy as np
from scipy.optimize import linear_sum_assignment
from scipy.spatial import distance
import pandas as pd
from scipy.stats import multivariate_normal
from hmmlearn import hmm
import matplotlib.pyplot as plt
import cv2
import matplotlib.image as mpimg
import matplotlib.patches as patches
import matplotlib.gridspec as gridspec
# modifying the code https://github.com/samshipengs/Coordinated-Multi-Agent-Imitation-Learning
# ===================================================================
class HiddenStructureLearning:
def __init__(self, events_df, Model_d, Model_o, n_pl, n_roles, args, libmode, tol=1e-1, defend_iter=100, offend_iter=100):
self.df = events_df.copy()
self.libmode = libmode
self.tol = tol
self.defend_iter = defend_iter
self.offend_iter = offend_iter
self.Model_d = Model_d
self.Model_o = Model_o
self.n_pl = n_pl
self.n_roles = n_pl if n_pl == 5 else n_pl - 1
self.acc = args.acc # added
self.velocity = args.velocity
self.meanHMM = args.meanHMM # added
if n_pl == 5: # for basketball, use all players
self.defend_players = list(range(n_pl))
self.offend_players = list(range(n_pl, n_pl*2))
elif n_pl == 11: # for soccer, eliminate goalkeeper
self.defend_players = list(range(n_pl-1))
self.offend_players = list(range(n_pl, n_pl*2-1))
# =================================
# find_features_ind ===============
# =================================
def find_features_ind(self, player):
# extract feature index regarding the player
n_pl = self.n_pl
# assert player < n_pl*2
pxy_ind = [player*2, player*2+1] # 0-1
if n_pl == 5:
n_f0 = 26 # number of raw features
elif n_pl == 11:
n_f0 = 46
n_f1 = n_f0 + n_pl*2*4 # index of relation with ball 66/134
n_f2 = n_f1 + n_pl*2*4 # index of relation with goal 106/222
n_f3 = n_f2 + n_pl*2*4*n_pl*2 # index of relation with all players 506/2158
if n_pl == 5:
n_f4 = n_f3 + n_pl*2*2 + 3
elif n_pl == 11:
n_f4 = n_f3 + n_pl*2*2 + 2 # 2204
polar_bball_ind = [n_f0+player, n_f0+player+n_pl*2, n_f0+player+n_pl*4, n_f0+player+n_pl*6] # 2-5
polar_hoop_ind = [n_f1+player, n_f1+player+n_pl*2, n_f1+player+n_pl*4, n_f1+player+n_pl*6] # 6-9
players_ind = list(range(n_f2 + player*n_pl*8, n_f2 + (player+1)*n_pl*8)) # 12-51/12-99
pvxy_ind = [n_f3+player*2, n_f3+player*2+1] # 10-11
paxy_ind = [n_f4+player*2, n_f4+player*2+1] # 12-13
if self.velocity < 2: # not self.acc == -1:
player_features_ind = pxy_ind + polar_bball_ind + polar_hoop_ind + pvxy_ind + players_ind
else:
player_features_ind = pxy_ind + polar_bball_ind + polar_hoop_ind + pvxy_ind + paxy_ind + players_ind
player_features_ind2 = player_features_ind # all
# posHMM:
player_features_ind = pxy_ind + polar_bball_ind[:2] + polar_hoop_ind[:2]
features_ind = np.array(player_features_ind)
return player_features_ind, features_ind, player_features_ind2
def find_features_ind2(self, player, reorderedPlayers):
n_pl = self.n_pl
nlpd = np.array(n_pl, dtype=int)
_, _, player_features_ind = self.find_features_ind(player)
features_ind = np.array(player_features_ind)
# relationship between players
n_f0 = 12 if self.velocity < 2 else 14 # not self.acc else 14
V = 4 # dist, cos, sin, theta
player_features_ind0 = player_features_ind.copy()
# for i in range(nlpd): # defense players
for i, p in enumerate(reorderedPlayers): # i: assigned player, p: order(1:5)
for v in range(V): # variables
player_features_ind[n_f0+v+p*V] = player_features_ind0[n_f0+v+i*V]
# player_features_ind[n_f0+i+v*nlpd] = player_features_ind[players_ind[reorderedPlayers[i]]]
features_ind = np.array(player_features_ind)
return player_features_ind, features_ind
# =================================
# create_hmm_input ================
# =================================
def create_hmm_input(self, player_inds):
event = self.df.moments.values
# create X: array-like, shape (n_samples, n_features)
player_fts = [ms[:, self.find_features_ind(player)[1]] for player in player_inds for ms in event]
if self.libmode == 'pom':
return player_fts
X = np.concatenate(player_fts, axis=0)
# create lengths : array-like of integers, shape (n_sequences, )
lengths = [len(ms) for player in player_inds for ms in event]
assert len(event[0]) == lengths[0]
assert len(event[len(event)//2]) == lengths[len(lengths)//len(player_inds)//2]
assert len(event[-1]) == lengths[-1]
return X, lengths
def train_hmm(self, player_inds, n_iter, random_state=42, verbose=True):
print('Training for {0} players and {1} player_roles with iterations: {2}'.format(len(player_inds), self.n_roles, n_iter))
n_pl = self.n_pl
if n_pl == 5:
assert len(player_inds) == n_pl # defend and offend players each are five
elif n_pl == 11:
assert len(player_inds) == n_pl-1
X, lengths = self.create_hmm_input(player_inds=player_inds)
if True:
model = hmm.GaussianHMM(n_components=self.n_roles,
covariance_type='diag',
algorithm='map',
n_iter=n_iter,
tol=self.tol,
random_state=random_state,
verbose=verbose)
model.fit(X, lengths)
else: # check
if n_pl == 11:
game_files_pre = './data/all_soccer_games_7500_unnorm_filt_acc_k0/_pre_'
else:
game_files_pre = './data/all_nba_games_100_unnorm_filt_acc_k0/_pre_'
with open(game_files_pre+'.pkl', 'rb') as f:
model = np.load(f,allow_pickle=True)[self.team+2]
print('soccer HMM model of team ' + str(self.team) + ' was loaded')
cmeans = model.means_
# covars = model.covars_[:,:2,:2]
self.visualize_HMM(model)
return {'X': X,
'lengths': lengths,
'model': model, # added
# 'state_sequence': state_sequence.reshape(5, -1), # the shape here can be done because the original input is ordered by players chunk
# 'state_sequence_prob': [state_sequence_prob[i:i+n_samples//5] for i in range(0, n_samples, n_samples//5)],
'cmeans': cmeans}
def visualize_HMM(self,model):
if (self.defend_iter > 10 and self.team==0) or (self.offend_iter > 10 and self.team==1):
fig = plt.figure(figsize=(24, 12))
self.draw_HMM(model)
if self.n_pl == 5:
data = 'NBA'
else:
data = 'soccer'
XO = 'DF' if self.team==0 else 'OF'
if not os.path.isdir('figure/HMM/'):
os.makedirs('figure/HMM/')
try: plt.savefig("figure/HMM/"+data+"_Gaussian_HMM_"+XO+".png", bbox_inches='tight')
except: import pdb; pdb.set_trace()
plt.close()
print(XO+' Gaussian_HMM was visualized')
def draw_HMM(self,model):
cmeans = model.means_
covars = model.covars_
# team_A: defense team_B: attack
K,D = cmeans.shape
cmeans_mat = cmeans[:,:2]
covars_mat = covars[:,:2,:2]
#plt.axis('equal')
self.plotCourt(K)
# timestep = pred_len
# initial marker
self.plotDistribution(cmeans_mat,covars_mat,K)
def plotDistribution(self,cmeans_mat,covars_mat,K):
ax = plt.gca()
clr = 'b' if self.team == 0 else 'r'
for j in range(K):
mx = cmeans_mat[j, 0]
my = cmeans_mat[j, 1]
cx = covars_mat[j, 0, 0]
cy = covars_mat[j, 1, 1]
e = patches.Ellipse(xy=(mx, my), width=cx, height=cy,fill=False,ec=clr)
ax.add_patch(e)
# player jersey # (text)
ax.text(mx,my,str(j+1),color='k',ha='center',va='center')
ax.set_title('Gaussian HMM')
def predict_hmm(self, trainModel, player_inds, n_iter, random_state=42, verbose=True):
X, lengths = self.create_hmm_input(player_inds=player_inds)
# Z = trainModel.predict(X, lengths) # unnecessary
cmeans = trainModel.means_
return {'X': X,
'lengths': lengths,
'model': trainModel,
'cmeans': cmeans}
def assign_roles(self, trainModel, player_inds, n_iter, mode='euclidean'):
n_pl = self.n_pl
n_roles = self.n_roles
if not trainModel:
result = self.train_hmm(player_inds=player_inds, n_iter=n_iter) # train
else:
result = self.predict_hmm(trainModel, player_inds=player_inds, n_iter=n_iter)
lengths = result['lengths']
n_seq = len(lengths)
if mode == 'euclidean':
ed = distance.cdist(result['X'], result['cmeans'], 'euclidean')
elif mode == 'cosine':
ed = distance.cdist(result['X'], result['cmeans'], 'cosine') # (seqs*players)*roles
if self.meanHMM:
# ed2 = np.zeros(n_seq,n_roles)
start = 0
for i in range(n_seq):
ed[start:start+lengths[i],:] = np.mean(ed[start:start+lengths[i],:],axis=0)
start += lengths[i]
if n_pl == 5:
assert len(player_inds) == n_pl # defend and offend players each are five
elif n_pl == 11:
assert len(player_inds) == n_pl-1
n = len(ed)//len(player_inds) # number of sequences for each players
assert len(ed) % len(player_inds) == 0 # it should be divisibe by number of players
# n = len(ed)
# unnecessary to be corrected when n_pl != n_roles
role_assignments = np.zeros((n,len(player_inds)), dtype=np.int)
for i in range(n):
cost = ed[np.arange(len(player_inds))*n + i] # n_roles*n_roles row i is assigned to column j.
cost = cost.transpose() # column j is assigned to row i.
try: role_assignments[i,:] = np.array(self.assign_ind(cost))
except: import pdb; pdb.set_trace()
# role_assignments = np.array([self.assign_ind(ed[np.arange(len(player_inds))*n + i]) for i in range(n)])
return role_assignments, result # role_assignments: (seqs,players), result['X']: (seqs*players)*features
def assign_ind(self, cost):
# cost: n_players*n_roles matrix
_, col_ind = linear_sum_assignment(cost)
# https://docs.scipy.org/doc/scipy-0.18.1/reference/generated/scipy.optimize.linear_sum_assignment.html
return col_ind
def reorder_moment(self):
original = copy.deepcopy(self.df.moments.values)
if not self.Model_d: # train
self.Model_d = []
self.Model_o = []
self.team = 0
if self.offend_iter > 0:
t1 = time.time()
defend_role_assignments, defend_result = self.assign_roles(self.Model_d,player_inds=self.defend_players, n_iter=self.defend_iter)
self.team = 1
offend_role_assignments, offend_result = self.assign_roles(self.Model_o,player_inds=self.offend_players, n_iter=self.offend_iter)
if not self.Model_d: # train
print('Total HMM training took {0:.2f}mins'.format((time.time()-t1)/60))
reordered = copy.deepcopy(self.df.moments.values)
# offset is to map the reordered index back to original range for offense players
def reorder_moment_(players, original, reordered, role_assignments, offset):
divider = 0
lengths = [len(m) for m in original]
# iteratve through each moments length
for i in range(len(lengths)):
# grab the corresponding moments' reordered roles
ra_i = role_assignments[divider:divider+lengths[i]]
# update the next starting index
divider += lengths[i]
# iterate through each moment in the current moments
for j in range(lengths[i]):
# iterate through each players
for k, p in enumerate(players):
# get the current player feature index
p_ind = self.find_features_ind(p)[2] # [0]
# get the player feature index corresponding to the reordered role
try:
re_p_ind = self.find_features_ind(ra_i[j][k]+offset)[0]
if ra_i.shape[1] == self.n_roles: # n_pl==N_roles(Le+17)
re_p_ind = self.find_features_ind2(ra_i[j][k]+offset,ra_i[j])[0]
reordered[i][j][p_ind] = original[i][j][re_p_ind]
except: import pdb; pdb.set_trace()
return reordered
reordered_defend = copy.deepcopy(reorder_moment_(self.defend_players, original, reordered, defend_role_assignments, 0))
reordered_all = copy.deepcopy(reorder_moment_(self.offend_players, original, reordered_defend, offend_role_assignments, self.n_pl))
self.visualize(original,reordered_all)
return reordered_all, defend_result['model'], offend_result['model']
else:
defend_result = [] ; offend_result = []
reordered_all = original
return reordered_all, defend_result, offend_result
def visualize(self,original,reordered_all):
N1 = len(original)
if self.n_pl == 5:
data = 'NBA'
else:
data = 'soccer'
allPlayers = True
for n1 in range(0,5,1):
fig = plt.figure(figsize=(24, 12)) # ,constrained_layout=True
#############################
if self.n_pl == 5:
f_ax = fig.add_subplot(1,2,1)
else:
f_ax = fig.add_subplot(2,1,1)
self.draw_trajectory3(original[n1],f_ax, allPlayers)
f_ax.set_title('original')
#############################
if self.n_pl == 5:
f_ax = fig.add_subplot(1,2,2)
else:
f_ax = fig.add_subplot(2,1,2)
self.draw_trajectory3(reordered_all[n1],f_ax, allPlayers)
f_ax.set_title('reordered_all')
plt.savefig("figure/HMM/{}_{}.png".format(data,n1), bbox_inches='tight')
plt.close()
print('test sample '+str(n1)+' was visualized')
# draw_trajectory(samples[n1], samples_CF[n1], n2, pred_len, allPlayers)
def draw_trajectory3(self,samples, f_ax, allPlayers):
# team_A: defense team_B: attack
T,D = samples.shape
data = samples
if D < 555:
K = 5
n_agents = K
n_all_agents = 10
else:
K = 10
n_agents = K+1
n_all_agents = 22
ball = data[:,n_all_agents*2:n_all_agents*2+2]
data_mat = data[:,:n_all_agents*2].reshape(T,n_all_agents,2)
team_A = data_mat[:,:n_agents,:]
team_B = data_mat[:,n_agents:n_agents*2,:]
#plt.axis('equal')
self.plotCourt(K)
timestep = 50
markersize = 10
TextCircle = 0
for i in range(0, timestep-2, 1): #
self.plotPosition3(team_A,team_B,ball,K,i,markersize,TextCircle,allPlayers)
# initial marker
index = 0
if K == 5:
markersize = 0.5
TextCircle = 1
else:
markersize = 0.5
TextCircle = 2
self.plotPosition3(team_A,team_B,ball,K,index,markersize,TextCircle,allPlayers)
# last marker
if K == 5:
markersize = 0.5
else:
markersize = 60
index = timestep-1
TextCircle = 2
self.plotPosition3(team_A,team_B,ball,K,index,markersize,TextCircle,allPlayers)
def plotPosition3(self,team_A,team_B,ball,K,i,markersize,TextCircle,allPlayers):
if allPlayers:
start_pl = 0
Tm = 2
else:
start_pl = 0 if K == 5 else 1
Tm = 1
n_all_agent = 10 if K == 5 else 22
n_team_agent = 5 if K == 5 else 11
ax = plt.gca()
im_team = [[],[]]
if allPlayers:
if TextCircle == 1:
im_ball = patches.Circle((ball[i, 0], ball[i, 1]), radius=markersize-0.15, fc='orange',ec="k")
ax.add_patch(im_ball)
ax.text(ball[i, 0], ball[i, 1],'B',color='w',ha='center',va='center')
elif TextCircle == 0:
im_ball = patches.Circle((ball[i, 0], ball[i, 1]), radius=0.1, fc='orange',ec="k")
ax.add_patch(im_ball)
im_ball = plt.scatter(ball[i, 0], ball[i, 1], marker=".", s=markersize, fc='orange',ec="k") # for legend only
for tm in range(Tm):
pos = team_A if tm == 0 else team_B
clr = 'b' if tm == 0 else 'r'
for j in range(start_pl,n_team_agent):
xx = pos[i, j, 0]
yy = pos[i, j, 1]
if TextCircle == 1: # player circle
if tm == 1: # offense
im_team[tm] = patches.Circle((xx,yy), radius=markersize-0.15,
fc=clr,ec='k')
else:
im_team[tm] = patches.CirclePolygon((xx,yy), radius = markersize,
resolution = 3, fc = clr, ec = "k") # triangle
ax.add_patch(im_team[tm])
# player jersey # (text)
ax.text(xx,yy,str(j+1),color='w',ha='center',va='center')
elif TextCircle == 2:
ax.text(xx,yy,str(j+1),color='k',ha='center',va='center')
else:
im_team[tm] = plt.scatter(xx,yy, marker=".", s=markersize, ec=clr, color=clr)
if allPlayers:
if TextCircle == 2:
ax.text(ball[i, 0], ball[i, 1],'B',color='k',ha='center',va='center')
im_ball = []
else:
im_ball = []
im_teamA, im_teamB = im_team
return im_ball, im_teamA, im_teamB
def plotCourt(self,K):
if K == 5:
court_path ='meta_data/nba_court_T.png'
feet_m = 0.3048
img = mpimg.imread(court_path)
plt.imshow(img, extent=[0,94*feet_m,0,50*feet_m], zorder=0)
plt.xlim(0,47*feet_m)
plt.ylim(0,50*feet_m)
else: # if K == 10:
plt.xlim(-52.5,52.5) # -52.5~52.5, -34~34 10, 40
plt.ylim(-34,34) # -34,34 -21, 21
plt.vlines(0, -34, 34, linestyles="solid") # center line
plt.vlines(36, -20.16, 20.16, linestyles="solid") # penalty area
plt.hlines(-20.16, 36, 52.5, linestyles="solid")
plt.hlines(20.16, 36, 52.5, linestyles="solid")
plt.vlines(-36, -20.16, 20.16, linestyles="solid")
plt.hlines(-20.16, -36, -52.5, linestyles="solid")
plt.hlines(20.16, -36, -52.5, linestyles="solid")
plt.vlines(47, -9.16, 9.16, linestyles="solid") # goal area
plt.hlines(9.16, 47, 52.5, linestyles="solid")
plt.hlines(-9.16, 47, 52.5, linestyles="solid")
plt.vlines(-47, -9.16, 9.16, linestyles="solid")
plt.hlines(9.16, -47, -52.5, linestyles="solid")
plt.hlines(-9.16, -47, -52.5, linestyles="solid")